Abstract

We propose a novel scheme for ultrabroadband midinfrared (mid-IR) generation using quasi-phase-matched difference-frequency generation (DFG) in a GaN/AlxGa1xN based Bragg reflection waveguide (BRW). By optimally tailoring the phase- and group-velocity dispersion properties of symmetric BRWs, we show that the phase-matching condition for a DFG process could be maintained over a broad range of signal wavelengths. This could lead to generation of an 700nm broad idler close to 3.26μm wavelength. Since the idea is based on dispersion compensation using photonic bandgap geometry, we can shift the broadband features to any desired spectral region and for any material system within the constraints imposed by the transparency of nonlinear materials. We also investigate the possibility of broadband mid-IR generation using pump sources with broad spectral width.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gayraud, Ł. W. Kornaszewski, J. M. Stone, J. C. Knight, D. T. Reid, D. P. Hand, and W. N. MacPherson, “Mid-infrared gas sensing using a photonic bandgap fiber,” Appl. Opt. 47, 1269-1277 (2008).
    [PubMed]
  2. T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545-591 (2000).
    [CrossRef]
  3. D. N. Basov and T. Timusk, “Electrodynamics of high-Tc superconductors,” Rev. Mod. Phys. 77, 721-779 (2005).
    [CrossRef]
  4. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifier,” Rev. Sci. Instrum. 74, 1-18 (2003).
    [CrossRef]
  5. E. J. Lim, H. M. Herka, M. L. Bortz, and M. M. Fejer, “Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 59, 2207-2209 (1991).
    [CrossRef]
  6. T. Yanagawa, H. Kanbara, O. Tadanaga, M. Asobe, H. Suzuki, and J. Yumoto, “Broadband difference frequency generation around phase-match singularity,” Appl. Phys. Lett. 86, 161106 (2005).
    [CrossRef]
  7. D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. De Silvestri, and G. Cerullo, “Generation of broadband mid-infrared pulses from an optical parametric amplifier,” Opt. Express 15, 15035-15040 (2007).
    [CrossRef] [PubMed]
  8. O. Prakash, H. H. Lim, B. J. Kim, K. Pandiyan, M. Cha, and B. K. Rhee, “Collinear broadband optical parametric generation in periodically poled lithium niobate crystals by group velocity matching,” Appl. Phys. B 92, 535-541 (2008).
    [CrossRef]
  9. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71-73 (2006).
    [CrossRef] [PubMed]
  10. A. Baltŭska, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phy. Rev. Lett. 88, 133901 (2002).
    [CrossRef]
  11. Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-matched condition,” Opt. Commun. 281, 3878-3881 (2008).
    [CrossRef]
  12. D. Brida, M. Marangoni, C. Manzoni, S. De Silvestri, and G. Cerullo, “Two optical cycle pulses in the mid-infrared from an optical parametric amplifier,” Opt. Lett. 33, 2901-2903(2008).
    [CrossRef] [PubMed]
  13. P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 19, 427-430 (1976).
    [CrossRef]
  14. B. R. West and A. S. Helmy, “Dispersion tailoring of the quarter-wave Bragg reflection waveguide,” Opt. Express 14, 4073-4086 (2006).
    [CrossRef] [PubMed]
  15. N. A. Sanford, A. V. Davydov, D. V. Tsvetkov, A. V. Dmitriev, S. Keller, U. K. Mishra, S. P. DenBaars, S. S. Park, J. Y. Han, and R. J. Molnar, “Measurement of second order susceptibilities of GaN and AlGaN,” J. Appl. Phys. 97, 053512(2005).
    [CrossRef]
  16. S. Pezzagna, P. Vennegues, N. Grandjean, A. D. Wieck, and J. Massies, “Submicron periodic poling and chemical patterning of GaN,” Appl. Phys. Lett. 87, 062106 (2005).
    [CrossRef]
  17. A. Chowdhury, Hock M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077-1079 (2003).
    [CrossRef]
  18. I. N. Zavestovskaya, O. N. Krokhin, Yu. M. Popov, and A. S. Semenov, “Symposium on the coherent optical radiation of semiconductor compounds and structures,” Quantum Electron. 38, 294-297 (2008).
    [CrossRef]
  19. A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. 5, 660-667 (1987).
    [CrossRef]
  20. A. Yariv, “Coupled-mode theory for guided wave optics,” IEEE J. Quantum Electron. 9, 919-933 (1973).
    [CrossRef]
  21. B. Nistad, M. W. Haakestad, and J. Skaar, “Dispersion properties of planar Bragg reflection waveguides,” Opt. Commun. 265, 153-160 (2006).
    [CrossRef]
  22. M. C. Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifiers using chirped quasi phase-matching gratings I: Practical design formulas,” J. Opt. Soc. Am. B 25, 463-480(2008).
    [CrossRef]

2008

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-matched condition,” Opt. Commun. 281, 3878-3881 (2008).
[CrossRef]

O. Prakash, H. H. Lim, B. J. Kim, K. Pandiyan, M. Cha, and B. K. Rhee, “Collinear broadband optical parametric generation in periodically poled lithium niobate crystals by group velocity matching,” Appl. Phys. B 92, 535-541 (2008).
[CrossRef]

I. N. Zavestovskaya, O. N. Krokhin, Yu. M. Popov, and A. S. Semenov, “Symposium on the coherent optical radiation of semiconductor compounds and structures,” Quantum Electron. 38, 294-297 (2008).
[CrossRef]

M. C. Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifiers using chirped quasi phase-matching gratings I: Practical design formulas,” J. Opt. Soc. Am. B 25, 463-480(2008).
[CrossRef]

N. Gayraud, Ł. W. Kornaszewski, J. M. Stone, J. C. Knight, D. T. Reid, D. P. Hand, and W. N. MacPherson, “Mid-infrared gas sensing using a photonic bandgap fiber,” Appl. Opt. 47, 1269-1277 (2008).
[PubMed]

D. Brida, M. Marangoni, C. Manzoni, S. De Silvestri, and G. Cerullo, “Two optical cycle pulses in the mid-infrared from an optical parametric amplifier,” Opt. Lett. 33, 2901-2903(2008).
[CrossRef] [PubMed]

2007

2006

2005

N. A. Sanford, A. V. Davydov, D. V. Tsvetkov, A. V. Dmitriev, S. Keller, U. K. Mishra, S. P. DenBaars, S. S. Park, J. Y. Han, and R. J. Molnar, “Measurement of second order susceptibilities of GaN and AlGaN,” J. Appl. Phys. 97, 053512(2005).
[CrossRef]

S. Pezzagna, P. Vennegues, N. Grandjean, A. D. Wieck, and J. Massies, “Submicron periodic poling and chemical patterning of GaN,” Appl. Phys. Lett. 87, 062106 (2005).
[CrossRef]

D. N. Basov and T. Timusk, “Electrodynamics of high-Tc superconductors,” Rev. Mod. Phys. 77, 721-779 (2005).
[CrossRef]

T. Yanagawa, H. Kanbara, O. Tadanaga, M. Asobe, H. Suzuki, and J. Yumoto, “Broadband difference frequency generation around phase-match singularity,” Appl. Phys. Lett. 86, 161106 (2005).
[CrossRef]

2003

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifier,” Rev. Sci. Instrum. 74, 1-18 (2003).
[CrossRef]

A. Chowdhury, Hock M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077-1079 (2003).
[CrossRef]

2002

A. Baltŭska, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phy. Rev. Lett. 88, 133901 (2002).
[CrossRef]

2000

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545-591 (2000).
[CrossRef]

1991

E. J. Lim, H. M. Herka, M. L. Bortz, and M. M. Fejer, “Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 59, 2207-2209 (1991).
[CrossRef]

1987

A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. 5, 660-667 (1987).
[CrossRef]

1976

P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 19, 427-430 (1976).
[CrossRef]

1973

A. Yariv, “Coupled-mode theory for guided wave optics,” IEEE J. Quantum Electron. 9, 919-933 (1973).
[CrossRef]

Afeyan, B.

Asobe, M.

T. Yanagawa, H. Kanbara, O. Tadanaga, M. Asobe, H. Suzuki, and J. Yumoto, “Broadband difference frequency generation around phase-match singularity,” Appl. Phys. Lett. 86, 161106 (2005).
[CrossRef]

Baltuska, A.

A. Baltŭska, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phy. Rev. Lett. 88, 133901 (2002).
[CrossRef]

Basov, D. N.

D. N. Basov and T. Timusk, “Electrodynamics of high-Tc superconductors,” Rev. Mod. Phys. 77, 721-779 (2005).
[CrossRef]

Bhardwaj, M.

A. Chowdhury, Hock M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077-1079 (2003).
[CrossRef]

Bliss, D.

Bortz, M. L.

E. J. Lim, H. M. Herka, M. L. Bortz, and M. M. Fejer, “Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 59, 2207-2209 (1991).
[CrossRef]

Brabec, T.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545-591 (2000).
[CrossRef]

Brida, D.

Cao, Z.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-matched condition,” Opt. Commun. 281, 3878-3881 (2008).
[CrossRef]

Cerullo, G.

Cha, M.

O. Prakash, H. H. Lim, B. J. Kim, K. Pandiyan, M. Cha, and B. K. Rhee, “Collinear broadband optical parametric generation in periodically poled lithium niobate crystals by group velocity matching,” Appl. Phys. B 92, 535-541 (2008).
[CrossRef]

Chen, W.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-matched condition,” Opt. Commun. 281, 3878-3881 (2008).
[CrossRef]

Chowdhury, A.

A. Chowdhury, Hock M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077-1079 (2003).
[CrossRef]

Cirmi, G.

Davydov, A. V.

N. A. Sanford, A. V. Davydov, D. V. Tsvetkov, A. V. Dmitriev, S. Keller, U. K. Mishra, S. P. DenBaars, S. S. Park, J. Y. Han, and R. J. Molnar, “Measurement of second order susceptibilities of GaN and AlGaN,” J. Appl. Phys. 97, 053512(2005).
[CrossRef]

De Silvestri, S.

DenBaars, S. P.

N. A. Sanford, A. V. Davydov, D. V. Tsvetkov, A. V. Dmitriev, S. Keller, U. K. Mishra, S. P. DenBaars, S. S. Park, J. Y. Han, and R. J. Molnar, “Measurement of second order susceptibilities of GaN and AlGaN,” J. Appl. Phys. 97, 053512(2005).
[CrossRef]

Deng, L.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-matched condition,” Opt. Commun. 281, 3878-3881 (2008).
[CrossRef]

Dmitriev, A. V.

N. A. Sanford, A. V. Davydov, D. V. Tsvetkov, A. V. Dmitriev, S. Keller, U. K. Mishra, S. P. DenBaars, S. S. Park, J. Y. Han, and R. J. Molnar, “Measurement of second order susceptibilities of GaN and AlGaN,” J. Appl. Phys. 97, 053512(2005).
[CrossRef]

Fejer, M. M.

Fuji, T.

A. Baltŭska, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phy. Rev. Lett. 88, 133901 (2002).
[CrossRef]

Gao, X.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-matched condition,” Opt. Commun. 281, 3878-3881 (2008).
[CrossRef]

Gayraud, N.

Ghatak, A. K.

A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. 5, 660-667 (1987).
[CrossRef]

Gong, Z.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-matched condition,” Opt. Commun. 281, 3878-3881 (2008).
[CrossRef]

Grandjean, N.

S. Pezzagna, P. Vennegues, N. Grandjean, A. D. Wieck, and J. Massies, “Submicron periodic poling and chemical patterning of GaN,” Appl. Phys. Lett. 87, 062106 (2005).
[CrossRef]

Haakestad, M. W.

B. Nistad, M. W. Haakestad, and J. Skaar, “Dispersion properties of planar Bragg reflection waveguides,” Opt. Commun. 265, 153-160 (2006).
[CrossRef]

Han, J. Y.

N. A. Sanford, A. V. Davydov, D. V. Tsvetkov, A. V. Dmitriev, S. Keller, U. K. Mishra, S. P. DenBaars, S. S. Park, J. Y. Han, and R. J. Molnar, “Measurement of second order susceptibilities of GaN and AlGaN,” J. Appl. Phys. 97, 053512(2005).
[CrossRef]

Han, L.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-matched condition,” Opt. Commun. 281, 3878-3881 (2008).
[CrossRef]

Hand, D. P.

Harris, J. S.

Helmy, A. S.

Herka, H. M.

E. J. Lim, H. M. Herka, M. L. Bortz, and M. M. Fejer, “Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 59, 2207-2209 (1991).
[CrossRef]

Kanbara, H.

T. Yanagawa, H. Kanbara, O. Tadanaga, M. Asobe, H. Suzuki, and J. Yumoto, “Broadband difference frequency generation around phase-match singularity,” Appl. Phys. Lett. 86, 161106 (2005).
[CrossRef]

Keller, S.

N. A. Sanford, A. V. Davydov, D. V. Tsvetkov, A. V. Dmitriev, S. Keller, U. K. Mishra, S. P. DenBaars, S. S. Park, J. Y. Han, and R. J. Molnar, “Measurement of second order susceptibilities of GaN and AlGaN,” J. Appl. Phys. 97, 053512(2005).
[CrossRef]

Kim, B. J.

O. Prakash, H. H. Lim, B. J. Kim, K. Pandiyan, M. Cha, and B. K. Rhee, “Collinear broadband optical parametric generation in periodically poled lithium niobate crystals by group velocity matching,” Appl. Phys. B 92, 535-541 (2008).
[CrossRef]

Knight, J. C.

Kobayashi, T.

A. Baltŭska, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phy. Rev. Lett. 88, 133901 (2002).
[CrossRef]

Kornaszewski, L. W.

Krausz, F.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545-591 (2000).
[CrossRef]

Krokhin, O. N.

I. N. Zavestovskaya, O. N. Krokhin, Yu. M. Popov, and A. S. Semenov, “Symposium on the coherent optical radiation of semiconductor compounds and structures,” Quantum Electron. 38, 294-297 (2008).
[CrossRef]

Kuo, P. S.

Lefort, M. C.

Liang, W.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-matched condition,” Opt. Commun. 281, 3878-3881 (2008).
[CrossRef]

Lim, E. J.

E. J. Lim, H. M. Herka, M. L. Bortz, and M. M. Fejer, “Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 59, 2207-2209 (1991).
[CrossRef]

Lim, H. H.

O. Prakash, H. H. Lim, B. J. Kim, K. Pandiyan, M. Cha, and B. K. Rhee, “Collinear broadband optical parametric generation in periodically poled lithium niobate crystals by group velocity matching,” Appl. Phys. B 92, 535-541 (2008).
[CrossRef]

MacPherson, W. N.

Manzoni, C.

Marangoni, M.

Massies, J.

S. Pezzagna, P. Vennegues, N. Grandjean, A. D. Wieck, and J. Massies, “Submicron periodic poling and chemical patterning of GaN,” Appl. Phys. Lett. 87, 062106 (2005).
[CrossRef]

Mishra, U. K.

N. A. Sanford, A. V. Davydov, D. V. Tsvetkov, A. V. Dmitriev, S. Keller, U. K. Mishra, S. P. DenBaars, S. S. Park, J. Y. Han, and R. J. Molnar, “Measurement of second order susceptibilities of GaN and AlGaN,” J. Appl. Phys. 97, 053512(2005).
[CrossRef]

Molnar, R. J.

N. A. Sanford, A. V. Davydov, D. V. Tsvetkov, A. V. Dmitriev, S. Keller, U. K. Mishra, S. P. DenBaars, S. S. Park, J. Y. Han, and R. J. Molnar, “Measurement of second order susceptibilities of GaN and AlGaN,” J. Appl. Phys. 97, 053512(2005).
[CrossRef]

Ng, Hock M.

A. Chowdhury, Hock M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077-1079 (2003).
[CrossRef]

Nistad, B.

B. Nistad, M. W. Haakestad, and J. Skaar, “Dispersion properties of planar Bragg reflection waveguides,” Opt. Commun. 265, 153-160 (2006).
[CrossRef]

Pandiyan, K.

O. Prakash, H. H. Lim, B. J. Kim, K. Pandiyan, M. Cha, and B. K. Rhee, “Collinear broadband optical parametric generation in periodically poled lithium niobate crystals by group velocity matching,” Appl. Phys. B 92, 535-541 (2008).
[CrossRef]

Park, S. S.

N. A. Sanford, A. V. Davydov, D. V. Tsvetkov, A. V. Dmitriev, S. Keller, U. K. Mishra, S. P. DenBaars, S. S. Park, J. Y. Han, and R. J. Molnar, “Measurement of second order susceptibilities of GaN and AlGaN,” J. Appl. Phys. 97, 053512(2005).
[CrossRef]

Pezzagna, S.

S. Pezzagna, P. Vennegues, N. Grandjean, A. D. Wieck, and J. Massies, “Submicron periodic poling and chemical patterning of GaN,” Appl. Phys. Lett. 87, 062106 (2005).
[CrossRef]

Popov, Yu. M.

I. N. Zavestovskaya, O. N. Krokhin, Yu. M. Popov, and A. S. Semenov, “Symposium on the coherent optical radiation of semiconductor compounds and structures,” Quantum Electron. 38, 294-297 (2008).
[CrossRef]

Prakash, O.

O. Prakash, H. H. Lim, B. J. Kim, K. Pandiyan, M. Cha, and B. K. Rhee, “Collinear broadband optical parametric generation in periodically poled lithium niobate crystals by group velocity matching,” Appl. Phys. B 92, 535-541 (2008).
[CrossRef]

Reid, D. T.

Rhee, B. K.

O. Prakash, H. H. Lim, B. J. Kim, K. Pandiyan, M. Cha, and B. K. Rhee, “Collinear broadband optical parametric generation in periodically poled lithium niobate crystals by group velocity matching,” Appl. Phys. B 92, 535-541 (2008).
[CrossRef]

Sanford, N. A.

N. A. Sanford, A. V. Davydov, D. V. Tsvetkov, A. V. Dmitriev, S. Keller, U. K. Mishra, S. P. DenBaars, S. S. Park, J. Y. Han, and R. J. Molnar, “Measurement of second order susceptibilities of GaN and AlGaN,” J. Appl. Phys. 97, 053512(2005).
[CrossRef]

Semenov, A. S.

I. N. Zavestovskaya, O. N. Krokhin, Yu. M. Popov, and A. S. Semenov, “Symposium on the coherent optical radiation of semiconductor compounds and structures,” Quantum Electron. 38, 294-297 (2008).
[CrossRef]

Shenoy, M. R.

A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. 5, 660-667 (1987).
[CrossRef]

Simanovskii, D. M.

Skaar, J.

B. Nistad, M. W. Haakestad, and J. Skaar, “Dispersion properties of planar Bragg reflection waveguides,” Opt. Commun. 265, 153-160 (2006).
[CrossRef]

Stone, J. M.

Suzuki, H.

T. Yanagawa, H. Kanbara, O. Tadanaga, M. Asobe, H. Suzuki, and J. Yumoto, “Broadband difference frequency generation around phase-match singularity,” Appl. Phys. Lett. 86, 161106 (2005).
[CrossRef]

Tadanaga, O.

T. Yanagawa, H. Kanbara, O. Tadanaga, M. Asobe, H. Suzuki, and J. Yumoto, “Broadband difference frequency generation around phase-match singularity,” Appl. Phys. Lett. 86, 161106 (2005).
[CrossRef]

Thyagarajan, K.

A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. 5, 660-667 (1987).
[CrossRef]

Timusk, T.

D. N. Basov and T. Timusk, “Electrodynamics of high-Tc superconductors,” Rev. Mod. Phys. 77, 721-779 (2005).
[CrossRef]

Tsvetkov, D. V.

N. A. Sanford, A. V. Davydov, D. V. Tsvetkov, A. V. Dmitriev, S. Keller, U. K. Mishra, S. P. DenBaars, S. S. Park, J. Y. Han, and R. J. Molnar, “Measurement of second order susceptibilities of GaN and AlGaN,” J. Appl. Phys. 97, 053512(2005).
[CrossRef]

Vennegues, P.

S. Pezzagna, P. Vennegues, N. Grandjean, A. D. Wieck, and J. Massies, “Submicron periodic poling and chemical patterning of GaN,” Appl. Phys. Lett. 87, 062106 (2005).
[CrossRef]

Vodopyanov, K. L.

Wang, H.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-matched condition,” Opt. Commun. 281, 3878-3881 (2008).
[CrossRef]

Weimann, N. G.

A. Chowdhury, Hock M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077-1079 (2003).
[CrossRef]

West, B. R.

Weyburne, D.

Wieck, A. D.

S. Pezzagna, P. Vennegues, N. Grandjean, A. D. Wieck, and J. Massies, “Submicron periodic poling and chemical patterning of GaN,” Appl. Phys. Lett. 87, 062106 (2005).
[CrossRef]

Xu, C.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-matched condition,” Opt. Commun. 281, 3878-3881 (2008).
[CrossRef]

Yanagawa, T.

T. Yanagawa, H. Kanbara, O. Tadanaga, M. Asobe, H. Suzuki, and J. Yumoto, “Broadband difference frequency generation around phase-match singularity,” Appl. Phys. Lett. 86, 161106 (2005).
[CrossRef]

Yariv, A.

P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 19, 427-430 (1976).
[CrossRef]

A. Yariv, “Coupled-mode theory for guided wave optics,” IEEE J. Quantum Electron. 9, 919-933 (1973).
[CrossRef]

Yeh, P.

P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 19, 427-430 (1976).
[CrossRef]

Yu, X.

Yumoto, J.

T. Yanagawa, H. Kanbara, O. Tadanaga, M. Asobe, H. Suzuki, and J. Yumoto, “Broadband difference frequency generation around phase-match singularity,” Appl. Phys. Lett. 86, 161106 (2005).
[CrossRef]

Zavestovskaya, I. N.

I. N. Zavestovskaya, O. N. Krokhin, Yu. M. Popov, and A. S. Semenov, “Symposium on the coherent optical radiation of semiconductor compounds and structures,” Quantum Electron. 38, 294-297 (2008).
[CrossRef]

Zhang, W.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-matched condition,” Opt. Commun. 281, 3878-3881 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. B

O. Prakash, H. H. Lim, B. J. Kim, K. Pandiyan, M. Cha, and B. K. Rhee, “Collinear broadband optical parametric generation in periodically poled lithium niobate crystals by group velocity matching,” Appl. Phys. B 92, 535-541 (2008).
[CrossRef]

Appl. Phys. Lett.

E. J. Lim, H. M. Herka, M. L. Bortz, and M. M. Fejer, “Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 59, 2207-2209 (1991).
[CrossRef]

T. Yanagawa, H. Kanbara, O. Tadanaga, M. Asobe, H. Suzuki, and J. Yumoto, “Broadband difference frequency generation around phase-match singularity,” Appl. Phys. Lett. 86, 161106 (2005).
[CrossRef]

S. Pezzagna, P. Vennegues, N. Grandjean, A. D. Wieck, and J. Massies, “Submicron periodic poling and chemical patterning of GaN,” Appl. Phys. Lett. 87, 062106 (2005).
[CrossRef]

A. Chowdhury, Hock M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077-1079 (2003).
[CrossRef]

IEEE J. Quantum Electron.

A. Yariv, “Coupled-mode theory for guided wave optics,” IEEE J. Quantum Electron. 9, 919-933 (1973).
[CrossRef]

J. Appl. Phys.

N. A. Sanford, A. V. Davydov, D. V. Tsvetkov, A. V. Dmitriev, S. Keller, U. K. Mishra, S. P. DenBaars, S. S. Park, J. Y. Han, and R. J. Molnar, “Measurement of second order susceptibilities of GaN and AlGaN,” J. Appl. Phys. 97, 053512(2005).
[CrossRef]

J. Lightwave Technol.

A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. 5, 660-667 (1987).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-matched condition,” Opt. Commun. 281, 3878-3881 (2008).
[CrossRef]

B. Nistad, M. W. Haakestad, and J. Skaar, “Dispersion properties of planar Bragg reflection waveguides,” Opt. Commun. 265, 153-160 (2006).
[CrossRef]

P. Yeh and A. Yariv, “Bragg reflection waveguides,” Opt. Commun. 19, 427-430 (1976).
[CrossRef]

Opt. Express

Opt. Lett.

Phy. Rev. Lett.

A. Baltŭska, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phy. Rev. Lett. 88, 133901 (2002).
[CrossRef]

Quantum Electron.

I. N. Zavestovskaya, O. N. Krokhin, Yu. M. Popov, and A. S. Semenov, “Symposium on the coherent optical radiation of semiconductor compounds and structures,” Quantum Electron. 38, 294-297 (2008).
[CrossRef]

Rev. Mod. Phys.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545-591 (2000).
[CrossRef]

D. N. Basov and T. Timusk, “Electrodynamics of high-Tc superconductors,” Rev. Mod. Phys. 77, 721-779 (2005).
[CrossRef]

Rev. Sci. Instrum.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifier,” Rev. Sci. Instrum. 74, 1-18 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the proposed symmetric BRW for a DFG process that has periodically poled core (PPGaN) and periodic cladding of Al 0.01 Ga 0.99 N ( n 1 ) and Al 0.40 Ga 0.60 N ( n 2 ) layers. The thicknesses of the layers corresponding to refractive indices n c , n 1 , and n 2 are d c , d 1 , and d 2 , respectively. The propagation direction is chosen to be the z direction.

Fig. 2
Fig. 2

Plot for the variation phase-mismatch factor ( Δ β ) as a function of signal wavelength (fixed pump wavelength) with d c = 1.428 μm , d 1 = 0.716 μm , and d 2 = 1.317 μm .

Fig. 3
Fig. 3

(a) Plot for the variation of d ( Δ β ) / d λ s as a function of signal wavelength, (b) plot for the variation of d 2 ( Δ β ) / d λ s 2 as a function of signal wavelength.

Fig. 4
Fig. 4

Plot of idler power as a function of idler wavelength for a 10 mm long BRW.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ β = [ Δ β ] λ = λ s 0 + [ ( Δ β ) λ ] λ = λ s 0 Δ λ + 1 2 [ 2 ( Δ β ) λ 2 ] λ = λ s 0 ( Δ λ ) 2 + 1 6 [ 3 ( Δ β ) λ 3 ] λ = λ s 0 ( Δ λ ) 3 + 1 24 [ 4 ( Δ β ) λ 4 ] λ = λ s 0 ( Δ λ ) 4 + ... .
( Δ β ) λ | λ = λ s 0 = λ ( β s + β i ) | λ = λ s 0 = 2 π λ s 0 2 ( N s N i ) ,
2 ( Δ β ) λ 2 | λ = λ s 0 = λ s 0 2 ( λ s 0 2 2 β s λ 2 | λ = λ s 0 + λ i 0 4 2 β i λ 2 | λ = λ i 0 + 2 λ i 0 2 λ s 0 β i λ 2 | λ = λ i 0 ) .
λ s 0 = 1060 nm
P i ( z = l ) = 4 P s [ γ ( β ) A p ] 2 ω s ω i g 2 ( sinh ( g l 2 ) ) 2 ,
γ ( β ) = ϵ 0 2 d eff E p E s * E i * d x ,

Metrics