Abstract

We investigate the surface optical properties of a gold (Au) nanorod by using the finite-element method in a three-dimensional model. Results from the near-field optical images show spatially oscillatory patterns (nodal fields) on the surface, and these are attributable to plasmon-mode wave functions. We interpret these phenomena in terms of the electric field nodes on the surface of the rod, and the results show good agreement with our experimental observation in the optical images.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  2. C. Oubre and P. Nordlander, “Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method,” J. Phys. Chem. B 108, 17740-17747(2004).
    [CrossRef]
  3. S. Lal, S. L. Westcott, R. N. Taylor, J. B. Jackson, P. Nordlander, and N. J. Halas, “ Light interaction between gold nanoshells plasmon resonance and planar optical waveguides,” J. Phys. Chem. B 106, 5609-5612 (2002).
    [CrossRef]
  4. J. K. Lim, K. Imura, T. Nagahara, S. K. Kim, and H. Okamoto, “Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy,” Chem. Phys. Lett. 412, 41-45 (2005).
    [CrossRef]
  5. A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 109-116 (2004).
    [CrossRef]
  6. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102-1106 (1997).
    [CrossRef] [PubMed]
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen,” Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  8. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229-232(2003).
    [CrossRef] [PubMed]
  9. P. Oleg, M. B. Varnavski, A. M. Mohamed, A. E. Mostafa, and G. Theodore, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107, 3101-3104 (2003).
    [CrossRef]
  10. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137-141 (2003).
    [CrossRef]
  11. J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, “Composite plasmon resonant nanowires,” Nano. Lett. 2, 465-469 (2002).
    [CrossRef]
  12. S. Lal, R. N. Taylor, J. B. Jackson, P. Nordlander, and N. J. Halas, “Light interaction between gold nanoshells plasmon resonance and planar optical waveguides,” J. Phys. Chem. B 106, 5609-5612 (2002).
    [CrossRef]
  13. L. N. Colleen, K. G. Nathaniel, P. G. Glenn, T. Felicia, J. H. Naomi, and H. H. Jason, “Scattering spectra of single gold nanoshells,” Nano. Lett. 4, 2355-2359 (2004).
    [CrossRef]
  14. H. J. Huang, C. P. Yu, H. C. Chang, K. P. Chiu, H. M. Chen, R. S. Liu, and D. P. Tsai, “Plasmonic optical properties of a single gold nano-rod,” Opt. Express 15, 7132-7139 (2007).
    [CrossRef] [PubMed]
  15. Y.-F. Chau, D. P. Tsai, G.-W. Hu, L.-F. Shen, and T.-J. Yang, “Subwavelength optical imaging through a silver nanorod,” Opt. Eng. 46, 039701 (2007).
    [CrossRef]
  16. http://www.ansoft.com/
  17. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  18. T. Okamoto, in Near-Field Optics and Surface Plasmon Polaritons, S. Kawata, ed. (Springer, 2001), p. 99.
  19. J. Aizpurua, Garnett W. Bryant, Lee J. Richter, F. J. Garcia de Abajo, Brian K. Kelley, and T. Mallouk, “Optical properties of coupled nanoscale metallic rods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
    [CrossRef]

2007

H. J. Huang, C. P. Yu, H. C. Chang, K. P. Chiu, H. M. Chen, R. S. Liu, and D. P. Tsai, “Plasmonic optical properties of a single gold nano-rod,” Opt. Express 15, 7132-7139 (2007).
[CrossRef] [PubMed]

Y.-F. Chau, D. P. Tsai, G.-W. Hu, L.-F. Shen, and T.-J. Yang, “Subwavelength optical imaging through a silver nanorod,” Opt. Eng. 46, 039701 (2007).
[CrossRef]

2005

J. Aizpurua, Garnett W. Bryant, Lee J. Richter, F. J. Garcia de Abajo, Brian K. Kelley, and T. Mallouk, “Optical properties of coupled nanoscale metallic rods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

J. K. Lim, K. Imura, T. Nagahara, S. K. Kim, and H. Okamoto, “Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy,” Chem. Phys. Lett. 412, 41-45 (2005).
[CrossRef]

2004

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 109-116 (2004).
[CrossRef]

C. Oubre and P. Nordlander, “Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method,” J. Phys. Chem. B 108, 17740-17747(2004).
[CrossRef]

L. N. Colleen, K. G. Nathaniel, P. G. Glenn, T. Felicia, J. H. Naomi, and H. H. Jason, “Scattering spectra of single gold nanoshells,” Nano. Lett. 4, 2355-2359 (2004).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen,” Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229-232(2003).
[CrossRef] [PubMed]

P. Oleg, M. B. Varnavski, A. M. Mohamed, A. E. Mostafa, and G. Theodore, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107, 3101-3104 (2003).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137-141 (2003).
[CrossRef]

2002

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, “Composite plasmon resonant nanowires,” Nano. Lett. 2, 465-469 (2002).
[CrossRef]

S. Lal, R. N. Taylor, J. B. Jackson, P. Nordlander, and N. J. Halas, “Light interaction between gold nanoshells plasmon resonance and planar optical waveguides,” J. Phys. Chem. B 106, 5609-5612 (2002).
[CrossRef]

S. Lal, S. L. Westcott, R. N. Taylor, J. B. Jackson, P. Nordlander, and N. J. Halas, “ Light interaction between gold nanoshells plasmon resonance and planar optical waveguides,” J. Phys. Chem. B 106, 5609-5612 (2002).
[CrossRef]

1997

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Aizpurua, J.

J. Aizpurua, Garnett W. Bryant, Lee J. Richter, F. J. Garcia de Abajo, Brian K. Kelley, and T. Mallouk, “Optical properties of coupled nanoscale metallic rods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229-232(2003).
[CrossRef] [PubMed]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen,” Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Bryant, Garnett W.

J. Aizpurua, Garnett W. Bryant, Lee J. Richter, F. J. Garcia de Abajo, Brian K. Kelley, and T. Mallouk, “Optical properties of coupled nanoscale metallic rods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Chang, H. C.

Chau, Y.-F.

Y.-F. Chau, D. P. Tsai, G.-W. Hu, L.-F. Shen, and T.-J. Yang, “Subwavelength optical imaging through a silver nanorod,” Opt. Eng. 46, 039701 (2007).
[CrossRef]

Chen, H. M.

Chiu, K. P.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Colleen, L. N.

L. N. Colleen, K. G. Nathaniel, P. G. Glenn, T. Felicia, J. H. Naomi, and H. H. Jason, “Scattering spectra of single gold nanoshells,” Nano. Lett. 4, 2355-2359 (2004).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen,” Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen,” Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Felicia, T.

L. N. Colleen, K. G. Nathaniel, P. G. Glenn, T. Felicia, J. H. Naomi, and H. H. Jason, “Scattering spectra of single gold nanoshells,” Nano. Lett. 4, 2355-2359 (2004).
[CrossRef]

Garcia de Abajo, F. J.

J. Aizpurua, Garnett W. Bryant, Lee J. Richter, F. J. Garcia de Abajo, Brian K. Kelley, and T. Mallouk, “Optical properties of coupled nanoscale metallic rods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Glenn, P. G.

L. N. Colleen, K. G. Nathaniel, P. G. Glenn, T. Felicia, J. H. Naomi, and H. H. Jason, “Scattering spectra of single gold nanoshells,” Nano. Lett. 4, 2355-2359 (2004).
[CrossRef]

Haes, A. J.

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 109-116 (2004).
[CrossRef]

Halas, N. J.

S. Lal, S. L. Westcott, R. N. Taylor, J. B. Jackson, P. Nordlander, and N. J. Halas, “ Light interaction between gold nanoshells plasmon resonance and planar optical waveguides,” J. Phys. Chem. B 106, 5609-5612 (2002).
[CrossRef]

S. Lal, R. N. Taylor, J. B. Jackson, P. Nordlander, and N. J. Halas, “Light interaction between gold nanoshells plasmon resonance and planar optical waveguides,” J. Phys. Chem. B 106, 5609-5612 (2002).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229-232(2003).
[CrossRef] [PubMed]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Hu, G.-W.

Y.-F. Chau, D. P. Tsai, G.-W. Hu, L.-F. Shen, and T.-J. Yang, “Subwavelength optical imaging through a silver nanorod,” Opt. Eng. 46, 039701 (2007).
[CrossRef]

Huang, H. J.

Imura, K.

J. K. Lim, K. Imura, T. Nagahara, S. K. Kim, and H. Okamoto, “Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy,” Chem. Phys. Lett. 412, 41-45 (2005).
[CrossRef]

Jackson, J. B.

S. Lal, S. L. Westcott, R. N. Taylor, J. B. Jackson, P. Nordlander, and N. J. Halas, “ Light interaction between gold nanoshells plasmon resonance and planar optical waveguides,” J. Phys. Chem. B 106, 5609-5612 (2002).
[CrossRef]

S. Lal, R. N. Taylor, J. B. Jackson, P. Nordlander, and N. J. Halas, “Light interaction between gold nanoshells plasmon resonance and planar optical waveguides,” J. Phys. Chem. B 106, 5609-5612 (2002).
[CrossRef]

Jason, H. H.

L. N. Colleen, K. G. Nathaniel, P. G. Glenn, T. Felicia, J. H. Naomi, and H. H. Jason, “Scattering spectra of single gold nanoshells,” Nano. Lett. 4, 2355-2359 (2004).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kelley, Brian K.

J. Aizpurua, Garnett W. Bryant, Lee J. Richter, F. J. Garcia de Abajo, Brian K. Kelley, and T. Mallouk, “Optical properties of coupled nanoscale metallic rods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229-232(2003).
[CrossRef] [PubMed]

Kim, S. K.

J. K. Lim, K. Imura, T. Nagahara, S. K. Kim, and H. Okamoto, “Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy,” Chem. Phys. Lett. 412, 41-45 (2005).
[CrossRef]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229-232(2003).
[CrossRef] [PubMed]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Lal, S.

S. Lal, R. N. Taylor, J. B. Jackson, P. Nordlander, and N. J. Halas, “Light interaction between gold nanoshells plasmon resonance and planar optical waveguides,” J. Phys. Chem. B 106, 5609-5612 (2002).
[CrossRef]

S. Lal, S. L. Westcott, R. N. Taylor, J. B. Jackson, P. Nordlander, and N. J. Halas, “ Light interaction between gold nanoshells plasmon resonance and planar optical waveguides,” J. Phys. Chem. B 106, 5609-5612 (2002).
[CrossRef]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Lim, J. K.

J. K. Lim, K. Imura, T. Nagahara, S. K. Kim, and H. Okamoto, “Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy,” Chem. Phys. Lett. 412, 41-45 (2005).
[CrossRef]

Liu, R. S.

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229-232(2003).
[CrossRef] [PubMed]

Mallouk, T.

J. Aizpurua, Garnett W. Bryant, Lee J. Richter, F. J. Garcia de Abajo, Brian K. Kelley, and T. Mallouk, “Optical properties of coupled nanoscale metallic rods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229-232(2003).
[CrossRef] [PubMed]

Mock, J. J.

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, “Composite plasmon resonant nanowires,” Nano. Lett. 2, 465-469 (2002).
[CrossRef]

Mohamed, A. M.

P. Oleg, M. B. Varnavski, A. M. Mohamed, A. E. Mostafa, and G. Theodore, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107, 3101-3104 (2003).
[CrossRef]

Mostafa, A. E.

P. Oleg, M. B. Varnavski, A. M. Mohamed, A. E. Mostafa, and G. Theodore, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107, 3101-3104 (2003).
[CrossRef]

Nagahara, T.

J. K. Lim, K. Imura, T. Nagahara, S. K. Kim, and H. Okamoto, “Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy,” Chem. Phys. Lett. 412, 41-45 (2005).
[CrossRef]

Naomi, J. H.

L. N. Colleen, K. G. Nathaniel, P. G. Glenn, T. Felicia, J. H. Naomi, and H. H. Jason, “Scattering spectra of single gold nanoshells,” Nano. Lett. 4, 2355-2359 (2004).
[CrossRef]

Nathaniel, K. G.

L. N. Colleen, K. G. Nathaniel, P. G. Glenn, T. Felicia, J. H. Naomi, and H. H. Jason, “Scattering spectra of single gold nanoshells,” Nano. Lett. 4, 2355-2359 (2004).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Nordlander, P.

C. Oubre and P. Nordlander, “Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method,” J. Phys. Chem. B 108, 17740-17747(2004).
[CrossRef]

S. Lal, S. L. Westcott, R. N. Taylor, J. B. Jackson, P. Nordlander, and N. J. Halas, “ Light interaction between gold nanoshells plasmon resonance and planar optical waveguides,” J. Phys. Chem. B 106, 5609-5612 (2002).
[CrossRef]

S. Lal, R. N. Taylor, J. B. Jackson, P. Nordlander, and N. J. Halas, “Light interaction between gold nanoshells plasmon resonance and planar optical waveguides,” J. Phys. Chem. B 106, 5609-5612 (2002).
[CrossRef]

Okamoto, H.

J. K. Lim, K. Imura, T. Nagahara, S. K. Kim, and H. Okamoto, “Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy,” Chem. Phys. Lett. 412, 41-45 (2005).
[CrossRef]

Okamoto, T.

T. Okamoto, in Near-Field Optics and Surface Plasmon Polaritons, S. Kawata, ed. (Springer, 2001), p. 99.

Oldenburg, S. J.

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, “Composite plasmon resonant nanowires,” Nano. Lett. 2, 465-469 (2002).
[CrossRef]

Oleg, P.

P. Oleg, M. B. Varnavski, A. M. Mohamed, A. E. Mostafa, and G. Theodore, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107, 3101-3104 (2003).
[CrossRef]

Oubre, C.

C. Oubre and P. Nordlander, “Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method,” J. Phys. Chem. B 108, 17740-17747(2004).
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229-232(2003).
[CrossRef] [PubMed]

Richter, Lee J.

J. Aizpurua, Garnett W. Bryant, Lee J. Richter, F. J. Garcia de Abajo, Brian K. Kelley, and T. Mallouk, “Optical properties of coupled nanoscale metallic rods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Schatz, G. C.

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 109-116 (2004).
[CrossRef]

Schultz, D. A.

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, “Composite plasmon resonant nanowires,” Nano. Lett. 2, 465-469 (2002).
[CrossRef]

Schultz, S.

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, “Composite plasmon resonant nanowires,” Nano. Lett. 2, 465-469 (2002).
[CrossRef]

Shen, L.-F.

Y.-F. Chau, D. P. Tsai, G.-W. Hu, L.-F. Shen, and T.-J. Yang, “Subwavelength optical imaging through a silver nanorod,” Opt. Eng. 46, 039701 (2007).
[CrossRef]

Smith, D. R.

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, “Composite plasmon resonant nanowires,” Nano. Lett. 2, 465-469 (2002).
[CrossRef]

Taylor, R. N.

S. Lal, R. N. Taylor, J. B. Jackson, P. Nordlander, and N. J. Halas, “Light interaction between gold nanoshells plasmon resonance and planar optical waveguides,” J. Phys. Chem. B 106, 5609-5612 (2002).
[CrossRef]

S. Lal, S. L. Westcott, R. N. Taylor, J. B. Jackson, P. Nordlander, and N. J. Halas, “ Light interaction between gold nanoshells plasmon resonance and planar optical waveguides,” J. Phys. Chem. B 106, 5609-5612 (2002).
[CrossRef]

Theodore, G.

P. Oleg, M. B. Varnavski, A. M. Mohamed, A. E. Mostafa, and G. Theodore, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107, 3101-3104 (2003).
[CrossRef]

Tsai, D. P.

H. J. Huang, C. P. Yu, H. C. Chang, K. P. Chiu, H. M. Chen, R. S. Liu, and D. P. Tsai, “Plasmonic optical properties of a single gold nano-rod,” Opt. Express 15, 7132-7139 (2007).
[CrossRef] [PubMed]

Y.-F. Chau, D. P. Tsai, G.-W. Hu, L.-F. Shen, and T.-J. Yang, “Subwavelength optical imaging through a silver nanorod,” Opt. Eng. 46, 039701 (2007).
[CrossRef]

Van Duyne, R. P.

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 109-116 (2004).
[CrossRef]

Varnavski, M. B.

P. Oleg, M. B. Varnavski, A. M. Mohamed, A. E. Mostafa, and G. Theodore, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107, 3101-3104 (2003).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Westcott, S. L.

S. Lal, S. L. Westcott, R. N. Taylor, J. B. Jackson, P. Nordlander, and N. J. Halas, “ Light interaction between gold nanoshells plasmon resonance and planar optical waveguides,” J. Phys. Chem. B 106, 5609-5612 (2002).
[CrossRef]

Yang, T.-J.

Y.-F. Chau, D. P. Tsai, G.-W. Hu, L.-F. Shen, and T.-J. Yang, “Subwavelength optical imaging through a silver nanorod,” Opt. Eng. 46, 039701 (2007).
[CrossRef]

Yu, C. P.

Zou, S.

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 109-116 (2004).
[CrossRef]

Chem. Phys. Lett.

J. K. Lim, K. Imura, T. Nagahara, S. K. Kim, and H. Okamoto, “Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy,” Chem. Phys. Lett. 412, 41-45 (2005).
[CrossRef]

J. Phys. Chem. B

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 109-116 (2004).
[CrossRef]

C. Oubre and P. Nordlander, “Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method,” J. Phys. Chem. B 108, 17740-17747(2004).
[CrossRef]

S. Lal, S. L. Westcott, R. N. Taylor, J. B. Jackson, P. Nordlander, and N. J. Halas, “ Light interaction between gold nanoshells plasmon resonance and planar optical waveguides,” J. Phys. Chem. B 106, 5609-5612 (2002).
[CrossRef]

P. Oleg, M. B. Varnavski, A. M. Mohamed, A. E. Mostafa, and G. Theodore, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107, 3101-3104 (2003).
[CrossRef]

S. Lal, R. N. Taylor, J. B. Jackson, P. Nordlander, and N. J. Halas, “Light interaction between gold nanoshells plasmon resonance and planar optical waveguides,” J. Phys. Chem. B 106, 5609-5612 (2002).
[CrossRef]

Nano. Lett.

L. N. Colleen, K. G. Nathaniel, P. G. Glenn, T. Felicia, J. H. Naomi, and H. H. Jason, “Scattering spectra of single gold nanoshells,” Nano. Lett. 4, 2355-2359 (2004).
[CrossRef]

J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, and S. Schultz, “Composite plasmon resonant nanowires,” Nano. Lett. 2, 465-469 (2002).
[CrossRef]

Nat. Mater.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229-232(2003).
[CrossRef] [PubMed]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen,” Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Opt. Commun.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Opt. Eng.

Y.-F. Chau, D. P. Tsai, G.-W. Hu, L.-F. Shen, and T.-J. Yang, “Subwavelength optical imaging through a silver nanorod,” Opt. Eng. 46, 039701 (2007).
[CrossRef]

Opt. Express

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

J. Aizpurua, Garnett W. Bryant, Lee J. Richter, F. J. Garcia de Abajo, Brian K. Kelley, and T. Mallouk, “Optical properties of coupled nanoscale metallic rods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Science

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Other

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

T. Okamoto, in Near-Field Optics and Surface Plasmon Polaritons, S. Kawata, ed. (Springer, 2001), p. 99.

http://www.ansoft.com/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup and simulation models: (a) experimental setup, (b) CCD image of a single Au nanorod, (c) integrated total faces of calculation model, and (d) reflection face of calculation model.

Fig. 2
Fig. 2

Far-field SCS of total face and reflection face of an Au nanorod with L = 1 μm and D = 40 nm as a function of wavelengths with (a) x-polarized and (b) y-polarized incident light, respectively. The optical images capture by CCD for longitudinal mode (at λ = 630 nm , red light) and transverse mode (at λ = 530 nm , green light) are also shown in the insets.

Fig. 3
Fig. 3

x y and y z cross-sectional planes of the scattered near-field amplitude | E | distribution produced inside the single Au nanorod at SP modes for different D and L on the Au nanorod with x polarization of incident light: (a) Schematic of the simulation model, (b)–(g) when the Au nanorod diameter D is kept constant ( D = 80 nm ) and the nanorod length L is increased from 0.5 μm to 1.5 μm , (h)  aspect ratio η = 25 ( D = 80 nm , L = 0.5 μm ).

Fig. 4
Fig. 4

Far-field scattering cross section [(a) and (b)] and absorption cross section [(c) and (d)] as a function of wavelengths for an EM plane wave incident on an Au nanorod with different aspect ratio for x-polarized [see (a) and (c)] and y-polarized [see (b) and (d)] incident light, respectively.

Fig. 5
Fig. 5

Far-field SCS (a) and ACS (b) as a function of wavelengths for two different incident directions. The schematic of the simulation model is shown in the inset of the figure, where the case with transverse 1 has the electric E parallel to the rod axis, and the case with transverse 2 has E perpendicular to the rod axis.

Fig. 6
Fig. 6

x y cross-sectional plane of total field distribution of the (a) transverse 1 case and (b) transverse 2 case.

Metrics