Abstract

We report successful real-time three-channel self-mixing laser-Doppler measurements with extreme optical sensitivity using a laser-diode-pumped thin-slice Nd:GdVO4 laser in the carrier-frequency- division-multiplexing scheme with three pairs of acoustic optical modulators (i.e., frequency shifters) and a three-channel FM-wave demodulation circuit. We demonstrate (1) simultaneous independent measurement of three different nanometer-vibrating targets, (2) simultaneous measurements of small particles in Brownian motion from three directions, and (3) identification of the velocity vector of small particles moving in water flowing in a small-diameter glass pipe.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Sheng, E. Malkiel, and J. Katz, “Single beam two-views holographic particle image velocimetry,” Appl. Opt. 42, 235-250(2003).
    [CrossRef] [PubMed]
  2. J. M. Coupland and N. A. Halliwell, “Particle image velocimetry: three-dimensional fluid velocity measurement using holographic recording and optical correlation,” Appl. Opt. 31, 1005-1007 (1992).
    [CrossRef] [PubMed]
  3. D. Moreno, F. M. Santoyo, J. A. Guerrero, and M. Funes-Gallanzi, “Particle positioning from charge-coupled device images by the generalized Lorenz-Mie theory and comparison with experiment,” Appl. Opt. 39, 5117-5124 (2000).
    [CrossRef]
  4. A. J. Moore, J. Smith, and N. J. Lawson, “Volume three-dimensional flow measurements using wavelength multiplexing,” Opt. Lett. 30, 2569-2571 (2005).
    [CrossRef] [PubMed]
  5. Y. Pu and H. Meng, “Four-dimensional dynamic flow measurement by holographic particle image velocimetry,” Appl. Opt. 44, 7697-7708 (2005).
    [CrossRef] [PubMed]
  6. H. Hinrichs, K. Hinsch, J. Kickstein, and M. Bohmer, “Light-in-flight holography for visualization and velocimetry in three-dimensional flows,” Opt. Lett. 22, 828-830 (1997).
    [CrossRef] [PubMed]
  7. Y. Pu and H. Meng, “Intrinsic aberrations due to Mie scattering in particle holography,” J. Opt. Soc. Am. A 20, 1920-1932(2003).
    [CrossRef]
  8. D. H. Barnhart, R. J. Adrian, and G. C. Papen, “Phase-conjugate holographic system for high-resolution particle-image velocimetry,” Appl. Opt. 33, 7159-7170 (1994).
    [CrossRef] [PubMed]
  9. M. Harris, G. N. Pearson, C. A. Hill, and J. M. Vaughan, “The fractal character of Gaussian-Lorentzian light,” Opt. Commun. 116, 15-19 (1995).
    [CrossRef]
  10. K. Otsuka, “Effects of external perturbations on LiNdP4O12 laser,” IEEE J. Quantum Electron. QE-15, 655 (1979).
    [CrossRef]
  11. P. J. de Groot, G. M. Gallatin, and S. H. McOmber, “Ranging and velocimetry signal generation in a backscatter modulated laser diode,” Appl. Opt. 27, 4475-4480 (1988).
    [CrossRef] [PubMed]
  12. W. M. Wang, W. J. O. Boyle, and L. T. V. Grattan, “Self-mixing interference in a diode laser: experimental observation and theoretical analysis,” Appl. Opt. 32, 1551-1558 (1993).
    [CrossRef] [PubMed]
  13. K. Otsuka, R. Kawai, Y. Asakawa, and T. Fukazawa, “Highly sensitive self-mixing measurement of Brillouin scattering with a laser-diode-pumped LiNdP4O12 laser,” Opt. Lett. 24, 1862-1864 (1999).
    [CrossRef]
  14. F. F. M. de Mul, L. Scalise, A. L. Petoukhova, M. van Herwijnen, P. Moes, and W. Steenbergen, “Glass-fiber self-mixing intra-arterial laser Doppler velocimetry: signal stability and feedback analysis,” Appl. Opt. 41, 658-667 (2002).
    [CrossRef] [PubMed]
  15. K. Otsuka, K. Abe, J.-Y. Ko, and T.-S. Lim, “Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser,” Opt. Lett. 27, 1339-1341 (2002).
    [CrossRef]
  16. K. Abe, K. Otsuka, and J.-Y. Ko, “Self-mixing laser Doppler vibrometry with high optical sensitivity: application to real-time sound reproduction,” New J. Phys. 5, 8.1-8.9 (2003).
    [CrossRef]
  17. S. Sudo, Y. Miyasaka, K. Otsuka, and J.-Y. Ko, “Quick and easy measurement of particle size of Brownian particles and plankton in water using a self-mixing laser,” Opt. Express 14, 1044-1054 (2006).
    [CrossRef]
  18. S. Sudo, Y. Miyasaka, K. Nemoto, K. Kamikariya, and K. Otsuka, “Detection of small particles in fluid flow using a self-mixing laser,” Opt. Express 15, 8135-8145 (2007).
    [CrossRef] [PubMed]
  19. K. Otsuka, K. Abe, N. Sano, S. Sudo, and J.-Y. Ko, “Two-channel self-mixing laser Doppler measurement with carrier-frequency-division multiplexing,” Appl. Opt. 44, 1709-1714(2005).
    [CrossRef] [PubMed]
  20. S. Sudo, Y. Miyasaka, K. Kamikariya, K. Nemoto, and K. Otsuka, “Microanalysis of Brownian particles and real-time nanometer vibrometry with a laser-diode-pumped self-mixing thin-slice solid-state laser,” Jpn. J. Appl. Phys. 45, L926-L928 (2006).
    [CrossRef]
  21. B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Dover, 2000).
  22. D. A. Boas, K. K. Bizheva, and A. M. Siegel, “Using dynamic low-coherence interferometry to image Brownian motion within highly scattering media,” Opt. Lett. 23, 319-321(1998).
    [CrossRef]

2007

2006

S. Sudo, Y. Miyasaka, K. Otsuka, and J.-Y. Ko, “Quick and easy measurement of particle size of Brownian particles and plankton in water using a self-mixing laser,” Opt. Express 14, 1044-1054 (2006).
[CrossRef]

S. Sudo, Y. Miyasaka, K. Kamikariya, K. Nemoto, and K. Otsuka, “Microanalysis of Brownian particles and real-time nanometer vibrometry with a laser-diode-pumped self-mixing thin-slice solid-state laser,” Jpn. J. Appl. Phys. 45, L926-L928 (2006).
[CrossRef]

2005

2003

2002

2000

1999

1998

1997

1995

M. Harris, G. N. Pearson, C. A. Hill, and J. M. Vaughan, “The fractal character of Gaussian-Lorentzian light,” Opt. Commun. 116, 15-19 (1995).
[CrossRef]

1994

1993

1992

1988

1979

K. Otsuka, “Effects of external perturbations on LiNdP4O12 laser,” IEEE J. Quantum Electron. QE-15, 655 (1979).
[CrossRef]

Abe, K.

Adrian, R. J.

Asakawa, Y.

Barnhart, D. H.

Berne, B. J.

B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Dover, 2000).

Bizheva, K. K.

Boas, D. A.

Bohmer, M.

Boyle, W. J. O.

Coupland, J. M.

de Groot, P. J.

de Mul, F. F. M.

Fukazawa, T.

Funes-Gallanzi, M.

Gallatin, G. M.

Grattan, L. T. V.

Guerrero, J. A.

Halliwell, N. A.

Harris, M.

M. Harris, G. N. Pearson, C. A. Hill, and J. M. Vaughan, “The fractal character of Gaussian-Lorentzian light,” Opt. Commun. 116, 15-19 (1995).
[CrossRef]

Hill, C. A.

M. Harris, G. N. Pearson, C. A. Hill, and J. M. Vaughan, “The fractal character of Gaussian-Lorentzian light,” Opt. Commun. 116, 15-19 (1995).
[CrossRef]

Hinrichs, H.

Hinsch, K.

Kamikariya, K.

S. Sudo, Y. Miyasaka, K. Nemoto, K. Kamikariya, and K. Otsuka, “Detection of small particles in fluid flow using a self-mixing laser,” Opt. Express 15, 8135-8145 (2007).
[CrossRef] [PubMed]

S. Sudo, Y. Miyasaka, K. Kamikariya, K. Nemoto, and K. Otsuka, “Microanalysis of Brownian particles and real-time nanometer vibrometry with a laser-diode-pumped self-mixing thin-slice solid-state laser,” Jpn. J. Appl. Phys. 45, L926-L928 (2006).
[CrossRef]

Katz, J.

Kawai, R.

Kickstein, J.

Ko, J.-Y.

Lawson, N. J.

Lim, T.-S.

Malkiel, E.

McOmber, S. H.

Meng, H.

Miyasaka, Y.

Moes, P.

Moore, A. J.

Moreno, D.

Nemoto, K.

S. Sudo, Y. Miyasaka, K. Nemoto, K. Kamikariya, and K. Otsuka, “Detection of small particles in fluid flow using a self-mixing laser,” Opt. Express 15, 8135-8145 (2007).
[CrossRef] [PubMed]

S. Sudo, Y. Miyasaka, K. Kamikariya, K. Nemoto, and K. Otsuka, “Microanalysis of Brownian particles and real-time nanometer vibrometry with a laser-diode-pumped self-mixing thin-slice solid-state laser,” Jpn. J. Appl. Phys. 45, L926-L928 (2006).
[CrossRef]

Otsuka, K.

S. Sudo, Y. Miyasaka, K. Nemoto, K. Kamikariya, and K. Otsuka, “Detection of small particles in fluid flow using a self-mixing laser,” Opt. Express 15, 8135-8145 (2007).
[CrossRef] [PubMed]

S. Sudo, Y. Miyasaka, K. Otsuka, and J.-Y. Ko, “Quick and easy measurement of particle size of Brownian particles and plankton in water using a self-mixing laser,” Opt. Express 14, 1044-1054 (2006).
[CrossRef]

S. Sudo, Y. Miyasaka, K. Kamikariya, K. Nemoto, and K. Otsuka, “Microanalysis of Brownian particles and real-time nanometer vibrometry with a laser-diode-pumped self-mixing thin-slice solid-state laser,” Jpn. J. Appl. Phys. 45, L926-L928 (2006).
[CrossRef]

K. Otsuka, K. Abe, N. Sano, S. Sudo, and J.-Y. Ko, “Two-channel self-mixing laser Doppler measurement with carrier-frequency-division multiplexing,” Appl. Opt. 44, 1709-1714(2005).
[CrossRef] [PubMed]

K. Abe, K. Otsuka, and J.-Y. Ko, “Self-mixing laser Doppler vibrometry with high optical sensitivity: application to real-time sound reproduction,” New J. Phys. 5, 8.1-8.9 (2003).
[CrossRef]

K. Otsuka, K. Abe, J.-Y. Ko, and T.-S. Lim, “Real-time nanometer-vibration measurement with a self-mixing microchip solid-state laser,” Opt. Lett. 27, 1339-1341 (2002).
[CrossRef]

K. Otsuka, R. Kawai, Y. Asakawa, and T. Fukazawa, “Highly sensitive self-mixing measurement of Brillouin scattering with a laser-diode-pumped LiNdP4O12 laser,” Opt. Lett. 24, 1862-1864 (1999).
[CrossRef]

K. Otsuka, “Effects of external perturbations on LiNdP4O12 laser,” IEEE J. Quantum Electron. QE-15, 655 (1979).
[CrossRef]

Papen, G. C.

Pearson, G. N.

M. Harris, G. N. Pearson, C. A. Hill, and J. M. Vaughan, “The fractal character of Gaussian-Lorentzian light,” Opt. Commun. 116, 15-19 (1995).
[CrossRef]

Pecora, R.

B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Dover, 2000).

Petoukhova, A. L.

Pu, Y.

Sano, N.

Santoyo, F. M.

Scalise, L.

Sheng, J.

Siegel, A. M.

Smith, J.

Steenbergen, W.

Sudo, S.

van Herwijnen, M.

Vaughan, J. M.

M. Harris, G. N. Pearson, C. A. Hill, and J. M. Vaughan, “The fractal character of Gaussian-Lorentzian light,” Opt. Commun. 116, 15-19 (1995).
[CrossRef]

Wang, W. M.

Appl. Opt.

P. J. de Groot, G. M. Gallatin, and S. H. McOmber, “Ranging and velocimetry signal generation in a backscatter modulated laser diode,” Appl. Opt. 27, 4475-4480 (1988).
[CrossRef] [PubMed]

W. M. Wang, W. J. O. Boyle, and L. T. V. Grattan, “Self-mixing interference in a diode laser: experimental observation and theoretical analysis,” Appl. Opt. 32, 1551-1558 (1993).
[CrossRef] [PubMed]

D. H. Barnhart, R. J. Adrian, and G. C. Papen, “Phase-conjugate holographic system for high-resolution particle-image velocimetry,” Appl. Opt. 33, 7159-7170 (1994).
[CrossRef] [PubMed]

D. Moreno, F. M. Santoyo, J. A. Guerrero, and M. Funes-Gallanzi, “Particle positioning from charge-coupled device images by the generalized Lorenz-Mie theory and comparison with experiment,” Appl. Opt. 39, 5117-5124 (2000).
[CrossRef]

F. F. M. de Mul, L. Scalise, A. L. Petoukhova, M. van Herwijnen, P. Moes, and W. Steenbergen, “Glass-fiber self-mixing intra-arterial laser Doppler velocimetry: signal stability and feedback analysis,” Appl. Opt. 41, 658-667 (2002).
[CrossRef] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, “Single beam two-views holographic particle image velocimetry,” Appl. Opt. 42, 235-250(2003).
[CrossRef] [PubMed]

K. Otsuka, K. Abe, N. Sano, S. Sudo, and J.-Y. Ko, “Two-channel self-mixing laser Doppler measurement with carrier-frequency-division multiplexing,” Appl. Opt. 44, 1709-1714(2005).
[CrossRef] [PubMed]

Y. Pu and H. Meng, “Four-dimensional dynamic flow measurement by holographic particle image velocimetry,” Appl. Opt. 44, 7697-7708 (2005).
[CrossRef] [PubMed]

J. M. Coupland and N. A. Halliwell, “Particle image velocimetry: three-dimensional fluid velocity measurement using holographic recording and optical correlation,” Appl. Opt. 31, 1005-1007 (1992).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

K. Otsuka, “Effects of external perturbations on LiNdP4O12 laser,” IEEE J. Quantum Electron. QE-15, 655 (1979).
[CrossRef]

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

S. Sudo, Y. Miyasaka, K. Kamikariya, K. Nemoto, and K. Otsuka, “Microanalysis of Brownian particles and real-time nanometer vibrometry with a laser-diode-pumped self-mixing thin-slice solid-state laser,” Jpn. J. Appl. Phys. 45, L926-L928 (2006).
[CrossRef]

New J. Phys.

K. Abe, K. Otsuka, and J.-Y. Ko, “Self-mixing laser Doppler vibrometry with high optical sensitivity: application to real-time sound reproduction,” New J. Phys. 5, 8.1-8.9 (2003).
[CrossRef]

Opt. Commun.

M. Harris, G. N. Pearson, C. A. Hill, and J. M. Vaughan, “The fractal character of Gaussian-Lorentzian light,” Opt. Commun. 116, 15-19 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Other

B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics (Dover, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Experimental setup of three-channel self-mixing laser-Doppler measurement system. AOM, Te O 2 acousto-optic modulator (Crystal Technology Inc., central frequency 80 MHz ); photodetector, InGaAs photodiode receiver (New Focus 1811, DC - 125 MHz ); digital oscilloscope, Tektronix TDS 540D, DC -500  MHz , 2 GS / s ; SDR, software-defined radio (RFSPACE Inc. SDR-14); signal generator, Wavefactory Inc. WF1944A; 3ch-FMD, three-channel FM-wave demodulation circuit; PC, personal computer.

Fig. 2
Fig. 2

(a) Power spectrum of the modulated signal. (b) Magnified view of power spectrum around f c , 1 = 2 MHz . Three piezoelectric-elements are driven at the modulation frequency f m = 5 kHz . Because of relaxation oscillations driven by white noise at f RO , side peaks, which are smaller than the peaks at carrier frequencies by 20 dB , appear at f c , k ± f RO ( k = 1 , 2 , 3 ) . However, these peaks do not affect the demodulation properties at individual carrier frequencies.

Fig. 3
Fig. 3

Example vibration waveforms of three piezoelectric elements measured by the three-channel analog FM demodulation circuit. Modulation frequency f m = 5 kHz . Applied voltage Va = 10   Vpp .

Fig. 4
Fig. 4

Vibration amplitude versus driving frequencies for different voltages applied to piezoelectric elements measured by the software-defined radio.

Fig. 5
Fig. 5

Experimental setup for measuring the overall motion of Brownian particles in three dimensions. The X and Y axes are set horizontal and vertical, respectively, against the optical stage on which the scattering cell is mounted. The Z axis is set along the access beam.

Fig. 6
Fig. 6

Observed power spectra of modulated laser outputs, which represent the diffusion broadening of scattered light from Brownian particles moving along the directions of the three access beams. The best-fitting curves of the Lorentz function are shown. The particle diameter calculated from the fitting curves are 263 nm for f c , 1 , 267 nm for f c , 2 , and 261 nm for f c , 3 .

Fig. 7
Fig. 7

Temporal evolutions of displacements of a virtual particle along the directions of the three access beams.

Fig. 8
Fig. 8

Reconstructed trajectory of the motion of a virtual particle: (a) bird’s eye view, (b) projected onto the X Y plane, and (c) projected onto the X Z plane.

Fig. 9
Fig. 9

Experimental setup for 3D measurements of liquid’s flow. (a) spatial configuration of the three access beams. (b) View from the Y direction. The access beam possessing f c , 3 was set parallel to the Z axis. (c) View from the Z direction.

Fig. 10
Fig. 10

Observed power spectra around the three carrier frequencies (bold curves). Fitting results constructed by the summation of 30 Gaussian spectra, whose intensity peaks were equally spaced in frequency, are also shown by thin curves.

Fig. 11
Fig. 11

Dependence of parameter A on Doppler-shift frequency used for the best fits of the experimental power spectra, as shown in Fig. 10.

Fig. 12
Fig. 12

Experimental setup and result that confirms that the most effective scattering of laser light from scatterers back into the self-mixing laser occurred when the target was located at the focal position of the access beam.

Fig. 13
Fig. 13

Schematic view of the target moving at velocity V and the velocity vectors in the X, Y, and Z directions. Velocity vectors V X and V Y were measured by the three access beams along the A axis in the X Z plane, the B axis in the X Y plane, and the Z axis from the self-mixing laser.

Tables (3)

Tables Icon

Table 1 Summary of Adopted Physical Constants

Tables Icon

Table 2 Fitting Results of A and D for Three Power Spectra of Different Carrier Frequencies

Tables Icon

Table 3 Measured Velocity Vector and Maximum Speed of Water Flow Within the Glass Pipe a

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I ( k , ω ) = A k 2 D ( ω 2 ω AOM ) 2 + ( k 2 D ) 2 ,
D = k B T 3 π η d .
k = ( 4 π n λ ) sin ( θ 2 ) ,
Q t = π a 2 v avg = 1 2 π a 2 v max ,
I ( ω ) = i A i w i exp { [ ω 2 π ( 2 f AOM + f D i ) ] 2 w i 2 } ,
f D i = 2 v i λ ,
V X = V A V Z cos α sin α ,
V Y = V B V Z cos β sin β .

Metrics