Abstract

Uniform angular resolution integral imaging display is proposed. Conventionally, inefficient bias of the perspectives around boundaries is disregarded and it is impossible to display the field of view over full spatial resolution. However, the proposed display has four boundary folding mirrors and these mirrors fold the view volumes correctly to form uniform angular resolution within them. The distribution of perspectives and field of view in the proposed system are analyzed and the removal of this boundary effect is confirmed experimentally.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional Display, T.-C.Poon, ed. (Springer, 2006), pp. 333-378.
    [CrossRef]
  2. B.Javidi and F.Okano, eds., Three Dimensional Television, Video, and Display Technologies (Springer, 2002).
  3. H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12, 1067-1076 (2004).
    [CrossRef] [PubMed]
  4. T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” in Proceeding of the 17th Eurographics Workshop on Rendering (Eurographics, 2006), pp. 263-272.
  5. A. Stern and B. Javidi, “3-D computational synthetic aperture integral imaging (COMPSAII),” Opt. Express 11, 2446-2451(2003).
    [CrossRef] [PubMed]
  6. M. Hain, W. von Spiegel, M. Schmiedchen, T. Tschudi, and B. Javidi, “3D integral imaging using diffractive Fresnel lens arrays,” Opt. Express 13, 315-326 (2005).
    [CrossRef] [PubMed]
  7. S.-W. Min, J. Kim, and B. Lee, “Wide-viewing projection-type integral imaging system with an embossed screen,” Opt. Lett. 29, 2420-2422 (2004).
    [CrossRef] [PubMed]
  8. Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546-552 (2005).
    [CrossRef] [PubMed]
  9. T. Balogh, T. Forgács, T. Agocs, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics Short Papers Proceedings (Eurographics, 2005), pp. 109-112.
  10. T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Proceedings of IEEE Conference on Virtual Reality (IEEE, 2006), p. 311.
  11. Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94, 654-663(2006).
    [CrossRef]
  12. J. Hahn, Y. Kim, E.-H. Kim, and B. Lee, “Undistorted pickup method of both virtual and real objects for integral imaging,” Opt. Express 16, 13969-13978 (2008).
    [CrossRef] [PubMed]
  13. S.-W. Min, K.-S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys. 45, L744-L747 (2006).
    [CrossRef]

2008

2006

Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94, 654-663(2006).
[CrossRef]

S.-W. Min, K.-S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys. 45, L744-L747 (2006).
[CrossRef]

2005

2004

2003

Agocs, T.

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Proceedings of IEEE Conference on Virtual Reality (IEEE, 2006), p. 311.

T. Balogh, T. Forgács, T. Agocs, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics Short Papers Proceedings (Eurographics, 2005), pp. 109-112.

Balet, O.

T. Balogh, T. Forgács, T. Agocs, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics Short Papers Proceedings (Eurographics, 2005), pp. 109-112.

Balogh, T.

T. Balogh, T. Forgács, T. Agocs, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics Short Papers Proceedings (Eurographics, 2005), pp. 109-112.

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Proceedings of IEEE Conference on Virtual Reality (IEEE, 2006), p. 311.

Bettio, F.

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Proceedings of IEEE Conference on Virtual Reality (IEEE, 2006), p. 311.

T. Balogh, T. Forgács, T. Agocs, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics Short Papers Proceedings (Eurographics, 2005), pp. 109-112.

Bouvier, E.

T. Balogh, T. Forgács, T. Agocs, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics Short Papers Proceedings (Eurographics, 2005), pp. 109-112.

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Proceedings of IEEE Conference on Virtual Reality (IEEE, 2006), p. 311.

Cho, Y.

S.-W. Min, K.-S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys. 45, L744-L747 (2006).
[CrossRef]

Choi, H.

Curless, B.

T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” in Proceeding of the 17th Eurographics Workshop on Rendering (Eurographics, 2006), pp. 263-272.

Dohi, T.

Forgacs, T.

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Proceedings of IEEE Conference on Virtual Reality (IEEE, 2006), p. 311.

Forgács, T.

T. Balogh, T. Forgács, T. Agocs, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics Short Papers Proceedings (Eurographics, 2005), pp. 109-112.

Georgiev, T.

T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” in Proceeding of the 17th Eurographics Workshop on Rendering (Eurographics, 2006), pp. 263-272.

Gobbetti, E.

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Proceedings of IEEE Conference on Virtual Reality (IEEE, 2006), p. 311.

T. Balogh, T. Forgács, T. Agocs, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics Short Papers Proceedings (Eurographics, 2005), pp. 109-112.

Hahn, J.

Hahn, M.

S.-W. Min, K.-S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys. 45, L744-L747 (2006).
[CrossRef]

Hain, M.

Hata, N.

Intwala, C.

T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” in Proceeding of the 17th Eurographics Workshop on Rendering (Eurographics, 2006), pp. 263-272.

Iwahara, M.

Javidi, B.

Jung, S.

Kim, E.-H.

Kim, J.

Kim, Y.

Lee, B.

J. Hahn, Y. Kim, E.-H. Kim, and B. Lee, “Undistorted pickup method of both virtual and real objects for integral imaging,” Opt. Express 16, 13969-13978 (2008).
[CrossRef] [PubMed]

S.-W. Min, K.-S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys. 45, L744-L747 (2006).
[CrossRef]

Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546-552 (2005).
[CrossRef] [PubMed]

S.-W. Min, J. Kim, and B. Lee, “Wide-viewing projection-type integral imaging system with an embossed screen,” Opt. Lett. 29, 2420-2422 (2004).
[CrossRef] [PubMed]

B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional Display, T.-C.Poon, ed. (Springer, 2006), pp. 333-378.
[CrossRef]

Liao, H.

Min, S.-W.

S.-W. Min, K.-S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys. 45, L744-L747 (2006).
[CrossRef]

Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546-552 (2005).
[CrossRef] [PubMed]

S.-W. Min, J. Kim, and B. Lee, “Wide-viewing projection-type integral imaging system with an embossed screen,” Opt. Lett. 29, 2420-2422 (2004).
[CrossRef] [PubMed]

B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional Display, T.-C.Poon, ed. (Springer, 2006), pp. 333-378.
[CrossRef]

Nayar, S.

T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” in Proceeding of the 17th Eurographics Workshop on Rendering (Eurographics, 2006), pp. 263-272.

Park, J.-H.

Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546-552 (2005).
[CrossRef] [PubMed]

B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional Display, T.-C.Poon, ed. (Springer, 2006), pp. 333-378.
[CrossRef]

Park, K.-S.

S.-W. Min, K.-S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys. 45, L744-L747 (2006).
[CrossRef]

Salesin, D.

T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” in Proceeding of the 17th Eurographics Workshop on Rendering (Eurographics, 2006), pp. 263-272.

Schmiedchen, M.

Stern, A.

Takaki, Y.

Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94, 654-663(2006).
[CrossRef]

Tschudi, T.

von Spiegel, W.

Zanetti, G.

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Proceedings of IEEE Conference on Virtual Reality (IEEE, 2006), p. 311.

T. Balogh, T. Forgács, T. Agocs, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics Short Papers Proceedings (Eurographics, 2005), pp. 109-112.

Zheng, K. C.

T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” in Proceeding of the 17th Eurographics Workshop on Rendering (Eurographics, 2006), pp. 263-272.

Appl. Opt.

Jpn. J. Appl. Phys.

S.-W. Min, K.-S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys. 45, L744-L747 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. IEEE

Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94, 654-663(2006).
[CrossRef]

Other

B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional Display, T.-C.Poon, ed. (Springer, 2006), pp. 333-378.
[CrossRef]

B.Javidi and F.Okano, eds., Three Dimensional Television, Video, and Display Technologies (Springer, 2002).

T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” in Proceeding of the 17th Eurographics Workshop on Rendering (Eurographics, 2006), pp. 263-272.

T. Balogh, T. Forgács, T. Agocs, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics Short Papers Proceedings (Eurographics, 2005), pp. 109-112.

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Proceedings of IEEE Conference on Virtual Reality (IEEE, 2006), p. 311.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Spatial and angular resolutions on central depth plane of InIm display.

Fig. 2
Fig. 2

Schematics of InIm display with boundary folding mirrors.

Fig. 3
Fig. 3

View volume and directions of perspective in InIm display.

Fig. 4
Fig. 4

Conventional InIm display with (a) imbricate view volumes and (b) directions of perspective on CDP.

Fig. 5
Fig. 5

(a) Angular resolution and (b) distribution of perspective on CDP in conventional InIm display.

Fig. 6
Fig. 6

Proposed InIm display with (a) folded imbricate view volumes and (b) directions of perspectives on CDP.

Fig. 7
Fig. 7

(a) Angular resolution and (b) distribution of perspectives on CDP in proposed InIm display.

Fig. 8
Fig. 8

Movement of field of view by boundary folding mirrors: (a) field of view in the conventional InIm display and (b) field of view in the proposed InIm display.

Fig. 9
Fig. 9

Reorganization relation in generating set of elemental images.

Fig. 10
Fig. 10

Experimental setup.

Fig. 11
Fig. 11

Reorganized set of elemental images for the proposed InIm display.

Fig. 12
Fig. 12

Perspective views of the proposed InIm display: (a) upper left view, (b) upper center view, (c) upper right view, (d) middle left view, (e) middle center view, (f) middle right view, (g) lower left view, (h) lower center view, and (i) lower right view.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

V nm ( x , y , z ) = rect [ d gap ( x x nm ) w ( z z L ) ] rect [ d gap ( y y nm ) w ( z z L ) ] .
R A ( x , y , z ) = n = 1 N m = 1 M V nm ( x , y , z ) ,
D P ( x , y , z ) = { r | r = ( r r nm ) V nm ( r ) for     1 n N , 1 m M } .
x ¯ nm p = { 2 x 11 w x nm for   p = 1 x nm for   p = 0 2 x N 1 + w x nm for   p = 1 ,
y ¯ nm q = { 2 y 11 w y nm for   q = 1 y nm for   q = 0 2 y N 1 + w y nm for   q = 1 .
V ¯ nm ( x , y , z ) = p = 1 1 q = 1 1 V ¯ nm p q ( x , y , z ) .
V ¯ nm p q ( x , y , z ) | ( p , q ) = ( 0 , 0 ) = H [ d mirror ( x x ¯ nm p ) ( x ¯ nm p x 11 + w / 2 ) ( z z L ) + 1 ] H [ d mirror ( x x ¯ nm p ) ( x ¯ nm p x N 1 w / 2 ) ( z z L ) + 1 ] × H [ d mirror ( y y ¯ nm q ) ( y ¯ nm q y 11 + w / 2 ) ( z z L ) + 1 ] H [ d mirror ( y y ¯ nm q ) ( y ¯ nm q y 1 M w / 2 ) ( z z L ) + 1 ] × rect [ d gap ( x x ¯ nm p ) w ( z z L ) ] rect [ d gap ( y y ¯ nm q ) w ( z z L ) ] ,
V ¯ nm p q ( x , y , z ) | ( p , q ) ( 0 , 0 ) = H [ d mirror ( x x ¯ nm p ) ( x ¯ nm p x 11 + w / 2 ) ( z z L ) 1 ] H [ d mirror ( x x ¯ nm p ) ( x ¯ nm p x N 1 + w / 2 ) ( z z L ) 1 ] × H [ d mirror ( y y ¯ nm q ) ( y ¯ nm q y 11 + w / 2 ) ( z z L ) 1 ] H [ d mirror ( y y ¯ nm q ) ( y ¯ nm q y 1 M w / 2 ) ( z z L ) 1 ] × rect [ d gap ( x x ¯ nm p ) w ( z z L ) ] rect [ d gap ( y y ¯ nm q ) w ( z z L ) ] .
d mirror = f d gap f + d gap .
R ¯ A ( x , y , z ) = n = 1 N m = 1 M p = 1 1 q = 1 1 V ¯ nm p q ( x , y , z ) .
D ¯ P ( x , y , z ) = { r | r = ( r r nm p q ) V ¯ nm p q ( r ) for     1 n N , 1 m M , p , q = 1 , 0 , 1 } .
Ω = 2 arctan ( w / 2 d gap ) .
w folded = w × ( M x 1 ) / 2 .
M x = f / ( d gap f ) .

Metrics