Abstract

We propose the silicon-on-insulator (SOI) based, phase shifted vertical side wall grating as a resonant transmission filter suitable for dense wavelength division multiplexing (DWDM) communication channels with 100GHz channel spacing. The gratings are designed and numerically simulated to obtain a minimum loss in the resonant cavity by adjusting the grating parameters so that a high transmittivity can be achieved for the resonant transmission. The resonant grating, which is designed to operate in the DWDM International Telecommunication Union (ITU) grid C band of optical communication, has a high free spectral range of 51.7nm and a narrow band resonant transmission. The wavelength selectivity of the filter is improved through a coupled cavity configuration by applying two phase shifts to the gratings. The observed channel band width and channel isolation of the resonant transmission filter are good and in agreement with the ITU specifications.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
    [CrossRef]
  2. M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17, 5502-5516 (2009).
    [CrossRef] [PubMed]
  3. K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Silicon-wire-based ultra small lattice filters with wide free spectral ranges,” Opt. Lett. 28, 1663-1664 (2003).
    [CrossRef] [PubMed]
  4. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical add-drop multiplexers based on Si-wire waveguides,” Appl. Phys. Lett. 86, 191107 (2005).
    [CrossRef]
  5. A. D. Orazio, M. D. Sario, V. Petruzzelli, and F. Prudenzan, “Photonic bandgap filter for wavelength division multiplexer,” Opt. Express 11, 230-239 (2003).
    [CrossRef] [PubMed]
  6. T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides,” J. Lightwave Technol. 19, 1938-1942 (2001).
    [CrossRef]
  7. T. Y. Tsai, Y. C. Fang, Z. C. Lee, and J. R. Chen, “Design and simulation of apodized wavelength filters using Gaussian-distributed sidewall grating,” Opt. Quantum Electron. 39, 571-575 (2007).
    [CrossRef]
  8. J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase locked electron beam lithography,” J. Vac. Sci. Technol. B 20, 2753-2757 (2002).
    [CrossRef]
  9. T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Tunable optical add-drop multiplexer based on silicon photonic wire waveguides,” IEEE Photonics Technol. Lett. 18, 1409-1411 (2006).
    [CrossRef]
  10. OptiFDTD-7, Optiwave Corporation, Ottawa, Ontario, Canada.
  11. R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrowband grating resonator filters in InGaAsP/InP waveguides,” Appl. Phys. Lett. 49, 125-127(1986).
    [CrossRef]
  12. M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. M. D. L. Rue, “Modeling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38, 133-148 (2006).
    [CrossRef]
  13. M. Rattier, H. Benisty, C. J. M. Smith, A. Beraud, D. Cassagne, C. Jouanin, T. F. Krauss, and C. Weisbuch, “Performance of waveguide based two-dimensional photonic-crystal mirrors studied with Fabry-Pérot resonators,” IEEE J. Quantum Electron. 37, 237-242 (2001).
    [CrossRef]
  14. “Spectral grids for WDM applications: DWDM frequency grid,” G.694.1 (International Telecommunication Union-Telecommunication Standardization Sector, June 2002).

2009

2007

T. Y. Tsai, Y. C. Fang, Z. C. Lee, and J. R. Chen, “Design and simulation of apodized wavelength filters using Gaussian-distributed sidewall grating,” Opt. Quantum Electron. 39, 571-575 (2007).
[CrossRef]

2006

T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Tunable optical add-drop multiplexer based on silicon photonic wire waveguides,” IEEE Photonics Technol. Lett. 18, 1409-1411 (2006).
[CrossRef]

M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. M. D. L. Rue, “Modeling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38, 133-148 (2006).
[CrossRef]

2005

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical add-drop multiplexers based on Si-wire waveguides,” Appl. Phys. Lett. 86, 191107 (2005).
[CrossRef]

2003

2002

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase locked electron beam lithography,” J. Vac. Sci. Technol. B 20, 2753-2757 (2002).
[CrossRef]

2001

M. Rattier, H. Benisty, C. J. M. Smith, A. Beraud, D. Cassagne, C. Jouanin, T. F. Krauss, and C. Weisbuch, “Performance of waveguide based two-dimensional photonic-crystal mirrors studied with Fabry-Pérot resonators,” IEEE J. Quantum Electron. 37, 237-242 (2001).
[CrossRef]

T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides,” J. Lightwave Technol. 19, 1938-1942 (2001).
[CrossRef]

1997

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

1986

R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrowband grating resonator filters in InGaAsP/InP waveguides,” Appl. Phys. Lett. 49, 125-127(1986).
[CrossRef]

Alferness, R. C.

R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrowband grating resonator filters in InGaAsP/InP waveguides,” Appl. Phys. Lett. 49, 125-127(1986).
[CrossRef]

Arakawa, Y.

T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Tunable optical add-drop multiplexer based on silicon photonic wire waveguides,” IEEE Photonics Technol. Lett. 18, 1409-1411 (2006).
[CrossRef]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical add-drop multiplexers based on Si-wire waveguides,” Appl. Phys. Lett. 86, 191107 (2005).
[CrossRef]

Bassi, P.

M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. M. D. L. Rue, “Modeling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38, 133-148 (2006).
[CrossRef]

Bellanca, G.

M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. M. D. L. Rue, “Modeling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38, 133-148 (2006).
[CrossRef]

Benisty, H.

M. Rattier, H. Benisty, C. J. M. Smith, A. Beraud, D. Cassagne, C. Jouanin, T. F. Krauss, and C. Weisbuch, “Performance of waveguide based two-dimensional photonic-crystal mirrors studied with Fabry-Pérot resonators,” IEEE J. Quantum Electron. 37, 237-242 (2001).
[CrossRef]

Beraud, A.

M. Rattier, H. Benisty, C. J. M. Smith, A. Beraud, D. Cassagne, C. Jouanin, T. F. Krauss, and C. Weisbuch, “Performance of waveguide based two-dimensional photonic-crystal mirrors studied with Fabry-Pérot resonators,” IEEE J. Quantum Electron. 37, 237-242 (2001).
[CrossRef]

Buhl, L. L.

R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrowband grating resonator filters in InGaAsP/InP waveguides,” Appl. Phys. Lett. 49, 125-127(1986).
[CrossRef]

Cassagne, D.

M. Rattier, H. Benisty, C. J. M. Smith, A. Beraud, D. Cassagne, C. Jouanin, T. F. Krauss, and C. Weisbuch, “Performance of waveguide based two-dimensional photonic-crystal mirrors studied with Fabry-Pérot resonators,” IEEE J. Quantum Electron. 37, 237-242 (2001).
[CrossRef]

Chen, J. R.

T. Y. Tsai, Y. C. Fang, Z. C. Lee, and J. R. Chen, “Design and simulation of apodized wavelength filters using Gaussian-distributed sidewall grating,” Opt. Quantum Electron. 39, 571-575 (2007).
[CrossRef]

Chen, P.

Chong, H.

M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. M. D. L. Rue, “Modeling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38, 133-148 (2006).
[CrossRef]

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Chu, T.

T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Tunable optical add-drop multiplexer based on silicon photonic wire waveguides,” IEEE Photonics Technol. Lett. 18, 1409-1411 (2006).
[CrossRef]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical add-drop multiplexers based on Si-wire waveguides,” Appl. Phys. Lett. 86, 191107 (2005).
[CrossRef]

Divino, M. D.

R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrowband grating resonator filters in InGaAsP/InP waveguides,” Appl. Phys. Lett. 49, 125-127(1986).
[CrossRef]

Fang, Y. C.

T. Y. Tsai, Y. C. Fang, Z. C. Lee, and J. R. Chen, “Design and simulation of apodized wavelength filters using Gaussian-distributed sidewall grating,” Opt. Quantum Electron. 39, 571-575 (2007).
[CrossRef]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Geng, M.

Gnan, M.

M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. M. D. L. Rue, “Modeling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38, 133-148 (2006).
[CrossRef]

Goodberlet, J. G.

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase locked electron beam lithography,” J. Vac. Sci. Technol. B 20, 2753-2757 (2002).
[CrossRef]

Hastings, J. T.

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase locked electron beam lithography,” J. Vac. Sci. Technol. B 20, 2753-2757 (2002).
[CrossRef]

T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides,” J. Lightwave Technol. 19, 1938-1942 (2001).
[CrossRef]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Ishida, S.

T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Tunable optical add-drop multiplexer based on silicon photonic wire waveguides,” IEEE Photonics Technol. Lett. 18, 1409-1411 (2006).
[CrossRef]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical add-drop multiplexers based on Si-wire waveguides,” Appl. Phys. Lett. 86, 191107 (2005).
[CrossRef]

Itabashi, S.

Jia, L.

Jouanin, C.

M. Rattier, H. Benisty, C. J. M. Smith, A. Beraud, D. Cassagne, C. Jouanin, T. F. Krauss, and C. Weisbuch, “Performance of waveguide based two-dimensional photonic-crystal mirrors studied with Fabry-Pérot resonators,” IEEE J. Quantum Electron. 37, 237-242 (2001).
[CrossRef]

Joyner, C. H.

R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrowband grating resonator filters in InGaAsP/InP waveguides,” Appl. Phys. Lett. 49, 125-127(1986).
[CrossRef]

Krauss, T. F.

M. Rattier, H. Benisty, C. J. M. Smith, A. Beraud, D. Cassagne, C. Jouanin, T. F. Krauss, and C. Weisbuch, “Performance of waveguide based two-dimensional photonic-crystal mirrors studied with Fabry-Pérot resonators,” IEEE J. Quantum Electron. 37, 237-242 (2001).
[CrossRef]

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Lee, Z. C.

T. Y. Tsai, Y. C. Fang, Z. C. Lee, and J. R. Chen, “Design and simulation of apodized wavelength filters using Gaussian-distributed sidewall grating,” Opt. Quantum Electron. 39, 571-575 (2007).
[CrossRef]

Lim, M. H.

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase locked electron beam lithography,” J. Vac. Sci. Technol. B 20, 2753-2757 (2002).
[CrossRef]

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Liu, Y.

Martyak, M. J. R.

R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrowband grating resonator filters in InGaAsP/InP waveguides,” Appl. Phys. Lett. 49, 125-127(1986).
[CrossRef]

Murphy, T. E.

Orazio, A. D.

Petruzzelli, V.

Prudenzan, F.

Rattier, M.

M. Rattier, H. Benisty, C. J. M. Smith, A. Beraud, D. Cassagne, C. Jouanin, T. F. Krauss, and C. Weisbuch, “Performance of waveguide based two-dimensional photonic-crystal mirrors studied with Fabry-Pérot resonators,” IEEE J. Quantum Electron. 37, 237-242 (2001).
[CrossRef]

Rue, R. M. D. L.

M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. M. D. L. Rue, “Modeling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38, 133-148 (2006).
[CrossRef]

Sario, M. D.

Shoji, T.

Smith, C. J. M.

M. Rattier, H. Benisty, C. J. M. Smith, A. Beraud, D. Cassagne, C. Jouanin, T. F. Krauss, and C. Weisbuch, “Performance of waveguide based two-dimensional photonic-crystal mirrors studied with Fabry-Pérot resonators,” IEEE J. Quantum Electron. 37, 237-242 (2001).
[CrossRef]

Smith, H. I.

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase locked electron beam lithography,” J. Vac. Sci. Technol. B 20, 2753-2757 (2002).
[CrossRef]

T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides,” J. Lightwave Technol. 19, 1938-1942 (2001).
[CrossRef]

Takahashi, J.

Tsai, T. Y.

T. Y. Tsai, Y. C. Fang, Z. C. Lee, and J. R. Chen, “Design and simulation of apodized wavelength filters using Gaussian-distributed sidewall grating,” Opt. Quantum Electron. 39, 571-575 (2007).
[CrossRef]

Tsuchizawa, T.

Wang, T.

Watanabe, T.

Weisbuch, C.

M. Rattier, H. Benisty, C. J. M. Smith, A. Beraud, D. Cassagne, C. Jouanin, T. F. Krauss, and C. Weisbuch, “Performance of waveguide based two-dimensional photonic-crystal mirrors studied with Fabry-Pérot resonators,” IEEE J. Quantum Electron. 37, 237-242 (2001).
[CrossRef]

Yamada, H.

T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Tunable optical add-drop multiplexer based on silicon photonic wire waveguides,” IEEE Photonics Technol. Lett. 18, 1409-1411 (2006).
[CrossRef]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical add-drop multiplexers based on Si-wire waveguides,” Appl. Phys. Lett. 86, 191107 (2005).
[CrossRef]

Yamada, K.

Yang, L.

Zhang, L.

Appl. Phys. Lett.

R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrowband grating resonator filters in InGaAsP/InP waveguides,” Appl. Phys. Lett. 49, 125-127(1986).
[CrossRef]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical add-drop multiplexers based on Si-wire waveguides,” Appl. Phys. Lett. 86, 191107 (2005).
[CrossRef]

IEEE J. Quantum Electron.

M. Rattier, H. Benisty, C. J. M. Smith, A. Beraud, D. Cassagne, C. Jouanin, T. F. Krauss, and C. Weisbuch, “Performance of waveguide based two-dimensional photonic-crystal mirrors studied with Fabry-Pérot resonators,” IEEE J. Quantum Electron. 37, 237-242 (2001).
[CrossRef]

IEEE Photonics Technol. Lett.

T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Tunable optical add-drop multiplexer based on silicon photonic wire waveguides,” IEEE Photonics Technol. Lett. 18, 1409-1411 (2006).
[CrossRef]

J. Lightwave Technol.

T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides,” J. Lightwave Technol. 19, 1938-1942 (2001).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

J. Vac. Sci. Technol. B

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase locked electron beam lithography,” J. Vac. Sci. Technol. B 20, 2753-2757 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

T. Y. Tsai, Y. C. Fang, Z. C. Lee, and J. R. Chen, “Design and simulation of apodized wavelength filters using Gaussian-distributed sidewall grating,” Opt. Quantum Electron. 39, 571-575 (2007).
[CrossRef]

M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. M. D. L. Rue, “Modeling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38, 133-148 (2006).
[CrossRef]

Other

“Spectral grids for WDM applications: DWDM frequency grid,” G.694.1 (International Telecommunication Union-Telecommunication Standardization Sector, June 2002).

OptiFDTD-7, Optiwave Corporation, Ottawa, Ontario, Canada.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of a single phase shifted vertical side wall grating (top side view).

Fig. 2
Fig. 2

Field intensity distribution in the X Z plane and reflectivity spectrum of vertical grating of length (a)  L = 10 Λ and (b)  L = 36 Λ . (c) Variation in grating reflectivity and reflection bandwidth with grating length.

Fig. 3
Fig. 3

(a) Reflection/transmission spectrum (normalized with input) of the grating (inset showing the magnified peak at the center). (b) Field intensity distribution ( X Z plane view). (c) Transmittivity in decibels showing the 3 dB bandwidth.

Fig. 4
Fig. 4

Variation in 3 dB band width and loss inside the cavity with respect to (a) grating duty cycle and (b) grating depth. (c) Transmittivity spectrum for varying grating length, L out (in units of grating period Λ). (d) Variation in bandwidth and transmittivity with grating length L out .

Fig. 5
Fig. 5

Transmission spectrum of a phase shifted grating with grating depth 150 nm , for various grating length L out .

Fig. 6
Fig. 6

(a) Superposed transmission spectra for different phase shift lengths (inset showing the magnified center region). (b) Wavelength and (c)  3 dB bandwidth versus phase shift length.

Fig. 7
Fig. 7

Variation in wavelength with effective index of the waveguide.

Fig. 8
Fig. 8

(a) Schematic diagram of vertical side wall grating with two phase shifts and (b) superimposed transmission spectrum of a single- and a two-phase-shifted grating.

Fig. 9
Fig. 9

Channels 14 to 20 in a DWDM ITU grid C band with 100 GHz spacing, simulated with two-phase-shifted vertical side wall grating.

Tables (2)

Tables Icon

Table 1 1 dB ( B 1 ) , 3 dB ( B 3 ) , and 10 dB ( B 10 ) Bandwidth and Selectivity (S) of the Filter with Number of Phase Shifts in the Grating

Tables Icon

Table 2 DWDM Channel Wavelength from 14 to 20 (ITU grid C Band 100 GHz Spacing) and Simulated Grating Resonant Wavelength with Their Respective Phase Shift Lengths

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

l g n 1 + l w n 2 = m λ B 2 ,
1 Q = 1 Q I + 1 Q L ,
Q I ( π 4 K Λ ) exp ( 2 K L )
Q L = ( π 2 α Λ )
T = ( Q Q I ) 2 .

Metrics