Abstract

A feedback-control-equipped phase-shifting laser diode interferometer that eliminates external disturbance is proposed. The feedback loop is stabilized by adaptive control of the polarity of the interference signal. Conventional phase-shifting interferometry can be used with the feedback control, resulting in simplified signal processing and accurate measurement. Several experiments confirm the stability of the feedback control with a measurement repeatability of 1.8nm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tatsuno and Y. Tsunoda, “Diode laser direct modulation heterodyne interferometer,” Appl. Opt. 26, 37-40 (1987).
    [CrossRef] [PubMed]
  2. K. Hotate and D.-T. Jong, “Quasiheterodyne optical fiber sensor with automated adjustment of the driving wave parameter,” Appl. Opt. 26, 2956-2961 (1987).
    [CrossRef] [PubMed]
  3. R. Onodera and Y. Ishii, “Frame rate phase-shifting interferometer with a frequency-modulated laser diode,” Opt. Eng. 38, 2045-2049 (1999).
    [CrossRef]
  4. J. Chen, Y. Ishii, and K. Murata, “Heterodyne interferometry with a frequency-modulated laser diode,” Appl. Opt. 27, 124-128 (1988).
    [CrossRef] [PubMed]
  5. O. Sasaki, T. Yoshida, and T. Suzuki, “Double sinusoidal phase-modulating laser diode interferometer for distance measurement,” Appl. Opt. 30, 3617-3621 (1991).
    [CrossRef] [PubMed]
  6. T. Suzuki, O. Sasaki, J. Kaneda, and T. Maruyama, “Real-time two-dimensional surface profile measurement in sinusoidal phase modulating laser diode interferometer,” Opt. Eng. 33, 2754-2759 (1994).
    [CrossRef]
  7. O. Sasaki, K. Takahashi, and T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng. 29, 1511-1515 (1990).
    [CrossRef]
  8. T. Suzuki, X. Zhao, and O. Sasaki, “Phase-locked phase-shifting laser diode interferometer with photothermal modulation,” Appl. Opt. 40, 2126-2131 (2001).
    [CrossRef]
  9. C. R. Mercer and G. Beheim, “Fiber-optic phase-stepping system for interferometry,” Appl. Opt. 30, 729-734 (1991).
    [CrossRef] [PubMed]
  10. T. Yoshino and H. Yamaguchi, “Closed-loop phase-shifting interferometry with a laser diode,” Opt. Lett. 23, 1576-1578(1998).
    [CrossRef]
  11. T. Suzuki, T. Maki, X. Zhao, and O. Sasaki, “Disturbance-free high-speed sinusoidal phase-modulating laser-diode interferometer,” Appl. Opt. 41, 1949-1953 (2002).
    [CrossRef] [PubMed]

2002 (1)

2001 (1)

1999 (1)

R. Onodera and Y. Ishii, “Frame rate phase-shifting interferometer with a frequency-modulated laser diode,” Opt. Eng. 38, 2045-2049 (1999).
[CrossRef]

1998 (1)

1994 (1)

T. Suzuki, O. Sasaki, J. Kaneda, and T. Maruyama, “Real-time two-dimensional surface profile measurement in sinusoidal phase modulating laser diode interferometer,” Opt. Eng. 33, 2754-2759 (1994).
[CrossRef]

1991 (2)

1990 (1)

O. Sasaki, K. Takahashi, and T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng. 29, 1511-1515 (1990).
[CrossRef]

1988 (1)

1987 (2)

Beheim, G.

Chen, J.

Hotate, K.

Ishii, Y.

R. Onodera and Y. Ishii, “Frame rate phase-shifting interferometer with a frequency-modulated laser diode,” Opt. Eng. 38, 2045-2049 (1999).
[CrossRef]

J. Chen, Y. Ishii, and K. Murata, “Heterodyne interferometry with a frequency-modulated laser diode,” Appl. Opt. 27, 124-128 (1988).
[CrossRef] [PubMed]

Jong, D.-T.

Kaneda, J.

T. Suzuki, O. Sasaki, J. Kaneda, and T. Maruyama, “Real-time two-dimensional surface profile measurement in sinusoidal phase modulating laser diode interferometer,” Opt. Eng. 33, 2754-2759 (1994).
[CrossRef]

Maki, T.

Maruyama, T.

T. Suzuki, O. Sasaki, J. Kaneda, and T. Maruyama, “Real-time two-dimensional surface profile measurement in sinusoidal phase modulating laser diode interferometer,” Opt. Eng. 33, 2754-2759 (1994).
[CrossRef]

Mercer, C. R.

Murata, K.

Onodera, R.

R. Onodera and Y. Ishii, “Frame rate phase-shifting interferometer with a frequency-modulated laser diode,” Opt. Eng. 38, 2045-2049 (1999).
[CrossRef]

Sasaki, O.

T. Suzuki, T. Maki, X. Zhao, and O. Sasaki, “Disturbance-free high-speed sinusoidal phase-modulating laser-diode interferometer,” Appl. Opt. 41, 1949-1953 (2002).
[CrossRef] [PubMed]

T. Suzuki, X. Zhao, and O. Sasaki, “Phase-locked phase-shifting laser diode interferometer with photothermal modulation,” Appl. Opt. 40, 2126-2131 (2001).
[CrossRef]

T. Suzuki, O. Sasaki, J. Kaneda, and T. Maruyama, “Real-time two-dimensional surface profile measurement in sinusoidal phase modulating laser diode interferometer,” Opt. Eng. 33, 2754-2759 (1994).
[CrossRef]

O. Sasaki, T. Yoshida, and T. Suzuki, “Double sinusoidal phase-modulating laser diode interferometer for distance measurement,” Appl. Opt. 30, 3617-3621 (1991).
[CrossRef] [PubMed]

O. Sasaki, K. Takahashi, and T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng. 29, 1511-1515 (1990).
[CrossRef]

Suzuki, T.

T. Suzuki, T. Maki, X. Zhao, and O. Sasaki, “Disturbance-free high-speed sinusoidal phase-modulating laser-diode interferometer,” Appl. Opt. 41, 1949-1953 (2002).
[CrossRef] [PubMed]

T. Suzuki, X. Zhao, and O. Sasaki, “Phase-locked phase-shifting laser diode interferometer with photothermal modulation,” Appl. Opt. 40, 2126-2131 (2001).
[CrossRef]

T. Suzuki, O. Sasaki, J. Kaneda, and T. Maruyama, “Real-time two-dimensional surface profile measurement in sinusoidal phase modulating laser diode interferometer,” Opt. Eng. 33, 2754-2759 (1994).
[CrossRef]

O. Sasaki, T. Yoshida, and T. Suzuki, “Double sinusoidal phase-modulating laser diode interferometer for distance measurement,” Appl. Opt. 30, 3617-3621 (1991).
[CrossRef] [PubMed]

O. Sasaki, K. Takahashi, and T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng. 29, 1511-1515 (1990).
[CrossRef]

Takahashi, K.

O. Sasaki, K. Takahashi, and T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng. 29, 1511-1515 (1990).
[CrossRef]

Tatsuno, K.

Tsunoda, Y.

Yamaguchi, H.

Yoshida, T.

Yoshino, T.

Zhao, X.

Appl. Opt. (7)

Opt. Eng. (3)

R. Onodera and Y. Ishii, “Frame rate phase-shifting interferometer with a frequency-modulated laser diode,” Opt. Eng. 38, 2045-2049 (1999).
[CrossRef]

T. Suzuki, O. Sasaki, J. Kaneda, and T. Maruyama, “Real-time two-dimensional surface profile measurement in sinusoidal phase modulating laser diode interferometer,” Opt. Eng. 33, 2754-2759 (1994).
[CrossRef]

O. Sasaki, K. Takahashi, and T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng. 29, 1511-1515 (1990).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Classifications of the modulating techniques with their modulating waveforms. HI, heterodyne interferometry.

Fig. 2
Fig. 2

Schematic of the experimental setup. LD, laser diode; BS1, BS2, beam splitters; PSC, phase-shifting controller.

Fig. 3
Fig. 3

Polarity of the FB control depending on the location of the operating point.

Fig. 4
Fig. 4

Polarity of the FB control under adaptive control. Operating points S 1 and S 2 are on the original interference signal (solid curve), whereas S 3 * and S 4 * are on the inverted interference signal (dashed curve).

Fig. 5
Fig. 5

Block diagram of the PSC. VSS, video synchronizing-signal separator; PSG, phase-shifting signal generator; PLC, polarity controller; FBC, FB controller.

Fig. 6
Fig. 6

Timing chart of adaptive FB control in the phase-shifting process.

Fig. 7
Fig. 7

Temporal change in the interference signal observed at two states: (a) FB off and (b) FB on.

Fig. 8
Fig. 8

Temporal change in the interferogram observed at two states: (a) FB off and (b) FB on.

Fig. 9
Fig. 9

Observation of (a) phase-shifting process in the PSC and (b) phase-shifted interferograms.

Fig. 10
Fig. 10

Two-dimensional trace of a diamond-turned aluminum disk measured by using the proposed system.

Fig. 11
Fig. 11

Three-dimensional surface profile of an object measured by using the proposed system. The time interval of the measurements between (a) and (b) is 10 min .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S = a + b cos α 0
α 0 = 2 π L / λ 0
α c = 2 π ( L + d ) λ 0 λ s + λ c = 2 π L λ 0 + 2 π L λ 0 2 λ s + 2 π d λ 0 2 π L λ 0 2 λ c .
S i = b cos [ π 4 + ( i 1 ) π 2 ] ( i = 1 , 2 , 3 , 4 ) ,

Metrics