Abstract

We propose a method for implementation of gray-scale sparse block modulation codes with a single spatial light modulator in phase mode for holographic data storage. Sparse data pages promise higher recording densities with reduced consumption of the dynamic range of the recording material and reduced interpixel cross talk. A balanced sparse-gray-level phase data page gives a homogenized Fourier spectrum that improves the interference efficiency between the signal and the reference beams. Construction rules for sparse three-gray-level phase data pages, readout methods, and interpixel cross talk are discussed extensively. We also explore theoretically the potential storage density improvement while using low-pass filtering and sparse-gray-level phase data pages for holographic storage, and demonstrate the trade-off between code rate, block length, and estimated capacity gain.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).
  2. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
    [CrossRef]
  3. K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, “High speed holographic data storage at 500 Gbit/in.2,” www.inphase-technologies.com/downloads/pdf/technology/HighSpeedHDS500Gbin2.pdf
  4. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902-4914 (2004).
    [CrossRef] [PubMed]
  5. R. John, J. Joseph, and K. Singh, “Holographic data storage using phase modulated pixels,” Opt. Lasers Eng. 43, 183-194(2005).
    [CrossRef]
  6. J. Joseph and D. Waldman, “Homogenized Fourier transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image,” Appl. Opt. 45, 6374-6380 (2006).
    [CrossRef] [PubMed]
  7. M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, and K. Watanbe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885-5890(2008).
    [CrossRef]
  8. B. Das, J. Joseph, and K. Singh, “Performance analysis of content-addressable search and bit-error-rate characteristics of a defocused volume holographic data storage system,” Appl. Opt. 46, 5461-5470 (2007).
    [CrossRef] [PubMed]
  9. J.-S. Jang and D.-H. Shin, “Optical representation of binary data based on both intensity and phase modulation with a twisted-nematic liquid-crystal display for holographic digital data storage,” Opt. Lett. 26, 1797-1799 (2001).
    [CrossRef]
  10. L. Domján, P. Koppa, G. Szarvas, and J. Reményi, “Ternary phase-amplitude modulation with twisted nematic liquid crystal displays for Fourier-plane light homogenization in holographic storage,” Optik (Jena) 113, 382-390 (2002).
    [CrossRef]
  11. B. M. King and M. A. Neifeld, “Sparse modulation coding for increased capacity in volume holographic storage,” Appl. Opt. 39, 6681-6688 (2000).`
    [CrossRef]
  12. B. M. King, G. W. Burr, and M. A. Neifeld, “Experimental demonstration of gray-scale sparse modulation codes in volume holographic storage,” Appl. Opt. 42, 2546-2559 (2003).
    [CrossRef] [PubMed]
  13. A. Sütő and E. Lőrincz, “Optimization of data density in Fourier holographic system using spatial filtering and sparse modulation coding,” Optik (Jena) 115, 541-546 (2004).
    [CrossRef]
  14. O. Malki, J. Knittel, F. Przygodda, H. Trautner, and H. Richter, “Two dimensional modulation for holographic data storage systems,” Jpn. J. Appl. Phys. 47, 5993-5996 (2008).
    [CrossRef]
  15. Z. Göröcs, G. Erdei, T. Sarkadi, F. Ujhelyi, J. Reményi, P. Koppa, and E. Lőrincz, “Hybrid multinary modulation using a phase modulating spatial light modulator and a low-pass spatial filter,” Opt. Lett. 32, 2336-2338 (2007).
    [CrossRef] [PubMed]
  16. G. W. Burr, G. Barking, H. Coufal, J. A. Hoffnagle, and C. M. Jefferson, “Gray scale data pages for digital holographic data storage,” Opt. Lett. 23, 1218-1220 (1998).
    [CrossRef]
  17. G. Berger, K. O. Müller, C. Denz, I. Földvári, and A. Péter, “Digital data storage in a phase-encoded holographic memory system: data quality and security,” Proc. SPIE 4988, 104-111(2003).
    [CrossRef]
  18. B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282, 2147-2154 (2009).
    [CrossRef]
  19. B. Das, S. Vyas, J. Joseph, P. Senthilkumaran, and K. Singh, “Transmission type twisted nematic liquid crystal display for three gray level phase modulated holographic data storage systems,” Opt. Lasers Eng. 47, 1150-1159 (2009).
  20. P. Koppa, “Phase-to-amplitude data page conversion for holographic storage and optical encryption,” Appl. Opt. 46, 3561-3571 (2007).
    [CrossRef] [PubMed]
  21. M. Takabayashi, A. Okamoto, and K. Sato, “Time-domain differential detection of phase-modulated signals for phase-only holographic data storage,” Jpn. J. Appl. Phys. 48, 03A032 (2009).
    [CrossRef]
  22. P. Várhegyi, Á. Kerekes, S. Sajti, F. Ujhelyi, P. Koppa, G. Szarvas, and E. Lőrincz, “Saturation effect in azobenzene polymers used for polarization holography,” Appl. Phys. B 76, 397-402 (2003).
    [CrossRef]
  23. L. D. Ramamoorthy and B. V. K. Vijaya Kumar, “Sparse modulation codes for channel with media saturation,” in Joint International Symposium on Optical Memory and Optical Data Storage 2008 (CD) (2008), paper ThC04 TD05-56 (1).
  24. G. Berger, M. Dietz, and C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A Pure Appl. Opt. 10, 115305 (2008).
    [CrossRef]
  25. M. Ayres, A. Hosinks, and K. Curtis, “Image oversampling for page-oriented optical data storage,” Appl. Opt. 45, 2459-2464(2006).
    [CrossRef] [PubMed]
  26. G. W. Burr and T. Weiss, “Compensation for pixel misregistration in volume holographic data storage,” Opt. Lett. 26, 542-544 (2001).
    [CrossRef]
  27. C.-Y. Chen, C.-C. Fu, and T.-D. Chiueh, “Low-complexity pixel detection for images with misalignment and interpixel interference in holographic data storage,” Appl. Opt. 47, 6784-6795(2008).
    [CrossRef] [PubMed]
  28. G. W. Burr and B. Marcus, “Coding tradeoffs for high-density holographic data storage,” Proc. SPIE 3802, 18-29(1999).
    [CrossRef]
  29. O. Malki, F. Przygodda, J. Knittel, H. Trautner, and H. Richter, “Optimal aperture size for maximizing the capacity of holographic data storage systems,” in Joint International Symposium on Optical Memory and Optical Data Storage 2008 (CD) (2008), paper TuP09 TD05-110 (1).

2009 (2)

M. Takabayashi, A. Okamoto, and K. Sato, “Time-domain differential detection of phase-modulated signals for phase-only holographic data storage,” Jpn. J. Appl. Phys. 48, 03A032 (2009).
[CrossRef]

B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282, 2147-2154 (2009).
[CrossRef]

2008 (4)

G. Berger, M. Dietz, and C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A Pure Appl. Opt. 10, 115305 (2008).
[CrossRef]

O. Malki, J. Knittel, F. Przygodda, H. Trautner, and H. Richter, “Two dimensional modulation for holographic data storage systems,” Jpn. J. Appl. Phys. 47, 5993-5996 (2008).
[CrossRef]

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, and K. Watanbe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885-5890(2008).
[CrossRef]

C.-Y. Chen, C.-C. Fu, and T.-D. Chiueh, “Low-complexity pixel detection for images with misalignment and interpixel interference in holographic data storage,” Appl. Opt. 47, 6784-6795(2008).
[CrossRef] [PubMed]

2007 (3)

2006 (2)

2005 (1)

R. John, J. Joseph, and K. Singh, “Holographic data storage using phase modulated pixels,” Opt. Lasers Eng. 43, 183-194(2005).
[CrossRef]

2004 (3)

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
[CrossRef]

A. Sütő and E. Lőrincz, “Optimization of data density in Fourier holographic system using spatial filtering and sparse modulation coding,” Optik (Jena) 115, 541-546 (2004).
[CrossRef]

S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902-4914 (2004).
[CrossRef] [PubMed]

2003 (3)

P. Várhegyi, Á. Kerekes, S. Sajti, F. Ujhelyi, P. Koppa, G. Szarvas, and E. Lőrincz, “Saturation effect in azobenzene polymers used for polarization holography,” Appl. Phys. B 76, 397-402 (2003).
[CrossRef]

G. Berger, K. O. Müller, C. Denz, I. Földvári, and A. Péter, “Digital data storage in a phase-encoded holographic memory system: data quality and security,” Proc. SPIE 4988, 104-111(2003).
[CrossRef]

B. M. King, G. W. Burr, and M. A. Neifeld, “Experimental demonstration of gray-scale sparse modulation codes in volume holographic storage,” Appl. Opt. 42, 2546-2559 (2003).
[CrossRef] [PubMed]

2002 (1)

L. Domján, P. Koppa, G. Szarvas, and J. Reményi, “Ternary phase-amplitude modulation with twisted nematic liquid crystal displays for Fourier-plane light homogenization in holographic storage,” Optik (Jena) 113, 382-390 (2002).
[CrossRef]

2001 (2)

2000 (1)

1999 (1)

G. W. Burr and B. Marcus, “Coding tradeoffs for high-density holographic data storage,” Proc. SPIE 3802, 18-29(1999).
[CrossRef]

1998 (1)

Anderson, K.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, “High speed holographic data storage at 500 Gbit/in.2,” www.inphase-technologies.com/downloads/pdf/technology/HighSpeedHDS500Gbin2.pdf

Ayres, M.

Barking, G.

Bashaw, M. C.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
[CrossRef]

Berger, G.

G. Berger, M. Dietz, and C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A Pure Appl. Opt. 10, 115305 (2008).
[CrossRef]

G. Berger, K. O. Müller, C. Denz, I. Földvári, and A. Péter, “Digital data storage in a phase-encoded holographic memory system: data quality and security,” Proc. SPIE 4988, 104-111(2003).
[CrossRef]

Bjornson, E.

Burr, G. W.

Chen, C.-Y.

Chiueh, T.-D.

Coufal, H.

Coufal, H. J.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).

Curtis, K.

M. Ayres, A. Hosinks, and K. Curtis, “Image oversampling for page-oriented optical data storage,” Appl. Opt. 45, 2459-2464(2006).
[CrossRef] [PubMed]

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, “High speed holographic data storage at 500 Gbit/in.2,” www.inphase-technologies.com/downloads/pdf/technology/HighSpeedHDS500Gbin2.pdf

Das, B.

B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282, 2147-2154 (2009).
[CrossRef]

B. Das, J. Joseph, and K. Singh, “Performance analysis of content-addressable search and bit-error-rate characteristics of a defocused volume holographic data storage system,” Appl. Opt. 46, 5461-5470 (2007).
[CrossRef] [PubMed]

B. Das, S. Vyas, J. Joseph, P. Senthilkumaran, and K. Singh, “Transmission type twisted nematic liquid crystal display for three gray level phase modulated holographic data storage systems,” Opt. Lasers Eng. 47, 1150-1159 (2009).

Denz, C.

G. Berger, M. Dietz, and C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A Pure Appl. Opt. 10, 115305 (2008).
[CrossRef]

G. Berger, K. O. Müller, C. Denz, I. Földvári, and A. Péter, “Digital data storage in a phase-encoded holographic memory system: data quality and security,” Proc. SPIE 4988, 104-111(2003).
[CrossRef]

Dietz, M.

G. Berger, M. Dietz, and C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A Pure Appl. Opt. 10, 115305 (2008).
[CrossRef]

Domján, L.

L. Domján, P. Koppa, G. Szarvas, and J. Reményi, “Ternary phase-amplitude modulation with twisted nematic liquid crystal displays for Fourier-plane light homogenization in holographic storage,” Optik (Jena) 113, 382-390 (2002).
[CrossRef]

Erdei, G.

Földvári, I.

G. Berger, K. O. Müller, C. Denz, I. Földvári, and A. Péter, “Digital data storage in a phase-encoded holographic memory system: data quality and security,” Proc. SPIE 4988, 104-111(2003).
[CrossRef]

Fotheringham, E.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, “High speed holographic data storage at 500 Gbit/in.2,” www.inphase-technologies.com/downloads/pdf/technology/HighSpeedHDS500Gbin2.pdf

Fu, C.-C.

Fukumoto, A.

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, and K. Watanbe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885-5890(2008).
[CrossRef]

Göröcs, Z.

Hara, M.

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, and K. Watanbe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885-5890(2008).
[CrossRef]

Hesselink, L.

Hill, A.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, “High speed holographic data storage at 500 Gbit/in.2,” www.inphase-technologies.com/downloads/pdf/technology/HighSpeedHDS500Gbin2.pdf

Hirooka, K.

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, and K. Watanbe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885-5890(2008).
[CrossRef]

Hoffnagle, J. A.

Hosinks, A.

Jang, J.-S.

Jefferson, C. M.

John, R.

R. John, J. Joseph, and K. Singh, “Holographic data storage using phase modulated pixels,” Opt. Lasers Eng. 43, 183-194(2005).
[CrossRef]

Joseph, J.

B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282, 2147-2154 (2009).
[CrossRef]

B. Das, J. Joseph, and K. Singh, “Performance analysis of content-addressable search and bit-error-rate characteristics of a defocused volume holographic data storage system,” Appl. Opt. 46, 5461-5470 (2007).
[CrossRef] [PubMed]

J. Joseph and D. Waldman, “Homogenized Fourier transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image,” Appl. Opt. 45, 6374-6380 (2006).
[CrossRef] [PubMed]

R. John, J. Joseph, and K. Singh, “Holographic data storage using phase modulated pixels,” Opt. Lasers Eng. 43, 183-194(2005).
[CrossRef]

B. Das, S. Vyas, J. Joseph, P. Senthilkumaran, and K. Singh, “Transmission type twisted nematic liquid crystal display for three gray level phase modulated holographic data storage systems,” Opt. Lasers Eng. 47, 1150-1159 (2009).

Kerekes, Á.

P. Várhegyi, Á. Kerekes, S. Sajti, F. Ujhelyi, P. Koppa, G. Szarvas, and E. Lőrincz, “Saturation effect in azobenzene polymers used for polarization holography,” Appl. Phys. B 76, 397-402 (2003).
[CrossRef]

King, B. M.

Knittel, J.

O. Malki, J. Knittel, F. Przygodda, H. Trautner, and H. Richter, “Two dimensional modulation for holographic data storage systems,” Jpn. J. Appl. Phys. 47, 5993-5996 (2008).
[CrossRef]

O. Malki, F. Przygodda, J. Knittel, H. Trautner, and H. Richter, “Optimal aperture size for maximizing the capacity of holographic data storage systems,” in Joint International Symposium on Optical Memory and Optical Data Storage 2008 (CD) (2008), paper TuP09 TD05-110 (1).

Koppa, P.

Z. Göröcs, G. Erdei, T. Sarkadi, F. Ujhelyi, J. Reményi, P. Koppa, and E. Lőrincz, “Hybrid multinary modulation using a phase modulating spatial light modulator and a low-pass spatial filter,” Opt. Lett. 32, 2336-2338 (2007).
[CrossRef] [PubMed]

P. Koppa, “Phase-to-amplitude data page conversion for holographic storage and optical encryption,” Appl. Opt. 46, 3561-3571 (2007).
[CrossRef] [PubMed]

P. Várhegyi, Á. Kerekes, S. Sajti, F. Ujhelyi, P. Koppa, G. Szarvas, and E. Lőrincz, “Saturation effect in azobenzene polymers used for polarization holography,” Appl. Phys. B 76, 397-402 (2003).
[CrossRef]

L. Domján, P. Koppa, G. Szarvas, and J. Reményi, “Ternary phase-amplitude modulation with twisted nematic liquid crystal displays for Fourier-plane light homogenization in holographic storage,” Optik (Jena) 113, 382-390 (2002).
[CrossRef]

Kwan, D.

Lorincz, E.

Z. Göröcs, G. Erdei, T. Sarkadi, F. Ujhelyi, J. Reményi, P. Koppa, and E. Lőrincz, “Hybrid multinary modulation using a phase modulating spatial light modulator and a low-pass spatial filter,” Opt. Lett. 32, 2336-2338 (2007).
[CrossRef] [PubMed]

A. Sütő and E. Lőrincz, “Optimization of data density in Fourier holographic system using spatial filtering and sparse modulation coding,” Optik (Jena) 115, 541-546 (2004).
[CrossRef]

P. Várhegyi, Á. Kerekes, S. Sajti, F. Ujhelyi, P. Koppa, G. Szarvas, and E. Lőrincz, “Saturation effect in azobenzene polymers used for polarization holography,” Appl. Phys. B 76, 397-402 (2003).
[CrossRef]

Malki, O.

O. Malki, J. Knittel, F. Przygodda, H. Trautner, and H. Richter, “Two dimensional modulation for holographic data storage systems,” Jpn. J. Appl. Phys. 47, 5993-5996 (2008).
[CrossRef]

O. Malki, F. Przygodda, J. Knittel, H. Trautner, and H. Richter, “Optimal aperture size for maximizing the capacity of holographic data storage systems,” in Joint International Symposium on Optical Memory and Optical Data Storage 2008 (CD) (2008), paper TuP09 TD05-110 (1).

Marcus, B.

G. W. Burr and B. Marcus, “Coding tradeoffs for high-density holographic data storage,” Proc. SPIE 3802, 18-29(1999).
[CrossRef]

Müller, K. O.

G. Berger, K. O. Müller, C. Denz, I. Földvári, and A. Péter, “Digital data storage in a phase-encoded holographic memory system: data quality and security,” Proc. SPIE 4988, 104-111(2003).
[CrossRef]

Neifeld, M. A.

Okamoto, A.

M. Takabayashi, A. Okamoto, and K. Sato, “Time-domain differential detection of phase-modulated signals for phase-only holographic data storage,” Jpn. J. Appl. Phys. 48, 03A032 (2009).
[CrossRef]

Okas, R.

Orlov, S. S.

Péter, A.

G. Berger, K. O. Müller, C. Denz, I. Földvári, and A. Péter, “Digital data storage in a phase-encoded holographic memory system: data quality and security,” Proc. SPIE 4988, 104-111(2003).
[CrossRef]

Phillips, W.

Przygodda, F.

O. Malki, J. Knittel, F. Przygodda, H. Trautner, and H. Richter, “Two dimensional modulation for holographic data storage systems,” Jpn. J. Appl. Phys. 47, 5993-5996 (2008).
[CrossRef]

O. Malki, F. Przygodda, J. Knittel, H. Trautner, and H. Richter, “Optimal aperture size for maximizing the capacity of holographic data storage systems,” in Joint International Symposium on Optical Memory and Optical Data Storage 2008 (CD) (2008), paper TuP09 TD05-110 (1).

Psaltis, D.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).

Ramamoorthy, L. D.

L. D. Ramamoorthy and B. V. K. Vijaya Kumar, “Sparse modulation codes for channel with media saturation,” in Joint International Symposium on Optical Memory and Optical Data Storage 2008 (CD) (2008), paper ThC04 TD05-56 (1).

Reményi, J.

Z. Göröcs, G. Erdei, T. Sarkadi, F. Ujhelyi, J. Reményi, P. Koppa, and E. Lőrincz, “Hybrid multinary modulation using a phase modulating spatial light modulator and a low-pass spatial filter,” Opt. Lett. 32, 2336-2338 (2007).
[CrossRef] [PubMed]

L. Domján, P. Koppa, G. Szarvas, and J. Reményi, “Ternary phase-amplitude modulation with twisted nematic liquid crystal displays for Fourier-plane light homogenization in holographic storage,” Optik (Jena) 113, 382-390 (2002).
[CrossRef]

Richter, H.

O. Malki, J. Knittel, F. Przygodda, H. Trautner, and H. Richter, “Two dimensional modulation for holographic data storage systems,” Jpn. J. Appl. Phys. 47, 5993-5996 (2008).
[CrossRef]

O. Malki, F. Przygodda, J. Knittel, H. Trautner, and H. Richter, “Optimal aperture size for maximizing the capacity of holographic data storage systems,” in Joint International Symposium on Optical Memory and Optical Data Storage 2008 (CD) (2008), paper TuP09 TD05-110 (1).

Sajti, S.

P. Várhegyi, Á. Kerekes, S. Sajti, F. Ujhelyi, P. Koppa, G. Szarvas, and E. Lőrincz, “Saturation effect in azobenzene polymers used for polarization holography,” Appl. Phys. B 76, 397-402 (2003).
[CrossRef]

Sarkadi, T.

Sato, K.

M. Takabayashi, A. Okamoto, and K. Sato, “Time-domain differential detection of phase-modulated signals for phase-only holographic data storage,” Jpn. J. Appl. Phys. 48, 03A032 (2009).
[CrossRef]

Senthilkumaran, P.

B. Das, S. Vyas, J. Joseph, P. Senthilkumaran, and K. Singh, “Transmission type twisted nematic liquid crystal display for three gray level phase modulated holographic data storage systems,” Opt. Lasers Eng. 47, 1150-1159 (2009).

Shin, D.-H.

Sincerbox, G. T.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).

Singh, K.

B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282, 2147-2154 (2009).
[CrossRef]

B. Das, J. Joseph, and K. Singh, “Performance analysis of content-addressable search and bit-error-rate characteristics of a defocused volume holographic data storage system,” Appl. Opt. 46, 5461-5470 (2007).
[CrossRef] [PubMed]

R. John, J. Joseph, and K. Singh, “Holographic data storage using phase modulated pixels,” Opt. Lasers Eng. 43, 183-194(2005).
[CrossRef]

B. Das, S. Vyas, J. Joseph, P. Senthilkumaran, and K. Singh, “Transmission type twisted nematic liquid crystal display for three gray level phase modulated holographic data storage systems,” Opt. Lasers Eng. 47, 1150-1159 (2009).

Sissom, B.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, “High speed holographic data storage at 500 Gbit/in.2,” www.inphase-technologies.com/downloads/pdf/technology/HighSpeedHDS500Gbin2.pdf

Snyder, R.

Sundaram, P.

Süto, A.

A. Sütő and E. Lőrincz, “Optimization of data density in Fourier holographic system using spatial filtering and sparse modulation coding,” Optik (Jena) 115, 541-546 (2004).
[CrossRef]

Szarvas, G.

P. Várhegyi, Á. Kerekes, S. Sajti, F. Ujhelyi, P. Koppa, G. Szarvas, and E. Lőrincz, “Saturation effect in azobenzene polymers used for polarization holography,” Appl. Phys. B 76, 397-402 (2003).
[CrossRef]

L. Domján, P. Koppa, G. Szarvas, and J. Reményi, “Ternary phase-amplitude modulation with twisted nematic liquid crystal displays for Fourier-plane light homogenization in holographic storage,” Optik (Jena) 113, 382-390 (2002).
[CrossRef]

Takabayashi, M.

M. Takabayashi, A. Okamoto, and K. Sato, “Time-domain differential detection of phase-modulated signals for phase-only holographic data storage,” Jpn. J. Appl. Phys. 48, 03A032 (2009).
[CrossRef]

Takashima, Y.

Tanaka, K.

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, and K. Watanbe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885-5890(2008).
[CrossRef]

Toishi, M.

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, and K. Watanbe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885-5890(2008).
[CrossRef]

Tokuyama, K.

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, and K. Watanbe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885-5890(2008).
[CrossRef]

Trautner, H.

O. Malki, J. Knittel, F. Przygodda, H. Trautner, and H. Richter, “Two dimensional modulation for holographic data storage systems,” Jpn. J. Appl. Phys. 47, 5993-5996 (2008).
[CrossRef]

O. Malki, F. Przygodda, J. Knittel, H. Trautner, and H. Richter, “Optimal aperture size for maximizing the capacity of holographic data storage systems,” in Joint International Symposium on Optical Memory and Optical Data Storage 2008 (CD) (2008), paper TuP09 TD05-110 (1).

Ujhelyi, F.

Z. Göröcs, G. Erdei, T. Sarkadi, F. Ujhelyi, J. Reményi, P. Koppa, and E. Lőrincz, “Hybrid multinary modulation using a phase modulating spatial light modulator and a low-pass spatial filter,” Opt. Lett. 32, 2336-2338 (2007).
[CrossRef] [PubMed]

P. Várhegyi, Á. Kerekes, S. Sajti, F. Ujhelyi, P. Koppa, G. Szarvas, and E. Lőrincz, “Saturation effect in azobenzene polymers used for polarization holography,” Appl. Phys. B 76, 397-402 (2003).
[CrossRef]

Várhegyi, P.

P. Várhegyi, Á. Kerekes, S. Sajti, F. Ujhelyi, P. Koppa, G. Szarvas, and E. Lőrincz, “Saturation effect in azobenzene polymers used for polarization holography,” Appl. Phys. B 76, 397-402 (2003).
[CrossRef]

Vijaya Kumar, B. V. K.

L. D. Ramamoorthy and B. V. K. Vijaya Kumar, “Sparse modulation codes for channel with media saturation,” in Joint International Symposium on Optical Memory and Optical Data Storage 2008 (CD) (2008), paper ThC04 TD05-56 (1).

Vyas, S.

B. Das, S. Vyas, J. Joseph, P. Senthilkumaran, and K. Singh, “Transmission type twisted nematic liquid crystal display for three gray level phase modulated holographic data storage systems,” Opt. Lasers Eng. 47, 1150-1159 (2009).

Waldman, D.

Watanbe, K.

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, and K. Watanbe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885-5890(2008).
[CrossRef]

Weiss, T.

Appl. Opt. (8)

B. M. King, G. W. Burr, and M. A. Neifeld, “Experimental demonstration of gray-scale sparse modulation codes in volume holographic storage,” Appl. Opt. 42, 2546-2559 (2003).
[CrossRef] [PubMed]

S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902-4914 (2004).
[CrossRef] [PubMed]

M. Ayres, A. Hosinks, and K. Curtis, “Image oversampling for page-oriented optical data storage,” Appl. Opt. 45, 2459-2464(2006).
[CrossRef] [PubMed]

J. Joseph and D. Waldman, “Homogenized Fourier transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image,” Appl. Opt. 45, 6374-6380 (2006).
[CrossRef] [PubMed]

P. Koppa, “Phase-to-amplitude data page conversion for holographic storage and optical encryption,” Appl. Opt. 46, 3561-3571 (2007).
[CrossRef] [PubMed]

B. Das, J. Joseph, and K. Singh, “Performance analysis of content-addressable search and bit-error-rate characteristics of a defocused volume holographic data storage system,” Appl. Opt. 46, 5461-5470 (2007).
[CrossRef] [PubMed]

B. M. King and M. A. Neifeld, “Sparse modulation coding for increased capacity in volume holographic storage,” Appl. Opt. 39, 6681-6688 (2000).`
[CrossRef]

C.-Y. Chen, C.-C. Fu, and T.-D. Chiueh, “Low-complexity pixel detection for images with misalignment and interpixel interference in holographic data storage,” Appl. Opt. 47, 6784-6795(2008).
[CrossRef] [PubMed]

Appl. Phys. B (1)

P. Várhegyi, Á. Kerekes, S. Sajti, F. Ujhelyi, P. Koppa, G. Szarvas, and E. Lőrincz, “Saturation effect in azobenzene polymers used for polarization holography,” Appl. Phys. B 76, 397-402 (2003).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

G. Berger, M. Dietz, and C. Denz, “Hybrid multinary modulation codes for page-oriented holographic data storage,” J. Opt. A Pure Appl. Opt. 10, 115305 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (3)

M. Takabayashi, A. Okamoto, and K. Sato, “Time-domain differential detection of phase-modulated signals for phase-only holographic data storage,” Jpn. J. Appl. Phys. 48, 03A032 (2009).
[CrossRef]

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, and K. Watanbe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885-5890(2008).
[CrossRef]

O. Malki, J. Knittel, F. Przygodda, H. Trautner, and H. Richter, “Two dimensional modulation for holographic data storage systems,” Jpn. J. Appl. Phys. 47, 5993-5996 (2008).
[CrossRef]

Opt. Commun. (1)

B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282, 2147-2154 (2009).
[CrossRef]

Opt. Lasers Eng. (1)

R. John, J. Joseph, and K. Singh, “Holographic data storage using phase modulated pixels,” Opt. Lasers Eng. 43, 183-194(2005).
[CrossRef]

Opt. Lett. (4)

Optik (Jena) (2)

L. Domján, P. Koppa, G. Szarvas, and J. Reményi, “Ternary phase-amplitude modulation with twisted nematic liquid crystal displays for Fourier-plane light homogenization in holographic storage,” Optik (Jena) 113, 382-390 (2002).
[CrossRef]

A. Sütő and E. Lőrincz, “Optimization of data density in Fourier holographic system using spatial filtering and sparse modulation coding,” Optik (Jena) 115, 541-546 (2004).
[CrossRef]

Proc. IEEE (1)

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
[CrossRef]

Proc. SPIE (2)

G. Berger, K. O. Müller, C. Denz, I. Földvári, and A. Péter, “Digital data storage in a phase-encoded holographic memory system: data quality and security,” Proc. SPIE 4988, 104-111(2003).
[CrossRef]

G. W. Burr and B. Marcus, “Coding tradeoffs for high-density holographic data storage,” Proc. SPIE 3802, 18-29(1999).
[CrossRef]

Other (5)

O. Malki, F. Przygodda, J. Knittel, H. Trautner, and H. Richter, “Optimal aperture size for maximizing the capacity of holographic data storage systems,” in Joint International Symposium on Optical Memory and Optical Data Storage 2008 (CD) (2008), paper TuP09 TD05-110 (1).

B. Das, S. Vyas, J. Joseph, P. Senthilkumaran, and K. Singh, “Transmission type twisted nematic liquid crystal display for three gray level phase modulated holographic data storage systems,” Opt. Lasers Eng. 47, 1150-1159 (2009).

L. D. Ramamoorthy and B. V. K. Vijaya Kumar, “Sparse modulation codes for channel with media saturation,” in Joint International Symposium on Optical Memory and Optical Data Storage 2008 (CD) (2008), paper ThC04 TD05-56 (1).

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, “High speed holographic data storage at 500 Gbit/in.2,” www.inphase-technologies.com/downloads/pdf/technology/HighSpeedHDS500Gbin2.pdf

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Construction of sparse three-gray-level data pages utilizing gray-scale modulation codes and with a phase-modulating SLM. (a) Required sparse three-gray-level data pattern. (b) Required simultaneous amplitude and phase modulations. (c) Special pat tern applied to the phase-modulating SLM to realize sparse three-gray-level modulation codes. The data pixels are represented in 4 × 4 SLM pixels.

Fig. 2
Fig. 2

Beam intensity distribution in the Fourier plane for a sparse three-gray-level random data page implementing the proposed method. The square represents the low-pass aperture. The data pixels are represented in 4 × 4 SLM pixels.

Fig. 3
Fig. 3

Optical setup ( 4 f ) used for simulation of recording and reconstruction of sparse-phase gray-level data pages.

Fig. 4
Fig. 4

(a) Phase-modulation-based sparse three-gray-level data page (only a magnified cutout), (b) reconstruction of the data page for OFF and ON pixel classification, (c) RTHI-based readout of a data page in order to classify the different phase states of the ON pixels, and (d) intensity values of the ON pixels for illustration purposes only.

Fig. 5
Fig. 5

(a) Histograms of OFF and ON pixels of a sparse three-gray-level phase data page in the first step of the reconstruction. (b) Histogram of only the ON pixels (but with phase modulations of 0, π / 2 , π, and 3 π / 2 ) when reconstructed using the RTHI method.

Fig. 6
Fig. 6

Normalized Fourier plane light energy (arbitrary units) of three-gray-level data pages for both amplitude and phase modulation as a function of the sparsity of the data pages.

Fig. 7
Fig. 7

Fourier plane spectrum distribution along a one-dimensional cross section for sparse three-gray-level (a) amplitude and (b) phase data pages.

Fig. 8
Fig. 8

BER as a function of the low-pass aperture expressed in relation to the Nyquist aperture for data pixel sizes of 4 × 4 SLM pixels.

Fig. 9
Fig. 9

BER as a function of the low-pass aperture expressed in relation to the Nyquist aperture for data pixel sizes of 2 × 2 SLM pixels.

Fig. 10
Fig. 10

Code rate of binary block modulation codes versus sparseness for different block sizes.

Fig. 11
Fig. 11

Code rate as a function of sparseness for different block sizes of three-gray-level modulation codes.

Fig. 12
Fig. 12

Code rate as a function of block sizes of three-gray-level modulation codes.

Fig. 13
Fig. 13

Normalized storage density as a function of the low-pass aperture size.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

η = C I obj × I ref ( 1 + F × ( I obj + I ref ) ) 2 ,
r c binary = 1 n log 2 ( n m ) = 1 n log 2 ( n ! m ! ( n m ) ! ) .
r = p 1 log 2 ( p 1 ) p 0 log 2 ( p 0 ) ,
r c gray = [ log 2 ( n ! Π i m i ! ) ] / n ,
r = i ( p i × log 2 ( p i ) ) ,
Density ( a . u . ) = r code D 2 × M ,

Metrics