Abstract

Properties of dissipative solitons generated in all-normal-dispersion fiber lasers through the gain dispersion effect are numerically studied by using a pulse-tracing technique that considers interaction between gain saturation, gain dispersion, cavity dispersion, fiber Kerr nonlinearity, and cavity boundary conditions. The numerical results qualitatively match with experimental observations and show that the finite gain bandwidth, together with the pump power, determines the properties of the generated dissipative solitons, which further dictates the performance of the pulse compression.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
    [CrossRef]
  2. N. Akhmediev and A. Ankiewicz, eds., Dissipative Solitons, Lecture Notes in Physics (Springer, 2005), Vol. 661.
    [CrossRef]
  3. N. Akhmediev and A. Ankiewicz, eds., Dissipative Solitons: From Optics to Biology and Medicine, Lecture Notes in Physics (Springer, 2008), Vol. 751.
  4. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77 fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080-1082 (1993).
    [CrossRef] [PubMed]
  5. L. E. Nelson, S. B. Fleischer, G. Lenz, and E. P. Ippen, “Efficient frequency doubling of a femtosecond fiber laser,” Opt. Lett. 21, 1759-1761 (1996).
    [CrossRef] [PubMed]
  6. L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group dispersion fiber laser,” Opt. Lett. 31, 1788-1790 (2006).
    [CrossRef] [PubMed]
  7. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095-10100 (2006).
    [CrossRef] [PubMed]
  8. A. Cabasse, B. Ortaç, G. Martel, A. Hideur, and J. Limpert, “Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion,” Opt. Express 16, 19322-19329 (2008).
    [CrossRef]
  9. L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, “Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser,” Opt. Lett. 32, 1806-1808 (2007).
    [CrossRef] [PubMed]
  10. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25, 140-148 (2008).
    [CrossRef]
  11. W. H. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814(2008).
    [CrossRef]
  12. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25, 1763-1770 (2008).
    [CrossRef]
  13. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 043816(2005).
    [CrossRef]
  14. E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” JETP Lett. 82, 467-471 (2005).
    [CrossRef]
  15. L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, “Noise-like pulse in a gain-guided soliton fiber laser,” Opt. Express 15, 2145-2150 (2007).
    [CrossRef] [PubMed]
  16. L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “Generation of multiple gain-guided solitons in a fiber laser,” Opt. Lett. 32, 1581-1583 (2007).
    [CrossRef] [PubMed]

2008 (4)

2007 (3)

2006 (3)

2005 (2)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 043816(2005).
[CrossRef]

E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” JETP Lett. 82, 467-471 (2005).
[CrossRef]

1996 (1)

1993 (1)

Bale, B. G.

Buckley, J.

Cabasse, A.

Cheng, T. H.

Chong, A.

Fleischer, S. B.

Fu, X. Q.

Haus, H. A.

Hideur, A.

Ippen, E. P.

Kalashnikov, V. L.

E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” JETP Lett. 82, 467-471 (2005).
[CrossRef]

Kutz, J. N.

Lenz, G.

Limpert, J.

A. Cabasse, B. Ortaç, G. Martel, A. Hideur, and J. Limpert, “Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion,” Opt. Express 16, 19322-19329 (2008).
[CrossRef]

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
[CrossRef]

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 043816(2005).
[CrossRef]

Lu, C.

Martel, G.

Nelson, L. E.

Ortaç, B.

Podivilov, E.

E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” JETP Lett. 82, 467-471 (2005).
[CrossRef]

Renninger, W.

Renninger, W. H.

Roser, F.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
[CrossRef]

Schreiber, T.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
[CrossRef]

Tam, H. Y.

Tamura, K.

Tang, D. Y.

Tunnermann, A.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
[CrossRef]

Wen, S. C.

Wise, F.

W. H. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814(2008).
[CrossRef]

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095-10100 (2006).
[CrossRef] [PubMed]

Wise, F. W.

Wu, J.

Zhang, H.

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 043816(2005).
[CrossRef]

Zhao, L. M.

IEEE J. Sel. Top. Quantum Electron. (1)

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

JETP Lett. (1)

E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” JETP Lett. 82, 467-471 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. A (2)

W. H. Renninger, A. Chong, and F. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814(2008).
[CrossRef]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 043816(2005).
[CrossRef]

Other (2)

N. Akhmediev and A. Ankiewicz, eds., Dissipative Solitons, Lecture Notes in Physics (Springer, 2005), Vol. 661.
[CrossRef]

N. Akhmediev and A. Ankiewicz, eds., Dissipative Solitons: From Optics to Biology and Medicine, Lecture Notes in Physics (Springer, 2008), Vol. 751.

Supplementary Material (2)

» Media 1: MOV (1944 KB)     
» Media 2: MOV (3933 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schema of fiber laser.

Fig. 2
Fig. 2

Equivalent physically simplified laser cavity.

Fig. 3
Fig. 3

Dissipative solitons under different CLPDB at G = 1000 : (a) optical spectrum, (b) autocorrelation trace. Typical experimental results observed: (c) optical spectrum, (d) autocorrelation trace.

Fig. 4
Fig. 4

Dissipative solitons under different small signal gains at CLPDB = 1.6 π : (a) optical spectrum, (b) autocorrelation trace, (c) instantaneous frequency (respect to the central frequency) profiles of the horizontal components at different cavity positions, (d) instantaneous frequency (respect to the central frequency) profiles of the vertical components at different cavity positions.

Fig. 5
Fig. 5

(a) Spectral bandwidth of the dissipative solitons versus the small-signal gain at CLPDB = 1.6 π under different gain bandwidth limitations; (b) optical spectrum of the dissipative solitons at CLPDB = 1.6 π and Ω g = 32 nm .

Fig. 6
Fig. 6

Dissipative solitons with different gain bandwidths at CLPDB = 1.6 π and G = 1000 .

Fig. 7
Fig. 7

Pulse width evolution in (a) a 40 m SMF with consideration of the fiber nonlinearity (Media 1) and (b) a 50 m SMF without consideration of the fiber nonlinearity (Media 2).

Tables (2)

Tables Icon

Table 1 Parameters Used in the Simulations

Tables Icon

Table 2 Time–Bandwidth Product of the Generated Dissipative Solitons with Different CLPDB and G = 1000

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

u = F n sin θ exp ( i Δ Φ ) , v = F n cos θ ,
u z = i β u + δ u t i k 2 2 u t 2 + i k 6 3 u t 3 + i γ ( | u | 2 + 2 3 | v | 2 ) u + i γ 3 v 2 u * + g 2 u + g 2 Ω g 2 2 u t 2 , v z = i β v δ v t i k 2 2 v t 2 + i k 6 3 v t 3 + i γ ( | v | 2 + 2 3 | u | 2 ) v + i γ 3 u 2 v * + g 2 v + g 2 Ω g 2 2 v t 2 ,
g = G exp [ ( | u | 2 + | v | 2 ) d t P sat ] ,
F n + 1 = u sin ϕ + v cos ϕ ,
T = sin 2 θ sin 2 φ + cos 2 θ cos 2 φ + 1 2 sin 2 θ sin 2 φ cos [ Φ l + Φ n l ] ,
Φ l = Δ Φ + 2 π ( 1 Δ λ λ c ) L L b .

Metrics