Abstract

We propose the design of an AlGaAs-nanowire-based coupler. We demonstrate that it can be used as a useful soliton switching device at the telecommunication wavelength of 1550nm. Our analysis shows that nonlinear loss due to two-photon and three-photon absorption has almost no effect on the transmission characteristics of the coupler. The linear loss and the self-steepening effect can be made insignificant with a judicious choice of the initial pulse width and operating wavelength.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. N. Prasad, Nanophotonics (Wiley, 2004).
    [CrossRef]
  2. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864-2869 (2004).
    [CrossRef] [PubMed]
  3. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Sub wavelength diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003).
    [CrossRef] [PubMed]
  4. J. C. Knight, J. Arriaga, T. A. Briks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
    [CrossRef]
  5. M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848-6855 (2005).
    [CrossRef] [PubMed]
  6. J. C. Knight, “Photonic crystal fibers,” Nature 424, 847-851(2003).
    [CrossRef] [PubMed]
  7. G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-hemyari, C. C. Yang, C-H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347-371 (1994).
    [CrossRef]
  8. J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. W. Boyd, R. Grover, and P.-T. Ho, “Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators,” Opt. Lett. 29, 769-771 (2004).
    [CrossRef] [PubMed]
  9. R. El-Ganainy, S. Mokhov, K. G. Makris, D. N. Christodoulides, and R. Morandotti, “Solitons in dispersion-inverted AlGaAs nanowires,” Opt. Express 14, 2277-2282 (2006).
    [CrossRef] [PubMed]
  10. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  11. S. M. Jensen, “Nonlinear coherent coupler,” IEEE J. Quantum Electron. 18, 1580-1583 (1982).
    [CrossRef]
  12. S. Trillo, S. Wabnitz, E. M. Wright, and G. I. Stegeman, “Soliton switching in fiber nonlinear directional couplers,” Opt. Lett. 13, 672-674 (1988).
    [CrossRef] [PubMed]
  13. A. K. Sarma and A. Kumar, “Perturbative effects on ultra short soliton self-switching,” Pramana J. Phys. 69, 575-587 (2007).
    [CrossRef]
  14. P. M. Ramos and C. R. Paiva, “All-optical pulse switching in twin-core fiber couplers with intermodal dispersion,” IEEE J. Quantum Electron. 35, 983-989 (1999).
    [CrossRef]
  15. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  16. J. U. Kang, A. Villeneuve, M. Sheik-Bahae, George I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside,“ Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap,” Appl. Phys. Lett. 65, 147-149 (1994).
    [CrossRef]
  17. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman&Hall, 1983), Chaps. 12-15.
  18. A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27, 924-926 (2002).
    [CrossRef]
  19. Y. Wang and W. Wang, “Study of ultra-fast optical pulse propagation in a nonlinear directional coupler,” Appl. Phys. B 79, 51-55 (2004).
    [CrossRef]

2007

A. K. Sarma and A. Kumar, “Perturbative effects on ultra short soliton self-switching,” Pramana J. Phys. 69, 575-587 (2007).
[CrossRef]

2006

2005

2004

2003

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Sub wavelength diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibers,” Nature 424, 847-851(2003).
[CrossRef] [PubMed]

2002

2000

J. C. Knight, J. Arriaga, T. A. Briks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

1999

P. M. Ramos and C. R. Paiva, “All-optical pulse switching in twin-core fiber couplers with intermodal dispersion,” IEEE J. Quantum Electron. 35, 983-989 (1999).
[CrossRef]

1994

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, George I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside,“ Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap,” Appl. Phys. Lett. 65, 147-149 (1994).
[CrossRef]

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-hemyari, C. C. Yang, C-H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347-371 (1994).
[CrossRef]

1988

1982

S. M. Jensen, “Nonlinear coherent coupler,” IEEE J. Quantum Electron. 18, 1580-1583 (1982).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

G. P. Agrawal, Applications of Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Aitchison, J. S.

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, George I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside,“ Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap,” Appl. Phys. Lett. 65, 147-149 (1994).
[CrossRef]

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-hemyari, C. C. Yang, C-H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347-371 (1994).
[CrossRef]

Al-hemyari, K.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-hemyari, C. C. Yang, C-H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347-371 (1994).
[CrossRef]

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, George I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside,“ Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap,” Appl. Phys. Lett. 65, 147-149 (1994).
[CrossRef]

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Briks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Sub wavelength diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Birks, T. A.

Boyd, R. W.

Briks, T. A.

J. C. Knight, J. Arriaga, T. A. Briks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Cao, Q.

Christodoulides, D. N.

El-Ganainy, R.

Foster, M. A.

Gaeta, A. L.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Sub wavelength diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Grant, R. S.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-hemyari, C. C. Yang, C-H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347-371 (1994).
[CrossRef]

Grover, R.

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Sub wavelength diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Heebner, J. E.

Ho, P.-T.

Ironside, C. N.

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, George I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside,“ Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap,” Appl. Phys. Lett. 65, 147-149 (1994).
[CrossRef]

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-hemyari, C. C. Yang, C-H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347-371 (1994).
[CrossRef]

Jensen, S. M.

S. M. Jensen, “Nonlinear coherent coupler,” IEEE J. Quantum Electron. 18, 1580-1583 (1982).
[CrossRef]

Kang, J.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-hemyari, C. C. Yang, C-H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347-371 (1994).
[CrossRef]

Kang, J. U.

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, George I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside,“ Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap,” Appl. Phys. Lett. 65, 147-149 (1994).
[CrossRef]

Kennedy, G. T.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-hemyari, C. C. Yang, C-H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347-371 (1994).
[CrossRef]

Knight, J. C.

J. C. Knight, “Photonic crystal fibers,” Nature 424, 847-851(2003).
[CrossRef] [PubMed]

J. C. Knight, J. Arriaga, T. A. Briks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Kumar, A.

A. K. Sarma and A. Kumar, “Perturbative effects on ultra short soliton self-switching,” Pramana J. Phys. 69, 575-587 (2007).
[CrossRef]

Leon-Saval, S. G.

Lepeshkin, N. N.

Lin, C-H.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-hemyari, C. C. Yang, C-H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347-371 (1994).
[CrossRef]

Lin, H. H.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-hemyari, C. C. Yang, C-H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347-371 (1994).
[CrossRef]

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Sub wavelength diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman&Hall, 1983), Chaps. 12-15.

Makris, K. G.

Mason, M. W.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Sub wavelength diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Sub wavelength diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Mokhov, S.

Morandotti, R.

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Briks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Paiva, C. R.

P. M. Ramos and C. R. Paiva, “All-optical pulse switching in twin-core fiber couplers with intermodal dispersion,” IEEE J. Quantum Electron. 35, 983-989 (1999).
[CrossRef]

Prasad, P. N.

P. N. Prasad, Nanophotonics (Wiley, 2004).
[CrossRef]

Ramos, P. M.

P. M. Ramos and C. R. Paiva, “All-optical pulse switching in twin-core fiber couplers with intermodal dispersion,” IEEE J. Quantum Electron. 35, 983-989 (1999).
[CrossRef]

Russell, P. St. J.

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864-2869 (2004).
[CrossRef] [PubMed]

J. C. Knight, J. Arriaga, T. A. Briks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Sarma, A. K.

A. K. Sarma and A. Kumar, “Perturbative effects on ultra short soliton self-switching,” Pramana J. Phys. 69, 575-587 (2007).
[CrossRef]

Schweinsberg, A.

Sheik-Bahae, M.

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, George I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside,“ Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap,” Appl. Phys. Lett. 65, 147-149 (1994).
[CrossRef]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Sub wavelength diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Sibbett, W.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-hemyari, C. C. Yang, C-H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347-371 (1994).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman&Hall, 1983), Chaps. 12-15.

Stegeman, G. I.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-hemyari, C. C. Yang, C-H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347-371 (1994).
[CrossRef]

S. Trillo, S. Wabnitz, E. M. Wright, and G. I. Stegeman, “Soliton switching in fiber nonlinear directional couplers,” Opt. Lett. 13, 672-674 (1988).
[CrossRef] [PubMed]

Stegeman, George I.

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, George I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside,“ Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap,” Appl. Phys. Lett. 65, 147-149 (1994).
[CrossRef]

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Sub wavelength diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Trebino, R.

Trillo, S.

Villeneuve, A.

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, George I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside,“ Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap,” Appl. Phys. Lett. 65, 147-149 (1994).
[CrossRef]

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-hemyari, C. C. Yang, C-H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347-371 (1994).
[CrossRef]

Wabnitz, S.

Wadsworth, W. J.

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864-2869 (2004).
[CrossRef] [PubMed]

J. C. Knight, J. Arriaga, T. A. Briks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Wang, W.

Y. Wang and W. Wang, “Study of ultra-fast optical pulse propagation in a nonlinear directional coupler,” Appl. Phys. B 79, 51-55 (2004).
[CrossRef]

Wang, Y.

Y. Wang and W. Wang, “Study of ultra-fast optical pulse propagation in a nonlinear directional coupler,” Appl. Phys. B 79, 51-55 (2004).
[CrossRef]

Wicks, G. W.

Wright, E. M.

Yang, C. C.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-hemyari, C. C. Yang, C-H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347-371 (1994).
[CrossRef]

Appl. Phys. B

Y. Wang and W. Wang, “Study of ultra-fast optical pulse propagation in a nonlinear directional coupler,” Appl. Phys. B 79, 51-55 (2004).
[CrossRef]

Appl. Phys. Lett.

J. U. Kang, A. Villeneuve, M. Sheik-Bahae, George I. Stegeman, K. Al-hemyari, J. S. Aitchison, and C. N. Ironside,“ Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap,” Appl. Phys. Lett. 65, 147-149 (1994).
[CrossRef]

IEEE J. Quantum Electron.

P. M. Ramos and C. R. Paiva, “All-optical pulse switching in twin-core fiber couplers with intermodal dispersion,” IEEE J. Quantum Electron. 35, 983-989 (1999).
[CrossRef]

S. M. Jensen, “Nonlinear coherent coupler,” IEEE J. Quantum Electron. 18, 1580-1583 (1982).
[CrossRef]

IEEE Photon. Technol. Lett.

J. C. Knight, J. Arriaga, T. A. Briks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Int. J. Nonlinear Opt. Phys.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-hemyari, C. C. Yang, C-H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347-371 (1994).
[CrossRef]

Nature

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Sub wavelength diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibers,” Nature 424, 847-851(2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Pramana J. Phys.

A. K. Sarma and A. Kumar, “Perturbative effects on ultra short soliton self-switching,” Pramana J. Phys. 69, 575-587 (2007).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

G. P. Agrawal, Applications of Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman&Hall, 1983), Chaps. 12-15.

P. N. Prasad, Nanophotonics (Wiley, 2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the cross section of an AlGaAs nanowire coupler.

Fig. 2
Fig. 2

Plot of the transmission coefficient as a function of the normalized input peak power for T 0 = 30 , 100, and 500 fs , and 1 ps with C 0 = 1334 m 1 .

Fig. 3
Fig. 3

Plot of the transmission coefficient as a function of the normalized input peak power for (a)  C 0 = 666 m 1 , (b)  C 0 = 1334 m 1 , (c)  C 0 = 3306 m 1 , and (d)  C 0 = 6654 m 1 with T 0 = 30 fs .

Fig. 4
Fig. 4

(a) Input and output soliton intensity in the first channel for C 0 = 1334 m 1 with P 0 = 1 and T 0 = 30 fs . (b) Output pulse intensity in the second channel for C 0 = 1334 m 1 with P 0 = 1 and T 0 = 30 fs .

Fig. 5
Fig. 5

RMS pulse-width variation of the pulses inside the coupler for C 0 = 1334 m 1 with P 0 = 1 and T 0 = 30 fs .

Fig. 6
Fig. 6

Plot of the transmission coefficient as a function of the normalized self-steepening coefficient for P 0 = 1 and T 0 = 30 fs .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

i A 1 z + β 2 2 2 A 1 t 2 + γ [ | A 1 | 2 A 1 + i ω 0 t ( | A 1 | 2 A 1 ) ] + i α A 1 + i α 2 | A 1 | 2 A 1 + i α 3 | A 1 | 4 A 1 + C 0 A 2 = 0 , i A 2 z + β 2 2 2 A 2 t 2 + γ [ | A 2 | 2 A 1 + i ω 0 t ( | A 2 | 2 A 2 ) ] + i α A 2 + i α 2 | A 2 | 2 A 2 + i α 3 | A 2 | 4 A 2 + C 0 A 1 = 0.
i u 1 ξ + i c 1 u 1 + 1 2 2 u 1 τ 2 + | u 1 | 2 u 1 + i s τ ( | u 1 | 2 u 1 ) + i c 2 | u 1 | 2 u 1 + i c 3 | u 1 | 4 u 1 + κ 0 u 2 = 0 , i u 2 ξ + i c 1 u 2 + 1 2 2 u 2 τ 2 + | u 2 | 2 u 2 + i s τ ( | u 2 | 2 u 2 ) + i c 2 | u 2 | 2 u 2 + i c 3 | u 2 | 4 u 2 + κ 0 u 1 = 0 ,
c 1 = α L D , s = 1 / ω 0 T 0 , c 2 = α 2 / γ , c 3 = α 3 / γ 2 L D , κ 0 = C 0 L D
T = | u 1 ( ξ , τ ) | 2 d τ ( | u 1 ( ξ , τ ) | 2 + | u 2 ( ξ , τ ) | 2 ) d τ .
u 1 ( 0 , τ ) = P 0 sech ( P 0 τ ) , u 2 ( 0 , τ ) = 0.
σ = [ T 2 T 2 ] 1 2 where     T m = T m | u | 2 d T | u | 2 d T .

Metrics