Abstract

We demonstrate fine tuning of the resonant wavelength of a nanocavity in a two-dimensional silicon-based photonic crystal slab structure by subnanometer control of the airhole diameter and slab thickness. Theoretical investigation shows that the resonant wavelength depends linearly on the latter two parameters. To experimentally demonstrate the fine tuning of the resonant wavelength, we control these parameters through chemical processes. The resonant-wavelength shift is tuned to 3.25 and 0.36 nm by use of two oxidizing processes. The latter shift, which corresponds to a 0.14 nm thick silicon layer, is considerably smaller than shifts achieved in previous studies.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
    [CrossRef] [PubMed]
  2. B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane heterophotonic crystals,” Science 300, 1537(2003).
    [CrossRef] [PubMed]
  3. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444-1447(2004).
    [CrossRef] [PubMed]
  4. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862-865 (2007).
    [CrossRef] [PubMed]
  5. T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optic nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377-386(2006).
    [CrossRef] [PubMed]
  6. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896-899 (2007).
    [CrossRef] [PubMed]
  7. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučkovic, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857-861 (2007).
    [CrossRef] [PubMed]
  8. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207-210 (2005).
    [CrossRef]
  9. M. Belotti, J. Galisteo Lòpez, S. D. Angelis, M. Galli, I. Maksymov, L. C. Andreani, D. Peyrade, and Y. Chen, “All-optical switching in 2D silicon photonic crystals with low loss waveguides and optical cavities,” Opt. Express 16, 11624-11636 (2008).
    [PubMed]
  10. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449-458 (2007).
    [CrossRef]
  11. Y. Takahashi, Y. H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15, 17206-17213 (2007).
    [CrossRef] [PubMed]
  12. B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Multi-channel add/drop filter based on in-plane hetero photonic crystals,” J. Lightwave Technol. 23, 1449-1455(2005).
    [CrossRef]
  13. B. S. Song, T. Nagashima, T. Asano, Y. Akahane, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20, 532-534 (2008).
    [CrossRef]
  14. Y. Muroya, T. Nakamura, H. Yamada, and T. Torikai, “Precise wavelength control for DFB laser diodes by novel corrugation delineation method,” IEEE Photon. Technol. Lett. 9, 288-290(1997).
    [CrossRef]
  15. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005).
    [CrossRef]
  16. M. Morita, T. Ohmi, E. Hasegawa, and A. Teramoto, “Native oxide growth on silicon surface in ultrapure water and hydrogen peroxide,” Jpn. J. Appl. Phys. 29, 2392-2394 (1990).
    [CrossRef]

2008

M. Belotti, J. Galisteo Lòpez, S. D. Angelis, M. Galli, I. Maksymov, L. C. Andreani, D. Peyrade, and Y. Chen, “All-optical switching in 2D silicon photonic crystals with low loss waveguides and optical cavities,” Opt. Express 16, 11624-11636 (2008).
[PubMed]

B. S. Song, T. Nagashima, T. Asano, Y. Akahane, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20, 532-534 (2008).
[CrossRef]

2007

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučkovic, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449-458 (2007).
[CrossRef]

Y. Takahashi, Y. H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15, 17206-17213 (2007).
[CrossRef] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862-865 (2007).
[CrossRef] [PubMed]

2006

2005

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Multi-channel add/drop filter based on in-plane hetero photonic crystals,” J. Lightwave Technol. 23, 1449-1455(2005).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207-210 (2005).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

2004

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444-1447(2004).
[CrossRef] [PubMed]

2003

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane heterophotonic crystals,” Science 300, 1537(2003).
[CrossRef] [PubMed]

1997

Y. Muroya, T. Nakamura, H. Yamada, and T. Torikai, “Precise wavelength control for DFB laser diodes by novel corrugation delineation method,” IEEE Photon. Technol. Lett. 9, 288-290(1997).
[CrossRef]

1990

M. Morita, T. Ohmi, E. Hasegawa, and A. Teramoto, “Native oxide growth on silicon surface in ultrapure water and hydrogen peroxide,” Jpn. J. Appl. Phys. 29, 2392-2394 (1990).
[CrossRef]

Akahane, Y.

B. S. Song, T. Nagashima, T. Asano, Y. Akahane, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20, 532-534 (2008).
[CrossRef]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Multi-channel add/drop filter based on in-plane hetero photonic crystals,” J. Lightwave Technol. 23, 1449-1455(2005).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Andreani, L. C.

Angelis, S. D.

Asano, T.

B. S. Song, T. Nagashima, T. Asano, Y. Akahane, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20, 532-534 (2008).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449-458 (2007).
[CrossRef]

Y. Takahashi, Y. H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15, 17206-17213 (2007).
[CrossRef] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862-865 (2007).
[CrossRef] [PubMed]

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optic nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377-386(2006).
[CrossRef] [PubMed]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Multi-channel add/drop filter based on in-plane hetero photonic crystals,” J. Lightwave Technol. 23, 1449-1455(2005).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane heterophotonic crystals,” Science 300, 1537(2003).
[CrossRef] [PubMed]

Atature, M.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Baek, J. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444-1447(2004).
[CrossRef] [PubMed]

Belotti, M.

Chen, Y.

Dreiser, J.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Englund, D.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučkovic, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Faraon, A.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučkovic, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449-458 (2007).
[CrossRef]

Fushman, I.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučkovic, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Galli, M.

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Hagino, Y. H.

Hasegawa, E.

M. Morita, T. Ohmi, E. Hasegawa, and A. Teramoto, “Native oxide growth on silicon surface in ultrapure water and hydrogen peroxide,” Jpn. J. Appl. Phys. 29, 2392-2394 (1990).
[CrossRef]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Hua, E.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Imamoglu,

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Imamoglu, A.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Ju, Y. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444-1447(2004).
[CrossRef] [PubMed]

Kim, S. B.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444-1447(2004).
[CrossRef] [PubMed]

Kim, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444-1447(2004).
[CrossRef] [PubMed]

Kwon, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444-1447(2004).
[CrossRef] [PubMed]

Lee, Y. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444-1447(2004).
[CrossRef] [PubMed]

Lòpez, J. Galisteo

Maksymov, I.

Morita, M.

M. Morita, T. Ohmi, E. Hasegawa, and A. Teramoto, “Native oxide growth on silicon surface in ultrapure water and hydrogen peroxide,” Jpn. J. Appl. Phys. 29, 2392-2394 (1990).
[CrossRef]

Muroya, Y.

Y. Muroya, T. Nakamura, H. Yamada, and T. Torikai, “Precise wavelength control for DFB laser diodes by novel corrugation delineation method,” IEEE Photon. Technol. Lett. 9, 288-290(1997).
[CrossRef]

Nagashima, T.

B. S. Song, T. Nagashima, T. Asano, Y. Akahane, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20, 532-534 (2008).
[CrossRef]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862-865 (2007).
[CrossRef] [PubMed]

Nakamura, T.

Y. Muroya, T. Nakamura, H. Yamada, and T. Torikai, “Precise wavelength control for DFB laser diodes by novel corrugation delineation method,” IEEE Photon. Technol. Lett. 9, 288-290(1997).
[CrossRef]

Noda, S.

B. S. Song, T. Nagashima, T. Asano, Y. Akahane, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20, 532-534 (2008).
[CrossRef]

Y. Takahashi, Y. H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15, 17206-17213 (2007).
[CrossRef] [PubMed]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449-458 (2007).
[CrossRef]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862-865 (2007).
[CrossRef] [PubMed]

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optic nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377-386(2006).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207-210 (2005).
[CrossRef]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Multi-channel add/drop filter based on in-plane hetero photonic crystals,” J. Lightwave Technol. 23, 1449-1455(2005).
[CrossRef]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane heterophotonic crystals,” Science 300, 1537(2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Ohmi, T.

M. Morita, T. Ohmi, E. Hasegawa, and A. Teramoto, “Native oxide growth on silicon surface in ultrapure water and hydrogen peroxide,” Jpn. J. Appl. Phys. 29, 2392-2394 (1990).
[CrossRef]

Park, H. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444-1447(2004).
[CrossRef] [PubMed]

Petroff, P.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučkovic, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Petroff, P. M.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Peyrade, D.

Song, B. S.

B. S. Song, T. Nagashima, T. Asano, Y. Akahane, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20, 532-534 (2008).
[CrossRef]

Y. Takahashi, Y. H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15, 17206-17213 (2007).
[CrossRef] [PubMed]

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optic nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377-386(2006).
[CrossRef] [PubMed]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Multi-channel add/drop filter based on in-plane hetero photonic crystals,” J. Lightwave Technol. 23, 1449-1455(2005).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207-210 (2005).
[CrossRef]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane heterophotonic crystals,” Science 300, 1537(2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Stoltz, N.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučkovic, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Sugiya, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862-865 (2007).
[CrossRef] [PubMed]

Takahashi, Y.

Tamboli, A.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

Tanaka, Y.

Teramoto, A.

M. Morita, T. Ohmi, E. Hasegawa, and A. Teramoto, “Native oxide growth on silicon surface in ultrapure water and hydrogen peroxide,” Jpn. J. Appl. Phys. 29, 2392-2394 (1990).
[CrossRef]

Torikai, T.

Y. Muroya, T. Nakamura, H. Yamada, and T. Torikai, “Precise wavelength control for DFB laser diodes by novel corrugation delineation method,” IEEE Photon. Technol. Lett. 9, 288-290(1997).
[CrossRef]

Uesugi, T.

Upham, J.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862-865 (2007).
[CrossRef] [PubMed]

Vuckovic, J.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučkovic, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Yamada, H.

Y. Muroya, T. Nakamura, H. Yamada, and T. Torikai, “Precise wavelength control for DFB laser diodes by novel corrugation delineation method,” IEEE Photon. Technol. Lett. 9, 288-290(1997).
[CrossRef]

Yang, J. K.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444-1447(2004).
[CrossRef] [PubMed]

Appl. Phys. Lett.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hua, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

B. S. Song, T. Nagashima, T. Asano, Y. Akahane, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett. 20, 532-534 (2008).
[CrossRef]

Y. Muroya, T. Nakamura, H. Yamada, and T. Torikai, “Precise wavelength control for DFB laser diodes by novel corrugation delineation method,” IEEE Photon. Technol. Lett. 9, 288-290(1997).
[CrossRef]

J. Lightwave Technol.

Jpn. J. Appl. Phys.

M. Morita, T. Ohmi, E. Hasegawa, and A. Teramoto, “Native oxide growth on silicon surface in ultrapure water and hydrogen peroxide,” Jpn. J. Appl. Phys. 29, 2392-2394 (1990).
[CrossRef]

Nat. Mater.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862-865 (2007).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Nat. Photonics

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449-458 (2007).
[CrossRef]

Nature

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučkovic, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Opt. Express

Science

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane heterophotonic crystals,” Science 300, 1537(2003).
[CrossRef] [PubMed]

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444-1447(2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of a nanocavity in a 2-D Si-based PC slab structure. The calculated resonant wavelength values versus the (b) airhole diameter and (c) slab thickness of a cavity. The solid lines indicate linear fits.

Fig. 2
Fig. 2

(a) Schematic of a 2-D PC slab structure consisting of a cavity and a waveguide. (b) SEM image of a fabricated 2-D Si-based PC structure with a = 410 nm .

Fig. 3
Fig. 3

Process of (a) oxidation of the fabricated PC samples and (b) removal of the Si layer.

Fig. 4
Fig. 4

AFM images of the measurement for the Si surface roughness (a) before and (b), (c) twice after the chemical process. The roughness average (Ra) values of the surfaces were obtained by use of image analysis of the images.

Fig. 5
Fig. 5

Measured values of the resonant wavelength versus the number of process cycles for the fabricated PC samples with (a)  a = 410 nm and (b)  a = 420 nm . The solid lines in (a) and (b) indicate linear fits. (c) and (d) Detailed resonance spectra of the cavities whose plots are shown in (a) and (b), respectively. The spectra were obtained by measurements of the light emitted into free space from the cavities. In (c) and (d), the numbers above the peaks refer to the number of process cycles.

Fig. 6
Fig. 6

Measured values of the resonant wavelength versus the number of process cycles for the PC samples with (a)  a = 410 nm and (b)  a = 420 nm . The solid lines indicate linear fits to the plots.

Metrics