Abstract

We demonstrate numerically that the theoretical maximum sensitivity of a ring-coupled Mach–Zehnder interferometer (MZI) optimized as a sensor is about 30% greater than the optimized sensitivity of a conventional single-bus ring sensor with an identical ring perimeter and loss. The ring-coupled MZI sensor also achieves its greater sensitivity with a 25% lower circulating power, which is useful for the suppression of undesirable nonlinear effects.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sumetsky, “Optimization of optical ring resonator devices for sensing applications,” Opt. Lett. 32, 2577-2579 (2007).
    [CrossRef] [PubMed]
  2. Z. X. Xia, Y. Chen, and Z. P. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44, 100-107 (2008).
    [CrossRef]
  3. C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24, 1395-1402 (2006).
    [CrossRef]
  4. A. Bananej and C. F. Li, “Controllable all-optical switch using an EDF-ring coupled M-Z interferometer,” IEEE Photon. Technol. Lett. 16, 2102-2104 (2004).
    [CrossRef]
  5. J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726-730(2004).
    [CrossRef]
  6. J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. W. Boyd, R. Grover, and P. T. Ho, “Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators,” Opt. Lett. 29, 769-771 (2004).
    [CrossRef] [PubMed]
  7. J. E. Heebner and R. W. Boyd, “Enhanced all-optical switching by use of a nonlinear fiber ring resonator,” Opt. Lett. 24, 847-849 (1999).
    [CrossRef]
  8. Y. Lu, J. Q. Yao, X. F. Li, and P. Wang, “Tunable asymmetrical Fano resonance and bistability in a microcavity-resonator-coupled Mach-Zehnder interferometer,” Opt. Lett. 30, 3069-3071 (2005).
    [CrossRef] [PubMed]
  9. L. Y. Mario, S. Darmawan, and M. K. Chin, “Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching,” Opt. Express 14, 12770-12781 (2006).
    [CrossRef] [PubMed]
  10. P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398-400 (2000).
    [CrossRef]
  11. L. J. Zhou and A. W. Poon, “Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers,” Opt. Lett. 32, 781-783 (2007).
    [CrossRef] [PubMed]
  12. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908-910 (2002).
    [CrossRef]
  13. A. Ruege and R. Reano, “Multimode waveguide-cavity sensor based on fringe visibility detection,” Opt. Express 17, 4295-4305 (2009).
    [CrossRef] [PubMed]
  14. H. Lefèvre, The Fiber-Optic Gyroscope (Artech, 1993), Chap. 11.

2009 (1)

2008 (1)

Z. X. Xia, Y. Chen, and Z. P. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44, 100-107 (2008).
[CrossRef]

2007 (2)

2006 (2)

2005 (1)

2004 (3)

J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. W. Boyd, R. Grover, and P. T. Ho, “Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators,” Opt. Lett. 29, 769-771 (2004).
[CrossRef] [PubMed]

A. Bananej and C. F. Li, “Controllable all-optical switch using an EDF-ring coupled M-Z interferometer,” IEEE Photon. Technol. Lett. 16, 2102-2104 (2004).
[CrossRef]

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726-730(2004).
[CrossRef]

2002 (1)

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908-910 (2002).
[CrossRef]

2000 (1)

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398-400 (2000).
[CrossRef]

1999 (1)

Absil, P. P.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398-400 (2000).
[CrossRef]

Bananej, A.

A. Bananej and C. F. Li, “Controllable all-optical switch using an EDF-ring coupled M-Z interferometer,” IEEE Photon. Technol. Lett. 16, 2102-2104 (2004).
[CrossRef]

Boyd, R. W.

Chao, C. Y.

Chen, Y.

Z. X. Xia, Y. Chen, and Z. P. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44, 100-107 (2008).
[CrossRef]

Chin, M. K.

Darmawan, S.

Fan, S.

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908-910 (2002).
[CrossRef]

Grover, R.

Guo, L. J.

Heebner, J. E.

Ho, P. T.

J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. W. Boyd, R. Grover, and P. T. Ho, “Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators,” Opt. Lett. 29, 769-771 (2004).
[CrossRef] [PubMed]

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398-400 (2000).
[CrossRef]

Hryniewicz, J. V.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398-400 (2000).
[CrossRef]

Jackson, D. J.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726-730(2004).
[CrossRef]

Joneckis, L. G.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398-400 (2000).
[CrossRef]

Lefèvre, H.

H. Lefèvre, The Fiber-Optic Gyroscope (Artech, 1993), Chap. 11.

Lepeshkin, N. N.

Li, C. F.

A. Bananej and C. F. Li, “Controllable all-optical switch using an EDF-ring coupled M-Z interferometer,” IEEE Photon. Technol. Lett. 16, 2102-2104 (2004).
[CrossRef]

Li, X. F.

Little, B. E.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398-400 (2000).
[CrossRef]

Lu, Y.

Mario, L. Y.

Poon, A. W.

Reano, R.

Ruege, A.

Schweinsberg, A.

J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. W. Boyd, R. Grover, and P. T. Ho, “Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators,” Opt. Lett. 29, 769-771 (2004).
[CrossRef] [PubMed]

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726-730(2004).
[CrossRef]

Sumetsky, M.

Wang, P.

Wicks, G. W.

Wilson, R. A.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398-400 (2000).
[CrossRef]

Wong, V.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726-730(2004).
[CrossRef]

Xia, Z. X.

Z. X. Xia, Y. Chen, and Z. P. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44, 100-107 (2008).
[CrossRef]

Yao, J. Q.

Zhou, L. J.

Zhou, Z. P.

Z. X. Xia, Y. Chen, and Z. P. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44, 100-107 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908-910 (2002).
[CrossRef]

IEEE J. Quantum Electron. (2)

Z. X. Xia, Y. Chen, and Z. P. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44, 100-107 (2008).
[CrossRef]

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726-730(2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398-400 (2000).
[CrossRef]

A. Bananej and C. F. Li, “Controllable all-optical switch using an EDF-ring coupled M-Z interferometer,” IEEE Photon. Technol. Lett. 16, 2102-2104 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Lett. (5)

Other (1)

H. Lefèvre, The Fiber-Optic Gyroscope (Artech, 1993), Chap. 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Ring side-coupled to a MZI.(b) Single-bus ring.

Fig. 2
Fig. 2

Calculated normalized sensitivity and circulating power in a ring resonator and a ring-coupled MZI as a function of the normalized ring coupling ratio.

Fig. 3
Fig. 3

(a)  P 1 , and P 2 of the optimized ring-coupled MZI as ϕ is varied. (b) Sensitivity of the ring-coupled MZI as ϕ is varied.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S 1 / P in = [ 4 A cos ( Φ ref Φ ( ϕ ) ) + 2 B t ( ϕ ) ] t ( ϕ ) 4 A sin ( Φ ref Φ ( ϕ ) ) t ( ϕ ) Φ ( ϕ ) , A = κ 1 κ 2 ( 1 κ 1 ) ( 1 κ 2 ) , B = κ 1 + 2 κ 2 2 κ 1 κ 2 1.
Φ ref = Φ + tan 1 ( t Φ t ) + m π , κ 1 = t 2 2 t 2 t 2 + t 2 Φ 2 2 t 2 2 t 2 t 2 + 2 t 2 Φ 2 , κ 2 = ( 1 t 2 ) t 2 + t 2 Φ 2 ± t t t 2 + t 2 ( Φ 2 t 2 ) 2 ( 1 t 2 ) t 2 + 2 t 2 Φ 2 ,
E out E in = e i ϕ π R α 1 κ ring e i ϕ π R α 1 κ ring 1 ,
E out E in 1 κ norm 2 i ϕ norm 1 + κ norm 2 i ϕ norm ,

Metrics