Abstract

The cladding mode reorganization in high refractive-index (HRI)-coated long period gratings (LPGs) is theoretically analyzed and experimentally observed with the aim of exploring the sensitivity of the resonance wavelength to the change of the refractive index in a nanoscale overlay. Experimental results show that the transition between cladding modes and overlay modes occurs when the refractive index of the liquid crystal (LC) overlay is changed from 1.477 to 1.515 by increasing its temperature from 20°C to 65°C. The spectral tuning ability of LPGs coated with a HRI LC layer by electro-optic modulation on a LC layer is also demonstrated, and the maximum tuning range can reach approximately 10nm by choosing a highly sensitive operating point in the transition region.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and applications,” Meas. Sci. Technol. 14, R49-R61 (2003).
    [CrossRef]
  2. B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, “All-optical switching in long period fiber gratings,” Opt. Lett. 22, 883-885 (1997).
    [CrossRef] [PubMed]
  3. V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express 4, 457-466 (1999).
    [CrossRef] [PubMed]
  4. A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Widely tunable long-period fibre gratings,” Electron. Lett. 35, 81-82 (1999).
    [CrossRef]
  5. Q. Chen, M. R. Lin, J. E. Lee, Q. M. Zhang, and S. Yin, “Nanocomposites with very large electro-optic effect and widely tunable refractive index,” Appl. Phys. Lett. 89, 141121 (2006).
    [CrossRef]
  6. H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Technol. 16, 1606-1612 (1998).
    [CrossRef]
  7. T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210-223 (2003).
    [CrossRef]
  8. N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27, 686-688 (2002).
    [CrossRef]
  9. Z. Wang, J. R. Heflin, R. H. Stolen, and S. Ramachandran, “Analysis of optical response of long period fiber gratings to nm-thick thin-film coatings,” Opt. Express 13, 2808-2813(2005).
    [CrossRef] [PubMed]
  10. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, and A. Cutolo, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14, 19-34(2006).
    [CrossRef] [PubMed]
  11. I. Del Villar, I. R. Matias, and F. J. Arregui, “Long-period fiber gratings with overlay of variable refractive index,” IEEE Photon. Technol. Lett. 17, 1893-1895 (2005).
    [CrossRef]
  12. I. Del Villar, J. M. Corres, M. Achaerandio, F. J. Arregui, and I. R. Matias, “Spectral evolution with incremental nanocoating of long period fiber gratings,” Opt. Express 14, 11972-11981 (2006).
    [CrossRef] [PubMed]
  13. S. Yin, X. Zhu, and K.-W. Chung, “All-fiber all-optical tunable filter based on the combination of long period grating and photorefractive cladding layer,” Proc. SPIE 4110, 190-194(2000).
    [CrossRef]
  14. A. Czapla, W. J. Bock, T. R. Wolinski, and P. Mikulic, “Towards spectral tuning of long-period fiber gratings using liquid crystals,” in 21st Canadian Conference on Electrical and Computer Engineering (IEEE Canada, 2008).
  15. A.. M.Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65(1996).
    [CrossRef]
  16. V. Bhatia, “Properties and sensing applications of long-period gratings,” Ph.D. dissertation (Virginia Tech, Blacksburg, Va., 1996).
  17. B. H. Lee, Y. Liu, S. B. Lee, and S. S. Choi, “Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index,” Opt. Lett. 22, 1770-1772(1997).
    [CrossRef]
  18. H. Luo, X. Li, S. Wang, X. Wang, and J. Chen, “Temperature dependent mode transition in high refractive index coated long period gratings,” in Proceedings of Asia Optical Fiber Communications and Optoelectronics Exposition and Conference (Optical Society of America, 2008), paper SaE3.
  19. H. Luo, X. Li, S. Wang, and J. Chen, “Temperature stabilized electrically tunable long period gratings coated with nanosized liquid crystal layer,” in Proceedings of OFC/NFOEC (Optical Society of America, 2009), paper JThA22.
  20. K. Schmid and A. Penzkofer, “Refractive-index measurements with a Pellin-Broca prism apparatus,” Appl. Opt. 22, 1824-1827 (1983).
    [CrossRef] [PubMed]
  21. S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86, 171904 (2005).
    [CrossRef]
  22. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A 14, 1760-1773(1997).
    [CrossRef]

2006 (3)

2005 (3)

I. Del Villar, I. R. Matias, and F. J. Arregui, “Long-period fiber gratings with overlay of variable refractive index,” IEEE Photon. Technol. Lett. 17, 1893-1895 (2005).
[CrossRef]

S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86, 171904 (2005).
[CrossRef]

Z. Wang, J. R. Heflin, R. H. Stolen, and S. Ramachandran, “Analysis of optical response of long period fiber gratings to nm-thick thin-film coatings,” Opt. Express 13, 2808-2813(2005).
[CrossRef] [PubMed]

2003 (2)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and applications,” Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210-223 (2003).
[CrossRef]

2002 (1)

2000 (1)

S. Yin, X. Zhu, and K.-W. Chung, “All-fiber all-optical tunable filter based on the combination of long period grating and photorefractive cladding layer,” Proc. SPIE 4110, 190-194(2000).
[CrossRef]

1999 (2)

V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express 4, 457-466 (1999).
[CrossRef] [PubMed]

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Widely tunable long-period fibre gratings,” Electron. Lett. 35, 81-82 (1999).
[CrossRef]

1998 (1)

1997 (3)

1996 (1)

A.. M.Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65(1996).
[CrossRef]

1983 (1)

Abramov, A. A.

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Widely tunable long-period fibre gratings,” Electron. Lett. 35, 81-82 (1999).
[CrossRef]

Achaerandio, M.

Allsop, T.

T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210-223 (2003).
[CrossRef]

Arregui, F. J.

I. Del Villar, J. M. Corres, M. Achaerandio, F. J. Arregui, and I. R. Matias, “Spectral evolution with incremental nanocoating of long period fiber gratings,” Opt. Express 14, 11972-11981 (2006).
[CrossRef] [PubMed]

I. Del Villar, I. R. Matias, and F. J. Arregui, “Long-period fiber gratings with overlay of variable refractive index,” IEEE Photon. Technol. Lett. 17, 1893-1895 (2005).
[CrossRef]

Ashwell, G. J.

Bennion, I.

T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210-223 (2003).
[CrossRef]

Bhatia, V.

V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express 4, 457-466 (1999).
[CrossRef] [PubMed]

A.. M.Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65(1996).
[CrossRef]

V. Bhatia, “Properties and sensing applications of long-period gratings,” Ph.D. dissertation (Virginia Tech, Blacksburg, Va., 1996).

Bock, W. J.

A. Czapla, W. J. Bock, T. R. Wolinski, and P. Mikulic, “Towards spectral tuning of long-period fiber gratings using liquid crystals,” in 21st Canadian Conference on Electrical and Computer Engineering (IEEE Canada, 2008).

Bucholtz, F.

Campopiano, S.

Chen, J.

H. Luo, X. Li, S. Wang, X. Wang, and J. Chen, “Temperature dependent mode transition in high refractive index coated long period gratings,” in Proceedings of Asia Optical Fiber Communications and Optoelectronics Exposition and Conference (Optical Society of America, 2008), paper SaE3.

H. Luo, X. Li, S. Wang, and J. Chen, “Temperature stabilized electrically tunable long period gratings coated with nanosized liquid crystal layer,” in Proceedings of OFC/NFOEC (Optical Society of America, 2009), paper JThA22.

Chen, L.

S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86, 171904 (2005).
[CrossRef]

Chen, Q.

Q. Chen, M. R. Lin, J. E. Lee, Q. M. Zhang, and S. Yin, “Nanocomposites with very large electro-optic effect and widely tunable refractive index,” Appl. Phys. Lett. 89, 141121 (2006).
[CrossRef]

Chen, X.

S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86, 171904 (2005).
[CrossRef]

Chen, Y.

S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86, 171904 (2005).
[CrossRef]

Choi, S. S.

B. H. Lee, Y. Liu, S. B. Lee, and S. S. Choi, “Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index,” Opt. Lett. 22, 1770-1772(1997).
[CrossRef]

Chung, K.-W.

S. Yin, X. Zhu, and K.-W. Chung, “All-fiber all-optical tunable filter based on the combination of long period grating and photorefractive cladding layer,” Proc. SPIE 4110, 190-194(2000).
[CrossRef]

Contessa, L.

Corres, J. M.

Cusano, A.

Cutolo, A.

Czapla, A.

A. Czapla, W. J. Bock, T. R. Wolinski, and P. Mikulic, “Towards spectral tuning of long-period fiber gratings using liquid crystals,” in 21st Canadian Conference on Electrical and Computer Engineering (IEEE Canada, 2008).

Del Villar, I.

I. Del Villar, J. M. Corres, M. Achaerandio, F. J. Arregui, and I. R. Matias, “Spectral evolution with incremental nanocoating of long period fiber gratings,” Opt. Express 14, 11972-11981 (2006).
[CrossRef] [PubMed]

I. Del Villar, I. R. Matias, and F. J. Arregui, “Long-period fiber gratings with overlay of variable refractive index,” IEEE Photon. Technol. Lett. 17, 1893-1895 (2005).
[CrossRef]

Eggleton, B. J.

Erdogan, T.

T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A 14, 1760-1773(1997).
[CrossRef]

A.. M.Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65(1996).
[CrossRef]

Hale, A.

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Widely tunable long-period fibre gratings,” Electron. Lett. 35, 81-82 (1999).
[CrossRef]

Heflin, J. R.

Iadicicco, A.

James, S. W.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and applications,” Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27, 686-688 (2002).
[CrossRef]

Judkins, J. B.

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark, and A. M. Vengsarkar, “All-optical switching in long period fiber gratings,” Opt. Lett. 22, 883-885 (1997).
[CrossRef] [PubMed]

A.. M.Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65(1996).
[CrossRef]

Kersey, A. D.

Lee, B. H.

B. H. Lee, Y. Liu, S. B. Lee, and S. S. Choi, “Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index,” Opt. Lett. 22, 1770-1772(1997).
[CrossRef]

Lee, J. E.

Q. Chen, M. R. Lin, J. E. Lee, Q. M. Zhang, and S. Yin, “Nanocomposites with very large electro-optic effect and widely tunable refractive index,” Appl. Phys. Lett. 89, 141121 (2006).
[CrossRef]

Lee, S. B.

B. H. Lee, Y. Liu, S. B. Lee, and S. S. Choi, “Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index,” Opt. Lett. 22, 1770-1772(1997).
[CrossRef]

Lemaire, P. J.

A.. M.Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65(1996).
[CrossRef]

Li, X.

H. Luo, X. Li, S. Wang, and J. Chen, “Temperature stabilized electrically tunable long period gratings coated with nanosized liquid crystal layer,” in Proceedings of OFC/NFOEC (Optical Society of America, 2009), paper JThA22.

H. Luo, X. Li, S. Wang, X. Wang, and J. Chen, “Temperature dependent mode transition in high refractive index coated long period gratings,” in Proceedings of Asia Optical Fiber Communications and Optoelectronics Exposition and Conference (Optical Society of America, 2008), paper SaE3.

Liao, W.

S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86, 171904 (2005).
[CrossRef]

Lin, M. R.

Q. Chen, M. R. Lin, J. E. Lee, Q. M. Zhang, and S. Yin, “Nanocomposites with very large electro-optic effect and widely tunable refractive index,” Appl. Phys. Lett. 89, 141121 (2006).
[CrossRef]

Liu, Y.

B. H. Lee, Y. Liu, S. B. Lee, and S. S. Choi, “Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index,” Opt. Lett. 22, 1770-1772(1997).
[CrossRef]

Luo, H.

H. Luo, X. Li, S. Wang, and J. Chen, “Temperature stabilized electrically tunable long period gratings coated with nanosized liquid crystal layer,” in Proceedings of OFC/NFOEC (Optical Society of America, 2009), paper JThA22.

H. Luo, X. Li, S. Wang, X. Wang, and J. Chen, “Temperature dependent mode transition in high refractive index coated long period gratings,” in Proceedings of Asia Optical Fiber Communications and Optoelectronics Exposition and Conference (Optical Society of America, 2008), paper SaE3.

Matias, I. R.

I. Del Villar, J. M. Corres, M. Achaerandio, F. J. Arregui, and I. R. Matias, “Spectral evolution with incremental nanocoating of long period fiber gratings,” Opt. Express 14, 11972-11981 (2006).
[CrossRef] [PubMed]

I. Del Villar, I. R. Matias, and F. J. Arregui, “Long-period fiber gratings with overlay of variable refractive index,” IEEE Photon. Technol. Lett. 17, 1893-1895 (2005).
[CrossRef]

Mikulic, P.

A. Czapla, W. J. Bock, T. R. Wolinski, and P. Mikulic, “Towards spectral tuning of long-period fiber gratings using liquid crystals,” in 21st Canadian Conference on Electrical and Computer Engineering (IEEE Canada, 2008).

Patrick, H. J.

Penzkofer, A.

Pilla, P.

Pu, S.

S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86, 171904 (2005).
[CrossRef]

Ramachandran, S.

Rees, N. D.

Schmid, K.

Sipe, J. E.

A.. M.Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65(1996).
[CrossRef]

Slusher, R. E.

Stark, J. B.

Stolen, R. H.

Strasser, T. A.

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Widely tunable long-period fibre gratings,” Electron. Lett. 35, 81-82 (1999).
[CrossRef]

Tatam, R. P.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and applications,” Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27, 686-688 (2002).
[CrossRef]

Vengsarkar, A. M.

Vengsarkar, A.. M.

A.. M.Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65(1996).
[CrossRef]

Wang, S.

H. Luo, X. Li, S. Wang, and J. Chen, “Temperature stabilized electrically tunable long period gratings coated with nanosized liquid crystal layer,” in Proceedings of OFC/NFOEC (Optical Society of America, 2009), paper JThA22.

H. Luo, X. Li, S. Wang, X. Wang, and J. Chen, “Temperature dependent mode transition in high refractive index coated long period gratings,” in Proceedings of Asia Optical Fiber Communications and Optoelectronics Exposition and Conference (Optical Society of America, 2008), paper SaE3.

Wang, X.

H. Luo, X. Li, S. Wang, X. Wang, and J. Chen, “Temperature dependent mode transition in high refractive index coated long period gratings,” in Proceedings of Asia Optical Fiber Communications and Optoelectronics Exposition and Conference (Optical Society of America, 2008), paper SaE3.

Wang, Z.

Webb, D. J.

T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210-223 (2003).
[CrossRef]

Windeler, R. S.

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Widely tunable long-period fibre gratings,” Electron. Lett. 35, 81-82 (1999).
[CrossRef]

Wolinski, T. R.

A. Czapla, W. J. Bock, T. R. Wolinski, and P. Mikulic, “Towards spectral tuning of long-period fiber gratings using liquid crystals,” in 21st Canadian Conference on Electrical and Computer Engineering (IEEE Canada, 2008).

Xia, Y.

S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86, 171904 (2005).
[CrossRef]

Yin, S.

Q. Chen, M. R. Lin, J. E. Lee, Q. M. Zhang, and S. Yin, “Nanocomposites with very large electro-optic effect and widely tunable refractive index,” Appl. Phys. Lett. 89, 141121 (2006).
[CrossRef]

S. Yin, X. Zhu, and K.-W. Chung, “All-fiber all-optical tunable filter based on the combination of long period grating and photorefractive cladding layer,” Proc. SPIE 4110, 190-194(2000).
[CrossRef]

Zhang, Q. M.

Q. Chen, M. R. Lin, J. E. Lee, Q. M. Zhang, and S. Yin, “Nanocomposites with very large electro-optic effect and widely tunable refractive index,” Appl. Phys. Lett. 89, 141121 (2006).
[CrossRef]

Zhu, X.

S. Yin, X. Zhu, and K.-W. Chung, “All-fiber all-optical tunable filter based on the combination of long period grating and photorefractive cladding layer,” Proc. SPIE 4110, 190-194(2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Pu, X. Chen, Y. Chen, W. Liao, L. Chen, and Y. Xia, “Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face,” Appl. Phys. Lett. 86, 171904 (2005).
[CrossRef]

Q. Chen, M. R. Lin, J. E. Lee, Q. M. Zhang, and S. Yin, “Nanocomposites with very large electro-optic effect and widely tunable refractive index,” Appl. Phys. Lett. 89, 141121 (2006).
[CrossRef]

Electron. Lett. (1)

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Widely tunable long-period fibre gratings,” Electron. Lett. 35, 81-82 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

I. Del Villar, I. R. Matias, and F. J. Arregui, “Long-period fiber gratings with overlay of variable refractive index,” IEEE Photon. Technol. Lett. 17, 1893-1895 (2005).
[CrossRef]

J. Lightwave Technol. (2)

A.. M.Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58-65(1996).
[CrossRef]

H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Technol. 16, 1606-1612 (1998).
[CrossRef]

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and applications,” Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

Opt. Express (4)

Opt. Fiber Technol. (1)

T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210-223 (2003).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (1)

S. Yin, X. Zhu, and K.-W. Chung, “All-fiber all-optical tunable filter based on the combination of long period grating and photorefractive cladding layer,” Proc. SPIE 4110, 190-194(2000).
[CrossRef]

Other (4)

A. Czapla, W. J. Bock, T. R. Wolinski, and P. Mikulic, “Towards spectral tuning of long-period fiber gratings using liquid crystals,” in 21st Canadian Conference on Electrical and Computer Engineering (IEEE Canada, 2008).

V. Bhatia, “Properties and sensing applications of long-period gratings,” Ph.D. dissertation (Virginia Tech, Blacksburg, Va., 1996).

H. Luo, X. Li, S. Wang, X. Wang, and J. Chen, “Temperature dependent mode transition in high refractive index coated long period gratings,” in Proceedings of Asia Optical Fiber Communications and Optoelectronics Exposition and Conference (Optical Society of America, 2008), paper SaE3.

H. Luo, X. Li, S. Wang, and J. Chen, “Temperature stabilized electrically tunable long period gratings coated with nanosized liquid crystal layer,” in Proceedings of OFC/NFOEC (Optical Society of America, 2009), paper JThA22.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Illustrative schematic of a LPG with a nanometer thick thin-film coating and (b) index profile of the thin-film-coated LPG.

Fig. 2
Fig. 2

Effective refractive index of the LP 02 LP 07 cladding modes versus HRI-coated fiber with (a) 600, (b) 700, (c) 800, (d) 900 nm film.

Fig. 3
Fig. 3

CCD photographs of bare and LC-coated LPG.

Fig. 4
Fig. 4

CCD photographs reveal approximate overlay thicknesses of (a) 400 and (b) 800 nm.

Fig. 5
Fig. 5

Transmission spectra of an ultrathin HRI LC-coated LPG for different temperatures in the 20 ° C 65 ° C range.

Fig. 6
Fig. 6

Wavelength shift of LP 02 and LP 03 cladding modes for the LPG coated with a HRI layer versus temperature.

Fig. 7
Fig. 7

Schematic diagram of the experimental setup for measurement of the refractive index of the LC.

Fig. 8
Fig. 8

Refractive index versus temperature ( ° C ) of LC MDA-98-3699.

Fig. 9
Fig. 9

Theoretical and experimental center wavelength dependence on HRI for (a)  LP 02 and (b)  LP 03 .

Fig. 10
Fig. 10

Experimental setup and schematic of the LC cladding LPG.

Fig. 11
Fig. 11

Electrical spectra tunability of the LC cladding LPG at different temperatures.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ i = ( n co n cl i ) Λ ,
T = cos 2 ( k i L ) ,

Metrics