Abstract

We present an extensive study of an ultracompact grating-based beam splitter suitable for photonic integrated circuits (PICs) that have stringent density requirements. The 10μm long beam splitter exhibits equal splitting, low insertion loss, and also provides a high extinction ratio in an integrated coherent balanced receiver. We further present the design strategies for avoiding mode distortion in the beam splitter and discuss optimization of the widths of the detectors to improve insertion loss and extinction ratio of the coherent receiver circuit. In our study, we show that the grating-based beam splitter is a competitive technology having low fabrication complexity for ultracompact PICs.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ramaswamy, L. Johansson, J. Klamkin, C. Sheldon, H. Chou, L. Rodwell, M. J. Coldren, and J. Bowers, “Coherent receiver based on a broadband optical phase-lock loop,” in “Optical Fiber Communication/National Fiber Optic Engineers Conference, OFC/NFOEC,” (Optical Society of America, 2007).
  2. L. H. Spiekman, Y. S. Oei, E.G. Metaal, F. H. Green, I. Moerman, and M. K. Smit, “Extremely small multimode interference couplers and ultrashort bends on InP by deep etching,” IEEE Photon. Technol. Lett. 6, 1008-1010 (1994).
    [CrossRef]
  3. Y. Ma, S. Park, L. Wang, and S. T. Ho, “Ultracompact multimode interference 3-dB coupler with strong lateral confinement by deep dry etching,” IEEE Photon. Technol. Lett. 12, 492-494 (2000).
    [CrossRef]
  4. C. F. Janz, B. P. Keyworth, W. Allegretto, R. I. Macdonald, M. Fallahi, G. Hillier, and C. Rolland, “Mach-Zehnder switch using an ultra-compact directional coupler in a strongly-confining rib structure,” IEEE Photon. Technol. Lett. 6, 981-983 (1994).
    [CrossRef]
  5. D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, Jr., C. Dries, P. Studenkov, and S. Forrest, “Fabrication of ultracompact 3-db 2×2 MMI power splitters,” IEEE Photon. Technol. Lett. 11, 1009-1011 (1999).
    [CrossRef]
  6. C.-C. Chen, H.-D. Chien, and P.-G. Luan, “Photonic crystal beam splitters,” Appl. Opt. 43, 6187-6190 (2004).
    [CrossRef] [PubMed]
  7. T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Status Solidi A 197, 688-702(2003).
    [CrossRef]
  8. Y. Zhang, Y. Zhang, and B. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15, 9287-9292 (2007).
    [CrossRef] [PubMed]
  9. P. Pottier, S. Mastroiacovo, and R. M. De La Rue, “Power and polarization beam-splitters, mirrors, and integrated interferometers based on air-hole photonic crystals and lateral large index-contrast waveguides,” Opt. Express 14, 5617-5633 (2006).
    [CrossRef] [PubMed]
  10. Y. Lin, N. Rahmanian, S. Kim, and G. Nordin, “Fabrication of compact polymer waveguide devices using air-trench bends and splitters,” in SoutheastCon 2008 (IEEE, 2008), pp. 421-426.
  11. Y. Lin, N. Rahmanian, S. Kim, and G. P. Nordin, “Compact and high efficiency polymer air-trench waveguide bends and splitters,” Proc. SPIE 6462, 64620V (2007).
    [CrossRef]
  12. C.-H. Chen, M. Sysak, J. Klamkin, and L. Coldren, “Ultra-compact grating-based 2×2 beam splitter for miniature photonic integrated circuits,” in Lasers and Electro-Optics Society, LEOS 2007, the Twentieth Annual Meeting of the IEEE (IEEE, 2007), pp. 784-785.
    [CrossRef]
  13. C.-H. Chen, J. Klamkin, L. A. Johansson, and L. A. Coldren, “Design and implementation of ultra-compact grating-based 2×2 beam splitter for miniature photonic integrated circuits,” in Optical Fiber communication/National Fiber Optic Engineers Conference, OFC/NFOEC 2008 (Optical Society of America, 2008), pp. 1-3.
  14. M. R. Wang, “Analysis and observation of finite beam Bragg diffraction by a thick planar phase grating,” Appl. Opt. 35, 582-592 (1996).
    [CrossRef] [PubMed]
  15. J. Ctyroky, S. Helfert, and R. Pregla, “Analysis of a deep waveguide Bragg grating,” Opt. Quantum Electron. 30, 343-358 (1998).
    [CrossRef]
  16. M. Palamaru and P. Lalanne, “Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78, 1466-1468 (2001).
    [CrossRef]
  17. J. E. Schramm, D. I. Babic, E. L. Hu, J. E. Bowers, and J. L. Merz, “Fabrication of high-aspect-ratio inp-based vertical-cavity laser mirrors using CH4/H2/O2/Ar reactive ion etching,” J. Vacuum Sci. Technol. B 15, 2031-2036 (1997).
    [CrossRef]
  18. S. W. Corzine, R. H. Yan, and L. A. Coldren, “A tanh substitution technique for the analysis of abrupt and graded interface multilayer dielectric stacks,” IEEE J. Quantum Electron. 27, 2086-2090 (1991).
    [CrossRef]

2007 (2)

Y. Lin, N. Rahmanian, S. Kim, and G. P. Nordin, “Compact and high efficiency polymer air-trench waveguide bends and splitters,” Proc. SPIE 6462, 64620V (2007).
[CrossRef]

Y. Zhang, Y. Zhang, and B. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15, 9287-9292 (2007).
[CrossRef] [PubMed]

2006 (1)

2004 (1)

2003 (1)

T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Status Solidi A 197, 688-702(2003).
[CrossRef]

2001 (1)

M. Palamaru and P. Lalanne, “Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78, 1466-1468 (2001).
[CrossRef]

2000 (1)

Y. Ma, S. Park, L. Wang, and S. T. Ho, “Ultracompact multimode interference 3-dB coupler with strong lateral confinement by deep dry etching,” IEEE Photon. Technol. Lett. 12, 492-494 (2000).
[CrossRef]

1999 (1)

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, Jr., C. Dries, P. Studenkov, and S. Forrest, “Fabrication of ultracompact 3-db 2×2 MMI power splitters,” IEEE Photon. Technol. Lett. 11, 1009-1011 (1999).
[CrossRef]

1998 (1)

J. Ctyroky, S. Helfert, and R. Pregla, “Analysis of a deep waveguide Bragg grating,” Opt. Quantum Electron. 30, 343-358 (1998).
[CrossRef]

1997 (1)

J. E. Schramm, D. I. Babic, E. L. Hu, J. E. Bowers, and J. L. Merz, “Fabrication of high-aspect-ratio inp-based vertical-cavity laser mirrors using CH4/H2/O2/Ar reactive ion etching,” J. Vacuum Sci. Technol. B 15, 2031-2036 (1997).
[CrossRef]

1996 (1)

1994 (2)

L. H. Spiekman, Y. S. Oei, E.G. Metaal, F. H. Green, I. Moerman, and M. K. Smit, “Extremely small multimode interference couplers and ultrashort bends on InP by deep etching,” IEEE Photon. Technol. Lett. 6, 1008-1010 (1994).
[CrossRef]

C. F. Janz, B. P. Keyworth, W. Allegretto, R. I. Macdonald, M. Fallahi, G. Hillier, and C. Rolland, “Mach-Zehnder switch using an ultra-compact directional coupler in a strongly-confining rib structure,” IEEE Photon. Technol. Lett. 6, 981-983 (1994).
[CrossRef]

1991 (1)

S. W. Corzine, R. H. Yan, and L. A. Coldren, “A tanh substitution technique for the analysis of abrupt and graded interface multilayer dielectric stacks,” IEEE J. Quantum Electron. 27, 2086-2090 (1991).
[CrossRef]

Allegretto, W.

C. F. Janz, B. P. Keyworth, W. Allegretto, R. I. Macdonald, M. Fallahi, G. Hillier, and C. Rolland, “Mach-Zehnder switch using an ultra-compact directional coupler in a strongly-confining rib structure,” IEEE Photon. Technol. Lett. 6, 981-983 (1994).
[CrossRef]

Babic, D. I.

J. E. Schramm, D. I. Babic, E. L. Hu, J. E. Bowers, and J. L. Merz, “Fabrication of high-aspect-ratio inp-based vertical-cavity laser mirrors using CH4/H2/O2/Ar reactive ion etching,” J. Vacuum Sci. Technol. B 15, 2031-2036 (1997).
[CrossRef]

Bowers, J.

A. Ramaswamy, L. Johansson, J. Klamkin, C. Sheldon, H. Chou, L. Rodwell, M. J. Coldren, and J. Bowers, “Coherent receiver based on a broadband optical phase-lock loop,” in “Optical Fiber Communication/National Fiber Optic Engineers Conference, OFC/NFOEC,” (Optical Society of America, 2007).

Bowers, J. E.

J. E. Schramm, D. I. Babic, E. L. Hu, J. E. Bowers, and J. L. Merz, “Fabrication of high-aspect-ratio inp-based vertical-cavity laser mirrors using CH4/H2/O2/Ar reactive ion etching,” J. Vacuum Sci. Technol. B 15, 2031-2036 (1997).
[CrossRef]

Chen, C.-C.

Chen, C.-H.

C.-H. Chen, M. Sysak, J. Klamkin, and L. Coldren, “Ultra-compact grating-based 2×2 beam splitter for miniature photonic integrated circuits,” in Lasers and Electro-Optics Society, LEOS 2007, the Twentieth Annual Meeting of the IEEE (IEEE, 2007), pp. 784-785.
[CrossRef]

C.-H. Chen, J. Klamkin, L. A. Johansson, and L. A. Coldren, “Design and implementation of ultra-compact grating-based 2×2 beam splitter for miniature photonic integrated circuits,” in Optical Fiber communication/National Fiber Optic Engineers Conference, OFC/NFOEC 2008 (Optical Society of America, 2008), pp. 1-3.

Chien, H.-D.

Chou, H.

A. Ramaswamy, L. Johansson, J. Klamkin, C. Sheldon, H. Chou, L. Rodwell, M. J. Coldren, and J. Bowers, “Coherent receiver based on a broadband optical phase-lock loop,” in “Optical Fiber Communication/National Fiber Optic Engineers Conference, OFC/NFOEC,” (Optical Society of America, 2007).

Coldren, L.

C.-H. Chen, M. Sysak, J. Klamkin, and L. Coldren, “Ultra-compact grating-based 2×2 beam splitter for miniature photonic integrated circuits,” in Lasers and Electro-Optics Society, LEOS 2007, the Twentieth Annual Meeting of the IEEE (IEEE, 2007), pp. 784-785.
[CrossRef]

Coldren, L. A.

S. W. Corzine, R. H. Yan, and L. A. Coldren, “A tanh substitution technique for the analysis of abrupt and graded interface multilayer dielectric stacks,” IEEE J. Quantum Electron. 27, 2086-2090 (1991).
[CrossRef]

Coldren, L. A.

C.-H. Chen, J. Klamkin, L. A. Johansson, and L. A. Coldren, “Design and implementation of ultra-compact grating-based 2×2 beam splitter for miniature photonic integrated circuits,” in Optical Fiber communication/National Fiber Optic Engineers Conference, OFC/NFOEC 2008 (Optical Society of America, 2008), pp. 1-3.

Coldren, M. J.

A. Ramaswamy, L. Johansson, J. Klamkin, C. Sheldon, H. Chou, L. Rodwell, M. J. Coldren, and J. Bowers, “Coherent receiver based on a broadband optical phase-lock loop,” in “Optical Fiber Communication/National Fiber Optic Engineers Conference, OFC/NFOEC,” (Optical Society of America, 2007).

Corzine, S. W.

S. W. Corzine, R. H. Yan, and L. A. Coldren, “A tanh substitution technique for the analysis of abrupt and graded interface multilayer dielectric stacks,” IEEE J. Quantum Electron. 27, 2086-2090 (1991).
[CrossRef]

Ctyroky, J.

J. Ctyroky, S. Helfert, and R. Pregla, “Analysis of a deep waveguide Bragg grating,” Opt. Quantum Electron. 30, 343-358 (1998).
[CrossRef]

De La Rue, R. M.

Dries, C.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, Jr., C. Dries, P. Studenkov, and S. Forrest, “Fabrication of ultracompact 3-db 2×2 MMI power splitters,” IEEE Photon. Technol. Lett. 11, 1009-1011 (1999).
[CrossRef]

Fallahi, M.

C. F. Janz, B. P. Keyworth, W. Allegretto, R. I. Macdonald, M. Fallahi, G. Hillier, and C. Rolland, “Mach-Zehnder switch using an ultra-compact directional coupler in a strongly-confining rib structure,” IEEE Photon. Technol. Lett. 6, 981-983 (1994).
[CrossRef]

Forrest, S.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, Jr., C. Dries, P. Studenkov, and S. Forrest, “Fabrication of ultracompact 3-db 2×2 MMI power splitters,” IEEE Photon. Technol. Lett. 11, 1009-1011 (1999).
[CrossRef]

Green, F. H.

L. H. Spiekman, Y. S. Oei, E.G. Metaal, F. H. Green, I. Moerman, and M. K. Smit, “Extremely small multimode interference couplers and ultrashort bends on InP by deep etching,” IEEE Photon. Technol. Lett. 6, 1008-1010 (1994).
[CrossRef]

Helfert, S.

J. Ctyroky, S. Helfert, and R. Pregla, “Analysis of a deep waveguide Bragg grating,” Opt. Quantum Electron. 30, 343-358 (1998).
[CrossRef]

Hillier, G.

C. F. Janz, B. P. Keyworth, W. Allegretto, R. I. Macdonald, M. Fallahi, G. Hillier, and C. Rolland, “Mach-Zehnder switch using an ultra-compact directional coupler in a strongly-confining rib structure,” IEEE Photon. Technol. Lett. 6, 981-983 (1994).
[CrossRef]

Ho, S. T.

Y. Ma, S. Park, L. Wang, and S. T. Ho, “Ultracompact multimode interference 3-dB coupler with strong lateral confinement by deep dry etching,” IEEE Photon. Technol. Lett. 12, 492-494 (2000).
[CrossRef]

Hu, E. L.

J. E. Schramm, D. I. Babic, E. L. Hu, J. E. Bowers, and J. L. Merz, “Fabrication of high-aspect-ratio inp-based vertical-cavity laser mirrors using CH4/H2/O2/Ar reactive ion etching,” J. Vacuum Sci. Technol. B 15, 2031-2036 (1997).
[CrossRef]

Janz, C. F.

C. F. Janz, B. P. Keyworth, W. Allegretto, R. I. Macdonald, M. Fallahi, G. Hillier, and C. Rolland, “Mach-Zehnder switch using an ultra-compact directional coupler in a strongly-confining rib structure,” IEEE Photon. Technol. Lett. 6, 981-983 (1994).
[CrossRef]

Johansson, L.

A. Ramaswamy, L. Johansson, J. Klamkin, C. Sheldon, H. Chou, L. Rodwell, M. J. Coldren, and J. Bowers, “Coherent receiver based on a broadband optical phase-lock loop,” in “Optical Fiber Communication/National Fiber Optic Engineers Conference, OFC/NFOEC,” (Optical Society of America, 2007).

Johansson, L. A.

C.-H. Chen, J. Klamkin, L. A. Johansson, and L. A. Coldren, “Design and implementation of ultra-compact grating-based 2×2 beam splitter for miniature photonic integrated circuits,” in Optical Fiber communication/National Fiber Optic Engineers Conference, OFC/NFOEC 2008 (Optical Society of America, 2008), pp. 1-3.

Keyworth, B. P.

C. F. Janz, B. P. Keyworth, W. Allegretto, R. I. Macdonald, M. Fallahi, G. Hillier, and C. Rolland, “Mach-Zehnder switch using an ultra-compact directional coupler in a strongly-confining rib structure,” IEEE Photon. Technol. Lett. 6, 981-983 (1994).
[CrossRef]

Kim, S.

Y. Lin, N. Rahmanian, S. Kim, and G. P. Nordin, “Compact and high efficiency polymer air-trench waveguide bends and splitters,” Proc. SPIE 6462, 64620V (2007).
[CrossRef]

Y. Lin, N. Rahmanian, S. Kim, and G. Nordin, “Fabrication of compact polymer waveguide devices using air-trench bends and splitters,” in SoutheastCon 2008 (IEEE, 2008), pp. 421-426.

Klamkin, J.

A. Ramaswamy, L. Johansson, J. Klamkin, C. Sheldon, H. Chou, L. Rodwell, M. J. Coldren, and J. Bowers, “Coherent receiver based on a broadband optical phase-lock loop,” in “Optical Fiber Communication/National Fiber Optic Engineers Conference, OFC/NFOEC,” (Optical Society of America, 2007).

C.-H. Chen, J. Klamkin, L. A. Johansson, and L. A. Coldren, “Design and implementation of ultra-compact grating-based 2×2 beam splitter for miniature photonic integrated circuits,” in Optical Fiber communication/National Fiber Optic Engineers Conference, OFC/NFOEC 2008 (Optical Society of America, 2008), pp. 1-3.

C.-H. Chen, M. Sysak, J. Klamkin, and L. Coldren, “Ultra-compact grating-based 2×2 beam splitter for miniature photonic integrated circuits,” in Lasers and Electro-Optics Society, LEOS 2007, the Twentieth Annual Meeting of the IEEE (IEEE, 2007), pp. 784-785.
[CrossRef]

Krauss, T. F.

T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Status Solidi A 197, 688-702(2003).
[CrossRef]

Lalanne, P.

M. Palamaru and P. Lalanne, “Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78, 1466-1468 (2001).
[CrossRef]

Levy, D. S.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, Jr., C. Dries, P. Studenkov, and S. Forrest, “Fabrication of ultracompact 3-db 2×2 MMI power splitters,” IEEE Photon. Technol. Lett. 11, 1009-1011 (1999).
[CrossRef]

Li, B.

Lin, Y.

Y. Lin, N. Rahmanian, S. Kim, and G. P. Nordin, “Compact and high efficiency polymer air-trench waveguide bends and splitters,” Proc. SPIE 6462, 64620V (2007).
[CrossRef]

Y. Lin, N. Rahmanian, S. Kim, and G. Nordin, “Fabrication of compact polymer waveguide devices using air-trench bends and splitters,” in SoutheastCon 2008 (IEEE, 2008), pp. 421-426.

Luan, P.-G.

Ma, Y.

Y. Ma, S. Park, L. Wang, and S. T. Ho, “Ultracompact multimode interference 3-dB coupler with strong lateral confinement by deep dry etching,” IEEE Photon. Technol. Lett. 12, 492-494 (2000).
[CrossRef]

Macdonald, R. I.

C. F. Janz, B. P. Keyworth, W. Allegretto, R. I. Macdonald, M. Fallahi, G. Hillier, and C. Rolland, “Mach-Zehnder switch using an ultra-compact directional coupler in a strongly-confining rib structure,” IEEE Photon. Technol. Lett. 6, 981-983 (1994).
[CrossRef]

Mastroiacovo, S.

Merz, J. L.

J. E. Schramm, D. I. Babic, E. L. Hu, J. E. Bowers, and J. L. Merz, “Fabrication of high-aspect-ratio inp-based vertical-cavity laser mirrors using CH4/H2/O2/Ar reactive ion etching,” J. Vacuum Sci. Technol. B 15, 2031-2036 (1997).
[CrossRef]

Metaal, E. G.

L. H. Spiekman, Y. S. Oei, E.G. Metaal, F. H. Green, I. Moerman, and M. K. Smit, “Extremely small multimode interference couplers and ultrashort bends on InP by deep etching,” IEEE Photon. Technol. Lett. 6, 1008-1010 (1994).
[CrossRef]

Moerman, I.

L. H. Spiekman, Y. S. Oei, E.G. Metaal, F. H. Green, I. Moerman, and M. K. Smit, “Extremely small multimode interference couplers and ultrashort bends on InP by deep etching,” IEEE Photon. Technol. Lett. 6, 1008-1010 (1994).
[CrossRef]

Nordin, G.

Y. Lin, N. Rahmanian, S. Kim, and G. Nordin, “Fabrication of compact polymer waveguide devices using air-trench bends and splitters,” in SoutheastCon 2008 (IEEE, 2008), pp. 421-426.

Nordin, G. P.

Y. Lin, N. Rahmanian, S. Kim, and G. P. Nordin, “Compact and high efficiency polymer air-trench waveguide bends and splitters,” Proc. SPIE 6462, 64620V (2007).
[CrossRef]

Oei, Y. S.

L. H. Spiekman, Y. S. Oei, E.G. Metaal, F. H. Green, I. Moerman, and M. K. Smit, “Extremely small multimode interference couplers and ultrashort bends on InP by deep etching,” IEEE Photon. Technol. Lett. 6, 1008-1010 (1994).
[CrossRef]

Osgood, R. M.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, Jr., C. Dries, P. Studenkov, and S. Forrest, “Fabrication of ultracompact 3-db 2×2 MMI power splitters,” IEEE Photon. Technol. Lett. 11, 1009-1011 (1999).
[CrossRef]

Palamaru, M.

M. Palamaru and P. Lalanne, “Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78, 1466-1468 (2001).
[CrossRef]

Park, K. H.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, Jr., C. Dries, P. Studenkov, and S. Forrest, “Fabrication of ultracompact 3-db 2×2 MMI power splitters,” IEEE Photon. Technol. Lett. 11, 1009-1011 (1999).
[CrossRef]

Park, S.

Y. Ma, S. Park, L. Wang, and S. T. Ho, “Ultracompact multimode interference 3-dB coupler with strong lateral confinement by deep dry etching,” IEEE Photon. Technol. Lett. 12, 492-494 (2000).
[CrossRef]

Pottier, P.

Pregla, R.

J. Ctyroky, S. Helfert, and R. Pregla, “Analysis of a deep waveguide Bragg grating,” Opt. Quantum Electron. 30, 343-358 (1998).
[CrossRef]

Rahmanian, N.

Y. Lin, N. Rahmanian, S. Kim, and G. P. Nordin, “Compact and high efficiency polymer air-trench waveguide bends and splitters,” Proc. SPIE 6462, 64620V (2007).
[CrossRef]

Y. Lin, N. Rahmanian, S. Kim, and G. Nordin, “Fabrication of compact polymer waveguide devices using air-trench bends and splitters,” in SoutheastCon 2008 (IEEE, 2008), pp. 421-426.

Ramaswamy, A.

A. Ramaswamy, L. Johansson, J. Klamkin, C. Sheldon, H. Chou, L. Rodwell, M. J. Coldren, and J. Bowers, “Coherent receiver based on a broadband optical phase-lock loop,” in “Optical Fiber Communication/National Fiber Optic Engineers Conference, OFC/NFOEC,” (Optical Society of America, 2007).

Rodwell, L.

A. Ramaswamy, L. Johansson, J. Klamkin, C. Sheldon, H. Chou, L. Rodwell, M. J. Coldren, and J. Bowers, “Coherent receiver based on a broadband optical phase-lock loop,” in “Optical Fiber Communication/National Fiber Optic Engineers Conference, OFC/NFOEC,” (Optical Society of America, 2007).

Rolland, C.

C. F. Janz, B. P. Keyworth, W. Allegretto, R. I. Macdonald, M. Fallahi, G. Hillier, and C. Rolland, “Mach-Zehnder switch using an ultra-compact directional coupler in a strongly-confining rib structure,” IEEE Photon. Technol. Lett. 6, 981-983 (1994).
[CrossRef]

Scarmozzino, R.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, Jr., C. Dries, P. Studenkov, and S. Forrest, “Fabrication of ultracompact 3-db 2×2 MMI power splitters,” IEEE Photon. Technol. Lett. 11, 1009-1011 (1999).
[CrossRef]

Schramm, J. E.

J. E. Schramm, D. I. Babic, E. L. Hu, J. E. Bowers, and J. L. Merz, “Fabrication of high-aspect-ratio inp-based vertical-cavity laser mirrors using CH4/H2/O2/Ar reactive ion etching,” J. Vacuum Sci. Technol. B 15, 2031-2036 (1997).
[CrossRef]

Sheldon, C.

A. Ramaswamy, L. Johansson, J. Klamkin, C. Sheldon, H. Chou, L. Rodwell, M. J. Coldren, and J. Bowers, “Coherent receiver based on a broadband optical phase-lock loop,” in “Optical Fiber Communication/National Fiber Optic Engineers Conference, OFC/NFOEC,” (Optical Society of America, 2007).

Smit, M. K.

L. H. Spiekman, Y. S. Oei, E.G. Metaal, F. H. Green, I. Moerman, and M. K. Smit, “Extremely small multimode interference couplers and ultrashort bends on InP by deep etching,” IEEE Photon. Technol. Lett. 6, 1008-1010 (1994).
[CrossRef]

Spiekman, L. H.

L. H. Spiekman, Y. S. Oei, E.G. Metaal, F. H. Green, I. Moerman, and M. K. Smit, “Extremely small multimode interference couplers and ultrashort bends on InP by deep etching,” IEEE Photon. Technol. Lett. 6, 1008-1010 (1994).
[CrossRef]

Studenkov, P.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, Jr., C. Dries, P. Studenkov, and S. Forrest, “Fabrication of ultracompact 3-db 2×2 MMI power splitters,” IEEE Photon. Technol. Lett. 11, 1009-1011 (1999).
[CrossRef]

Sysak, M.

C.-H. Chen, M. Sysak, J. Klamkin, and L. Coldren, “Ultra-compact grating-based 2×2 beam splitter for miniature photonic integrated circuits,” in Lasers and Electro-Optics Society, LEOS 2007, the Twentieth Annual Meeting of the IEEE (IEEE, 2007), pp. 784-785.
[CrossRef]

Wang, L.

Y. Ma, S. Park, L. Wang, and S. T. Ho, “Ultracompact multimode interference 3-dB coupler with strong lateral confinement by deep dry etching,” IEEE Photon. Technol. Lett. 12, 492-494 (2000).
[CrossRef]

Wang, M. R.

Yan, R. H.

S. W. Corzine, R. H. Yan, and L. A. Coldren, “A tanh substitution technique for the analysis of abrupt and graded interface multilayer dielectric stacks,” IEEE J. Quantum Electron. 27, 2086-2090 (1991).
[CrossRef]

Zhang, Y.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. Palamaru and P. Lalanne, “Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion,” Appl. Phys. Lett. 78, 1466-1468 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. W. Corzine, R. H. Yan, and L. A. Coldren, “A tanh substitution technique for the analysis of abrupt and graded interface multilayer dielectric stacks,” IEEE J. Quantum Electron. 27, 2086-2090 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

L. H. Spiekman, Y. S. Oei, E.G. Metaal, F. H. Green, I. Moerman, and M. K. Smit, “Extremely small multimode interference couplers and ultrashort bends on InP by deep etching,” IEEE Photon. Technol. Lett. 6, 1008-1010 (1994).
[CrossRef]

Y. Ma, S. Park, L. Wang, and S. T. Ho, “Ultracompact multimode interference 3-dB coupler with strong lateral confinement by deep dry etching,” IEEE Photon. Technol. Lett. 12, 492-494 (2000).
[CrossRef]

C. F. Janz, B. P. Keyworth, W. Allegretto, R. I. Macdonald, M. Fallahi, G. Hillier, and C. Rolland, “Mach-Zehnder switch using an ultra-compact directional coupler in a strongly-confining rib structure,” IEEE Photon. Technol. Lett. 6, 981-983 (1994).
[CrossRef]

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, Jr., C. Dries, P. Studenkov, and S. Forrest, “Fabrication of ultracompact 3-db 2×2 MMI power splitters,” IEEE Photon. Technol. Lett. 11, 1009-1011 (1999).
[CrossRef]

J. Vacuum Sci. Technol. B (1)

J. E. Schramm, D. I. Babic, E. L. Hu, J. E. Bowers, and J. L. Merz, “Fabrication of high-aspect-ratio inp-based vertical-cavity laser mirrors using CH4/H2/O2/Ar reactive ion etching,” J. Vacuum Sci. Technol. B 15, 2031-2036 (1997).
[CrossRef]

Opt. Express (2)

Opt. Quantum Electron. (1)

J. Ctyroky, S. Helfert, and R. Pregla, “Analysis of a deep waveguide Bragg grating,” Opt. Quantum Electron. 30, 343-358 (1998).
[CrossRef]

Phys. Status Solidi A (1)

T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Status Solidi A 197, 688-702(2003).
[CrossRef]

Proc. SPIE (1)

Y. Lin, N. Rahmanian, S. Kim, and G. P. Nordin, “Compact and high efficiency polymer air-trench waveguide bends and splitters,” Proc. SPIE 6462, 64620V (2007).
[CrossRef]

Other (4)

C.-H. Chen, M. Sysak, J. Klamkin, and L. Coldren, “Ultra-compact grating-based 2×2 beam splitter for miniature photonic integrated circuits,” in Lasers and Electro-Optics Society, LEOS 2007, the Twentieth Annual Meeting of the IEEE (IEEE, 2007), pp. 784-785.
[CrossRef]

C.-H. Chen, J. Klamkin, L. A. Johansson, and L. A. Coldren, “Design and implementation of ultra-compact grating-based 2×2 beam splitter for miniature photonic integrated circuits,” in Optical Fiber communication/National Fiber Optic Engineers Conference, OFC/NFOEC 2008 (Optical Society of America, 2008), pp. 1-3.

A. Ramaswamy, L. Johansson, J. Klamkin, C. Sheldon, H. Chou, L. Rodwell, M. J. Coldren, and J. Bowers, “Coherent receiver based on a broadband optical phase-lock loop,” in “Optical Fiber Communication/National Fiber Optic Engineers Conference, OFC/NFOEC,” (Optical Society of America, 2007).

Y. Lin, N. Rahmanian, S. Kim, and G. Nordin, “Fabrication of compact polymer waveguide devices using air-trench bends and splitters,” in SoutheastCon 2008 (IEEE, 2008), pp. 421-426.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Schematic top view of a 2 × 2 grating-based beam splitter that is integrated with two modulators and two photodetectors. The waveguide boundary (not shown) is far from the diverged beams in the slab waveguide region. (b) Scanning electron microscope view of an integrated compact beam splitter on the carrier. Two fiber coupled incoming beams are illustrated by red and green arrows.

Fig. 2
Fig. 2

Comparison of the field 1 / e width of the slab waveguide expansion and linear flaring along the propagation direction. Different mode expansion speeds in linear flaring give different power transfer percentages (e.g., 90%, 95%, and 99%).

Fig. 3
Fig. 3

(a) Schematic side view of the grating region. The beam is confined only in the vertical direction. (b) Cross sections of the regrown gratings. The slab waveguide layer that contains multiple centered quantum wells can be clearly seen. No obvious air void is observed at the regrowth interface.

Fig. 4
Fig. 4

FDTD simulation of the Bragg grating splitter with one input at equal splitting conditions.

Fig. 5
Fig. 5

FDTD simulation of the grating splitter with the relative phase of two inputs at (a)  0 ° , (b)  90 ° , (c)  180 ° .

Fig. 6
Fig. 6

Simulated power at two output ports versus the phase difference of two inputs. The input power of each beam is set to one.

Fig. 7
Fig. 7

FDTD simulated loss versus grating etch depth in the vertical model. The total slab waveguide thickness is 3695 Å .

Fig. 8
Fig. 8

Beam divergence in the slab waveguide region. The beam waist is 3 μm at the input from the modulator, 10 μm at the grating region, and 12 μm at the detector front end. Different detector widths are also illustrated in blue (S), red (M), and green (L).

Fig. 9
Fig. 9

Measured splitting spectra of nine different combinations with different detector widths and different grating lengths. Red (lower) lines represent the reflection and blue (upper) lines represent the transmission.

Fig. 10
Fig. 10

Photocurrent splitting ratio versus grating length. The lines represent modeling; the circles represent the measured data.

Fig. 11
Fig. 11

FDTD simulated transmission and reflection spectra at (a) TM polarization and (b) TE polarization. Measured transmission and reflection spectra at (c) TM polarization and (d) TE polarization. The TM polarization is defined as the polarization perpendicular to the sample surface.

Fig. 12
Fig. 12

Measured insertion loss data versus grating lengths.

Tables (2)

Tables Icon

Table 1 FDTD Simulations on Splitting and Extinction Ratios

Tables Icon

Table 2 Experimental Data on Splitting and Extinction Ratios

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Θ w ( z ) z = λ π w o ,
| r g | = tanh ( κ L g ) ,
κ = 2 Δ n λ o ,
κ eff = η κ , 0 η 1 ,
| r g | eff = α × tanh ( κ eff L g ) , 0 α 1.

Metrics