Abstract

We report experiments in which wavelength-parallel spectral polarimetry technology is used for measurement of the frequency-dependent polarization mode dispersion (PMD) vector. Experiments have been performed using either a grating spectral disperser, configured to provide 13.6GHz spectral resolution over a 14nm optical bandwidth, or a virtually imaged phased array spectral disperser, configured for 1.6GHz spectral resolution over a 200GHz band. Our results indicate that the spectral polarimetry data obtained via this approach are of sufficient quality to permit accurate extraction of the PMD spectrum. The wavelength-parallel spectral polarimetry approach allows data acquisition within a few milliseconds.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kogelnik, R. M. Jopson, and L. E. Nelson, “Polarization mode dispersion,” in Optical Fiber Telecommunications IVB-Systems and Impairments, I. P. Kaminow and T. Li, ed. (Academic, 2002), Chap. 15, pp. 725-863.
  2. M. Karlsson, J. Brentel, and P. A. Andrekson, “Long-term measurement of PMD and polarization drift in installed fibers,” J. Lightwave Technol. 18, 941-951 (2000).
    [CrossRef]
  3. H. Bülow, “Limitation of optical first-order PMD compensation,” in Optical Fiber Communication Conference 1999/International Conference Integrated Optics and Optical Fiber Communication (OFC/IOOC '99) Technical Digest (Optical Society of America, 1999), Vol. 2, pp. 74-76.
  4. S. X. Wang and A. M. Weiner, “Fast wavelength-parallel polarimeter for broadband optical networks,” Opt. Lett. 29,923-925 (2004).
    [CrossRef] [PubMed]
  5. S. X. Wang and A. M. Weiner, “A complete spectral polarimeter design for lightwave communication systems,” J. Lightwave Technol. 24, 3982-3991 (2006).
    [CrossRef]
  6. S. X. Wang, A. M. Weiner, S.-H. Foo, D. Bownass, M. Moyer, M. O'Sullivan, M. Birk, and M. Boroditsky, “PMD tolerance testing of a commercial communication system using a spectral polarimeter,” J. Lightwave Technol. 24, 4120-4126 (2006).
    [CrossRef]
  7. M. Boroditsky, K. Cornick, C. Antonelli, M. Brodsky, S. D. Dods, N. J. Frigo, and P. Magill, “Comparison of system penalties from first and multi-order PMD,” IEEE Photon. Technol. Lett. 17, 1650-1652 (2005).
    [CrossRef]
  8. M. Akbulut, A. M. Weiner, and P. J. Miller, “Wideband all-order polarization mode dispersion compensation via pulse shaping,” Opt. Lett. 30, 2691-2693 (2005).
    [CrossRef] [PubMed]
  9. H. Miao, A. M. Weiner, L. Mirkin, and P. J. Miller, “All-order polarization mode dispersion compensation (PMD) via virtually imaged phased-array (vipa) based pulse shaper,” IEEE Photon. Technol. Lett. 20, 545-547 (2008).
    [CrossRef]
  10. L. Xu, H. Miao, and A. M. Weiner, “Fast measurement of polarization mode dispersion via virtually imaged phased-array based spectral polarimetry,” presented at the Optical Fiber Communications Conference, San Diego, California, 24-29February, 2008.
  11. M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21, 366-368 (1996).
    [CrossRef] [PubMed]
  12. S. X. Wang, S. Xiao, and A. M. Weiner, “Broadband, high spectral resolution 2-D wavelength-parallel polarimeter for dense WDM systems,” Opt. Express 13, 9374-9380 (2005).
    [CrossRef] [PubMed]
  13. B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 4, 1066-1069 (1992).
    [CrossRef]
  14. R. M. Jopson, L. E. Nelson, and H. Kogelnik, “Measurement of second-order polarization-mode dispersion vectros in opitcal fibers,” IEEE Photon. Technol. Lett. 11, 1153-1155 (1999).
    [CrossRef]
  15. C. D. Poole, Neal. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147 km undersea lightwave cable,” J. Lightwave Technol. 6, 1185-1190(1988).
    [CrossRef]
  16. P. B. Phua and H. A. Haus, “All-frequency PMD compensator in feedforward scheme,” J. Lightwave Technol. 22, 1280-1289(2004).
    [CrossRef]
  17. L. Xu, S. X. Wang, and A. M. Weiner, “Broadband polarization mode dispersion measurement via spectral polarimetry,” presented at Frontiers in Optics 2006, Rochester, New York, 8-12October 2006.
  18. N. Cyr, “Equivalence of Poincaré sphere and Jones matrix analyses for determination of PMD,” presented at the OFMC '99 convention, Nantes, France, 1999.
  19. S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40, 420-426 (2004).
    [CrossRef]

2008 (1)

H. Miao, A. M. Weiner, L. Mirkin, and P. J. Miller, “All-order polarization mode dispersion compensation (PMD) via virtually imaged phased-array (vipa) based pulse shaper,” IEEE Photon. Technol. Lett. 20, 545-547 (2008).
[CrossRef]

2006 (2)

2005 (3)

2004 (3)

2000 (1)

1999 (1)

R. M. Jopson, L. E. Nelson, and H. Kogelnik, “Measurement of second-order polarization-mode dispersion vectros in opitcal fibers,” IEEE Photon. Technol. Lett. 11, 1153-1155 (1999).
[CrossRef]

1996 (1)

1992 (1)

B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 4, 1066-1069 (1992).
[CrossRef]

1988 (1)

C. D. Poole, Neal. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147 km undersea lightwave cable,” J. Lightwave Technol. 6, 1185-1190(1988).
[CrossRef]

Akbulut, M.

Andrekson, P. A.

Antonelli, C.

M. Boroditsky, K. Cornick, C. Antonelli, M. Brodsky, S. D. Dods, N. J. Frigo, and P. Magill, “Comparison of system penalties from first and multi-order PMD,” IEEE Photon. Technol. Lett. 17, 1650-1652 (2005).
[CrossRef]

Bergano, Neal. S.

C. D. Poole, Neal. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147 km undersea lightwave cable,” J. Lightwave Technol. 6, 1185-1190(1988).
[CrossRef]

Birk, M.

Boroditsky, M.

S. X. Wang, A. M. Weiner, S.-H. Foo, D. Bownass, M. Moyer, M. O'Sullivan, M. Birk, and M. Boroditsky, “PMD tolerance testing of a commercial communication system using a spectral polarimeter,” J. Lightwave Technol. 24, 4120-4126 (2006).
[CrossRef]

M. Boroditsky, K. Cornick, C. Antonelli, M. Brodsky, S. D. Dods, N. J. Frigo, and P. Magill, “Comparison of system penalties from first and multi-order PMD,” IEEE Photon. Technol. Lett. 17, 1650-1652 (2005).
[CrossRef]

Bownass, D.

Brentel, J.

Brodsky, M.

M. Boroditsky, K. Cornick, C. Antonelli, M. Brodsky, S. D. Dods, N. J. Frigo, and P. Magill, “Comparison of system penalties from first and multi-order PMD,” IEEE Photon. Technol. Lett. 17, 1650-1652 (2005).
[CrossRef]

Bülow, H.

H. Bülow, “Limitation of optical first-order PMD compensation,” in Optical Fiber Communication Conference 1999/International Conference Integrated Optics and Optical Fiber Communication (OFC/IOOC '99) Technical Digest (Optical Society of America, 1999), Vol. 2, pp. 74-76.

Cornick, K.

M. Boroditsky, K. Cornick, C. Antonelli, M. Brodsky, S. D. Dods, N. J. Frigo, and P. Magill, “Comparison of system penalties from first and multi-order PMD,” IEEE Photon. Technol. Lett. 17, 1650-1652 (2005).
[CrossRef]

Cyr, N.

N. Cyr, “Equivalence of Poincaré sphere and Jones matrix analyses for determination of PMD,” presented at the OFMC '99 convention, Nantes, France, 1999.

Dods, S. D.

M. Boroditsky, K. Cornick, C. Antonelli, M. Brodsky, S. D. Dods, N. J. Frigo, and P. Magill, “Comparison of system penalties from first and multi-order PMD,” IEEE Photon. Technol. Lett. 17, 1650-1652 (2005).
[CrossRef]

Foo, S.-H.

Frigo, N. J.

M. Boroditsky, K. Cornick, C. Antonelli, M. Brodsky, S. D. Dods, N. J. Frigo, and P. Magill, “Comparison of system penalties from first and multi-order PMD,” IEEE Photon. Technol. Lett. 17, 1650-1652 (2005).
[CrossRef]

Haus, H. A.

Heffner, B. L.

B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 4, 1066-1069 (1992).
[CrossRef]

Jopson, R. M.

R. M. Jopson, L. E. Nelson, and H. Kogelnik, “Measurement of second-order polarization-mode dispersion vectros in opitcal fibers,” IEEE Photon. Technol. Lett. 11, 1153-1155 (1999).
[CrossRef]

H. Kogelnik, R. M. Jopson, and L. E. Nelson, “Polarization mode dispersion,” in Optical Fiber Telecommunications IVB-Systems and Impairments, I. P. Kaminow and T. Li, ed. (Academic, 2002), Chap. 15, pp. 725-863.

Karlsson, M.

Kogelnik, H.

R. M. Jopson, L. E. Nelson, and H. Kogelnik, “Measurement of second-order polarization-mode dispersion vectros in opitcal fibers,” IEEE Photon. Technol. Lett. 11, 1153-1155 (1999).
[CrossRef]

H. Kogelnik, R. M. Jopson, and L. E. Nelson, “Polarization mode dispersion,” in Optical Fiber Telecommunications IVB-Systems and Impairments, I. P. Kaminow and T. Li, ed. (Academic, 2002), Chap. 15, pp. 725-863.

Lin, C.

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40, 420-426 (2004).
[CrossRef]

Magill, P.

M. Boroditsky, K. Cornick, C. Antonelli, M. Brodsky, S. D. Dods, N. J. Frigo, and P. Magill, “Comparison of system penalties from first and multi-order PMD,” IEEE Photon. Technol. Lett. 17, 1650-1652 (2005).
[CrossRef]

Miao, H.

H. Miao, A. M. Weiner, L. Mirkin, and P. J. Miller, “All-order polarization mode dispersion compensation (PMD) via virtually imaged phased-array (vipa) based pulse shaper,” IEEE Photon. Technol. Lett. 20, 545-547 (2008).
[CrossRef]

L. Xu, H. Miao, and A. M. Weiner, “Fast measurement of polarization mode dispersion via virtually imaged phased-array based spectral polarimetry,” presented at the Optical Fiber Communications Conference, San Diego, California, 24-29February, 2008.

Miller, P. J.

H. Miao, A. M. Weiner, L. Mirkin, and P. J. Miller, “All-order polarization mode dispersion compensation (PMD) via virtually imaged phased-array (vipa) based pulse shaper,” IEEE Photon. Technol. Lett. 20, 545-547 (2008).
[CrossRef]

M. Akbulut, A. M. Weiner, and P. J. Miller, “Wideband all-order polarization mode dispersion compensation via pulse shaping,” Opt. Lett. 30, 2691-2693 (2005).
[CrossRef] [PubMed]

Mirkin, L.

H. Miao, A. M. Weiner, L. Mirkin, and P. J. Miller, “All-order polarization mode dispersion compensation (PMD) via virtually imaged phased-array (vipa) based pulse shaper,” IEEE Photon. Technol. Lett. 20, 545-547 (2008).
[CrossRef]

Moyer, M.

Nelson, L. E.

R. M. Jopson, L. E. Nelson, and H. Kogelnik, “Measurement of second-order polarization-mode dispersion vectros in opitcal fibers,” IEEE Photon. Technol. Lett. 11, 1153-1155 (1999).
[CrossRef]

H. Kogelnik, R. M. Jopson, and L. E. Nelson, “Polarization mode dispersion,” in Optical Fiber Telecommunications IVB-Systems and Impairments, I. P. Kaminow and T. Li, ed. (Academic, 2002), Chap. 15, pp. 725-863.

O'Sullivan, M.

Phua, P. B.

Poole, C. D.

C. D. Poole, Neal. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147 km undersea lightwave cable,” J. Lightwave Technol. 6, 1185-1190(1988).
[CrossRef]

Schulte, H. J.

C. D. Poole, Neal. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147 km undersea lightwave cable,” J. Lightwave Technol. 6, 1185-1190(1988).
[CrossRef]

Shirasaki, M.

Wagner, R. E.

C. D. Poole, Neal. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147 km undersea lightwave cable,” J. Lightwave Technol. 6, 1185-1190(1988).
[CrossRef]

Wang, S. X.

Weiner, A. M.

H. Miao, A. M. Weiner, L. Mirkin, and P. J. Miller, “All-order polarization mode dispersion compensation (PMD) via virtually imaged phased-array (vipa) based pulse shaper,” IEEE Photon. Technol. Lett. 20, 545-547 (2008).
[CrossRef]

S. X. Wang, A. M. Weiner, S.-H. Foo, D. Bownass, M. Moyer, M. O'Sullivan, M. Birk, and M. Boroditsky, “PMD tolerance testing of a commercial communication system using a spectral polarimeter,” J. Lightwave Technol. 24, 4120-4126 (2006).
[CrossRef]

S. X. Wang and A. M. Weiner, “A complete spectral polarimeter design for lightwave communication systems,” J. Lightwave Technol. 24, 3982-3991 (2006).
[CrossRef]

S. X. Wang, S. Xiao, and A. M. Weiner, “Broadband, high spectral resolution 2-D wavelength-parallel polarimeter for dense WDM systems,” Opt. Express 13, 9374-9380 (2005).
[CrossRef] [PubMed]

M. Akbulut, A. M. Weiner, and P. J. Miller, “Wideband all-order polarization mode dispersion compensation via pulse shaping,” Opt. Lett. 30, 2691-2693 (2005).
[CrossRef] [PubMed]

S. X. Wang and A. M. Weiner, “Fast wavelength-parallel polarimeter for broadband optical networks,” Opt. Lett. 29,923-925 (2004).
[CrossRef] [PubMed]

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40, 420-426 (2004).
[CrossRef]

L. Xu, S. X. Wang, and A. M. Weiner, “Broadband polarization mode dispersion measurement via spectral polarimetry,” presented at Frontiers in Optics 2006, Rochester, New York, 8-12October 2006.

L. Xu, H. Miao, and A. M. Weiner, “Fast measurement of polarization mode dispersion via virtually imaged phased-array based spectral polarimetry,” presented at the Optical Fiber Communications Conference, San Diego, California, 24-29February, 2008.

Xiao, S.

S. X. Wang, S. Xiao, and A. M. Weiner, “Broadband, high spectral resolution 2-D wavelength-parallel polarimeter for dense WDM systems,” Opt. Express 13, 9374-9380 (2005).
[CrossRef] [PubMed]

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40, 420-426 (2004).
[CrossRef]

Xu, L.

L. Xu, S. X. Wang, and A. M. Weiner, “Broadband polarization mode dispersion measurement via spectral polarimetry,” presented at Frontiers in Optics 2006, Rochester, New York, 8-12October 2006.

L. Xu, H. Miao, and A. M. Weiner, “Fast measurement of polarization mode dispersion via virtually imaged phased-array based spectral polarimetry,” presented at the Optical Fiber Communications Conference, San Diego, California, 24-29February, 2008.

IEEE J. Quantum Electron. (1)

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40, 420-426 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

M. Boroditsky, K. Cornick, C. Antonelli, M. Brodsky, S. D. Dods, N. J. Frigo, and P. Magill, “Comparison of system penalties from first and multi-order PMD,” IEEE Photon. Technol. Lett. 17, 1650-1652 (2005).
[CrossRef]

H. Miao, A. M. Weiner, L. Mirkin, and P. J. Miller, “All-order polarization mode dispersion compensation (PMD) via virtually imaged phased-array (vipa) based pulse shaper,” IEEE Photon. Technol. Lett. 20, 545-547 (2008).
[CrossRef]

B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 4, 1066-1069 (1992).
[CrossRef]

R. M. Jopson, L. E. Nelson, and H. Kogelnik, “Measurement of second-order polarization-mode dispersion vectros in opitcal fibers,” IEEE Photon. Technol. Lett. 11, 1153-1155 (1999).
[CrossRef]

J. Lightwave Technol. (5)

Opt. Express (1)

Opt. Lett. (3)

Other (5)

H. Kogelnik, R. M. Jopson, and L. E. Nelson, “Polarization mode dispersion,” in Optical Fiber Telecommunications IVB-Systems and Impairments, I. P. Kaminow and T. Li, ed. (Academic, 2002), Chap. 15, pp. 725-863.

H. Bülow, “Limitation of optical first-order PMD compensation,” in Optical Fiber Communication Conference 1999/International Conference Integrated Optics and Optical Fiber Communication (OFC/IOOC '99) Technical Digest (Optical Society of America, 1999), Vol. 2, pp. 74-76.

L. Xu, H. Miao, and A. M. Weiner, “Fast measurement of polarization mode dispersion via virtually imaged phased-array based spectral polarimetry,” presented at the Optical Fiber Communications Conference, San Diego, California, 24-29February, 2008.

L. Xu, S. X. Wang, and A. M. Weiner, “Broadband polarization mode dispersion measurement via spectral polarimetry,” presented at Frontiers in Optics 2006, Rochester, New York, 8-12October 2006.

N. Cyr, “Equivalence of Poincaré sphere and Jones matrix analyses for determination of PMD,” presented at the OFMC '99 convention, Nantes, France, 1999.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

PMD measurement setup with a grating as spectral disperser.

Fig. 2
Fig. 2

FLC cell.

Fig. 3
Fig. 3

DGD and PSP by simulation: (a), (b) 1-section emulator; (c), (d) 2-section emulator, where we put two cases together. Case 1 stands for the 70 cm + 40 cm PMF concatenation with 45 ° fast axes offset. In case 2, the first PMF section is shortened from 70 to 40 cm to get 40 cm + 40 cm concatenation and the fast axis offset is left unchanged. (e), (f) 3-section emulator ( 59.2 cm + 118.5 cm + 83 cm , two fast axes offsets are both 45 ° ).

Fig. 4
Fig. 4

PMD measurement of 1-section emulator: (a) DGD. The gray line shows the estimated DGD. The black solid line and dashed line show, respectively, DGD calculated by MMM and JME. (b) Output PSP spectra calculated by JME and one output SOP spectra measured.

Fig. 5
Fig. 5

PMD measurement results of 2-section emulators (case 1, 107 cm + 70 cm , 40 ° fast axis offset, 1.88 ps estimated DGD; case 2, 70 cm + 70 cm , which is obtained by cutting back the input side PMF section of case 1): (a)–(d) four output SOP spectra measured for case 1 corresponding to 0 ° , 90 ° , 135 ° , and RHC launches; (e) DGD of case 1; (f) output PSP spectra of case 1 calculated by JME; (g) output PSP spectra of case 1 and 2 calculated by MMM.

Fig. 6
Fig. 6

PMD measurement results: (a) DGD for 3-section emulator calculated by MMM and JME. (b)–(d) Results for a 16-section emulator. (b) DGD calculated by JME and MMM. (c) and (d) Frequency-dependent PSP calculated by (c) JME and (d) MMM.

Fig. 7
Fig. 7

High spectral resolution measurement setup: (a) full setup and (b) VIPA spectral disperser.

Fig. 8
Fig. 8

PMD vector measurement results for 1-section emulator: (a) DGD and (b) PSP vector plotted on the Poincaré sphere for a short PMF with estimated 16.7 ps DGD; (c) and (d) DGD and PSP, respectively, for a long PMF with estimated 91.6 ps DGD.

Fig. 9
Fig. 9

PMD vector measurement results for 2-section emulators: (a) and (b) are DGD and PSP, respectively, for the emulator with estimated 21.3 ps DGD. (c) and (d) are DGD and PSP, respectively, for the emulator with estimated 73.4 ps DGD.

Fig. 10
Fig. 10

PMD vector measurement results for 3-section emulators: DGD for (a) short and (b) long emulator.

Tables (2)

Tables Icon

Table 1 Truth Table for Multi-SOP (State of Polarization) Generator

Tables Icon

Table 2 Truth Table for SOP (State of Polarization) Component Selector

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

τ ( ω ) = τ 2 + R 2 ( ω ) τ 1 ,
Δ τ = Δ n × L / c ,
Δ τ = L 1 2 + L 2 2 + 2 L 1 L 2 cos 2 θ · Δ n / c ,
r = sin ( cos 1 ( 1 + L 1 / L 2 · cos 2 θ 1 + L 1 2 / L 2 2 + 2 L 1 / L 2 · cos 2 θ ) ) .
Δ ω = 2 π c / ( Δ n L 2 ) .
Δ τ = | Arg ( e 1 / e 2 ) / Δ ω | ,
cos ϕ = ( Tr R Δ 1 ) / 2 ,
r 1 sin ϕ = ( R Δ 23 R Δ 32 ) / 2 , r 2 sin ϕ = ( R Δ 31 R Δ 13 ) / 2 , r 3 sin ϕ = ( R Δ 12 R Δ 21 ) / 2.
Δ τ = ϕ / Δ ω .

Metrics