Abstract

An optical measurement method, the fold-ray videometrics method, that is applicable to the deformation measurement of large structures is proposed. Through an illustration of ship deformation, the principle of fold-ray videometrics and the composition of the deformation measurement system are introduced. The fold-ray videometrics method is able to transfer or relay three-dimensional geometric information with a fold-ray optical path and thus is capable of real-time measurement of three-dimensional positions, attitudes, and deformations between nonintervisible objects and those of intervisible objects with a very large angle of view. The proposed method therefore has the potential to be applied in deformation measurement of large structures.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Mochalov and A. Kazantsev, “Use of the ring laser units for measurement of the moving object deformation,” Proc. SPIE 4680, 85-92 (2002).
    [CrossRef]
  2. C. Baldwin, J. Kiddy, T. Salter, P. Chen, and J. Niemczuk, “Fiber optic structural health monitoring system: Rough sea trials testing of the RV Triton in ,” in Oceans 2002, Proceedings of the MTS/IEEE, Vol. 3 (2002), pp. 1806-1813.
    [CrossRef]
  3. K. Pran, G. Johnson, A. Jenson, K. Hagstad, G. Sagvolden, S. Farsund, C. Chang, L. Malsawma, and G. Wang, “Instrumentation of a high-speed surface effect ship for structural response characterisation during seatrials,” Proc. SPIE 3986, 372-379 (2002).
    [CrossRef]
  4. Q. Yu, G. Jiang, X. Ding, and Y. Shang, “Research on the broken-ray videogrammetric method and system for deformation measurement of large vessels,” presented at the Chinese Conference of Theoretical and Applied Mechanics-2007, Beijing, China, 20-22 August, 2007.
  5. Q. Yu, G. Jiang, S. Fu, and Y. Shang, “Measuring deformation of large vessels with innovative broken-ray videometrics,” presented at the 22nd International Congress of Theoretical and Applied Mechanics (ICTAM2008), Adelaide, Australia, 24-30August 2008.
  6. Y. Shiu and H. Ahmad, “Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX=XB,” IEEE Trans. Rob. Autom. 5, 16-29 (1989).
    [CrossRef]
  7. F. Park and B. Martin, “Robot sensor calibration: solving AX=XB on the Euclidean group,” IEEE Trans. Rob. Autom. 10, 717-721 (1994).
    [CrossRef]
  8. C. Lu, G. Hager and E. Mjolsness, “Fast and globally convergent pose estimation from video images,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 610-622 (2000).
    [CrossRef]
  9. A. Ansar and K. Daniilidistc, “Linear pose estimation from points or lines,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 578-589 (2003).
    [CrossRef]
  10. G. Campa, M. Mammarella, and M. Napolitano, “A comparison of pose estimation algorithms for machine vision based aerial refueling for UAVs,” in MED'06, 14th Mediterranean Conference on Control and Automation (2006), pp. 1-6.
  11. J. Weng, P. Cohen and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 965-980 (1992).
    [CrossRef]

2003 (1)

A. Ansar and K. Daniilidistc, “Linear pose estimation from points or lines,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 578-589 (2003).
[CrossRef]

2002 (2)

A. Mochalov and A. Kazantsev, “Use of the ring laser units for measurement of the moving object deformation,” Proc. SPIE 4680, 85-92 (2002).
[CrossRef]

K. Pran, G. Johnson, A. Jenson, K. Hagstad, G. Sagvolden, S. Farsund, C. Chang, L. Malsawma, and G. Wang, “Instrumentation of a high-speed surface effect ship for structural response characterisation during seatrials,” Proc. SPIE 3986, 372-379 (2002).
[CrossRef]

2000 (1)

C. Lu, G. Hager and E. Mjolsness, “Fast and globally convergent pose estimation from video images,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 610-622 (2000).
[CrossRef]

1994 (1)

F. Park and B. Martin, “Robot sensor calibration: solving AX=XB on the Euclidean group,” IEEE Trans. Rob. Autom. 10, 717-721 (1994).
[CrossRef]

1992 (1)

J. Weng, P. Cohen and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 965-980 (1992).
[CrossRef]

1989 (1)

Y. Shiu and H. Ahmad, “Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX=XB,” IEEE Trans. Rob. Autom. 5, 16-29 (1989).
[CrossRef]

Ahmad, H.

Y. Shiu and H. Ahmad, “Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX=XB,” IEEE Trans. Rob. Autom. 5, 16-29 (1989).
[CrossRef]

Ansar, A.

A. Ansar and K. Daniilidistc, “Linear pose estimation from points or lines,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 578-589 (2003).
[CrossRef]

Baldwin, C.

C. Baldwin, J. Kiddy, T. Salter, P. Chen, and J. Niemczuk, “Fiber optic structural health monitoring system: Rough sea trials testing of the RV Triton in ,” in Oceans 2002, Proceedings of the MTS/IEEE, Vol. 3 (2002), pp. 1806-1813.
[CrossRef]

Campa, G.

G. Campa, M. Mammarella, and M. Napolitano, “A comparison of pose estimation algorithms for machine vision based aerial refueling for UAVs,” in MED'06, 14th Mediterranean Conference on Control and Automation (2006), pp. 1-6.

Chang, C.

K. Pran, G. Johnson, A. Jenson, K. Hagstad, G. Sagvolden, S. Farsund, C. Chang, L. Malsawma, and G. Wang, “Instrumentation of a high-speed surface effect ship for structural response characterisation during seatrials,” Proc. SPIE 3986, 372-379 (2002).
[CrossRef]

Chen, P.

C. Baldwin, J. Kiddy, T. Salter, P. Chen, and J. Niemczuk, “Fiber optic structural health monitoring system: Rough sea trials testing of the RV Triton in ,” in Oceans 2002, Proceedings of the MTS/IEEE, Vol. 3 (2002), pp. 1806-1813.
[CrossRef]

Cohen, P.

J. Weng, P. Cohen and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 965-980 (1992).
[CrossRef]

Daniilidistc, K.

A. Ansar and K. Daniilidistc, “Linear pose estimation from points or lines,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 578-589 (2003).
[CrossRef]

Ding, X.

Q. Yu, G. Jiang, X. Ding, and Y. Shang, “Research on the broken-ray videogrammetric method and system for deformation measurement of large vessels,” presented at the Chinese Conference of Theoretical and Applied Mechanics-2007, Beijing, China, 20-22 August, 2007.

Farsund, S.

K. Pran, G. Johnson, A. Jenson, K. Hagstad, G. Sagvolden, S. Farsund, C. Chang, L. Malsawma, and G. Wang, “Instrumentation of a high-speed surface effect ship for structural response characterisation during seatrials,” Proc. SPIE 3986, 372-379 (2002).
[CrossRef]

Fu, S.

Q. Yu, G. Jiang, S. Fu, and Y. Shang, “Measuring deformation of large vessels with innovative broken-ray videometrics,” presented at the 22nd International Congress of Theoretical and Applied Mechanics (ICTAM2008), Adelaide, Australia, 24-30August 2008.

Hager, G.

C. Lu, G. Hager and E. Mjolsness, “Fast and globally convergent pose estimation from video images,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 610-622 (2000).
[CrossRef]

Hagstad, K.

K. Pran, G. Johnson, A. Jenson, K. Hagstad, G. Sagvolden, S. Farsund, C. Chang, L. Malsawma, and G. Wang, “Instrumentation of a high-speed surface effect ship for structural response characterisation during seatrials,” Proc. SPIE 3986, 372-379 (2002).
[CrossRef]

Herniou, M.

J. Weng, P. Cohen and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 965-980 (1992).
[CrossRef]

Jenson, A.

K. Pran, G. Johnson, A. Jenson, K. Hagstad, G. Sagvolden, S. Farsund, C. Chang, L. Malsawma, and G. Wang, “Instrumentation of a high-speed surface effect ship for structural response characterisation during seatrials,” Proc. SPIE 3986, 372-379 (2002).
[CrossRef]

Jiang, G.

Q. Yu, G. Jiang, S. Fu, and Y. Shang, “Measuring deformation of large vessels with innovative broken-ray videometrics,” presented at the 22nd International Congress of Theoretical and Applied Mechanics (ICTAM2008), Adelaide, Australia, 24-30August 2008.

Q. Yu, G. Jiang, X. Ding, and Y. Shang, “Research on the broken-ray videogrammetric method and system for deformation measurement of large vessels,” presented at the Chinese Conference of Theoretical and Applied Mechanics-2007, Beijing, China, 20-22 August, 2007.

Johnson, G.

K. Pran, G. Johnson, A. Jenson, K. Hagstad, G. Sagvolden, S. Farsund, C. Chang, L. Malsawma, and G. Wang, “Instrumentation of a high-speed surface effect ship for structural response characterisation during seatrials,” Proc. SPIE 3986, 372-379 (2002).
[CrossRef]

Kazantsev, A.

A. Mochalov and A. Kazantsev, “Use of the ring laser units for measurement of the moving object deformation,” Proc. SPIE 4680, 85-92 (2002).
[CrossRef]

Kiddy, J.

C. Baldwin, J. Kiddy, T. Salter, P. Chen, and J. Niemczuk, “Fiber optic structural health monitoring system: Rough sea trials testing of the RV Triton in ,” in Oceans 2002, Proceedings of the MTS/IEEE, Vol. 3 (2002), pp. 1806-1813.
[CrossRef]

Lu, C.

C. Lu, G. Hager and E. Mjolsness, “Fast and globally convergent pose estimation from video images,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 610-622 (2000).
[CrossRef]

Malsawma, L.

K. Pran, G. Johnson, A. Jenson, K. Hagstad, G. Sagvolden, S. Farsund, C. Chang, L. Malsawma, and G. Wang, “Instrumentation of a high-speed surface effect ship for structural response characterisation during seatrials,” Proc. SPIE 3986, 372-379 (2002).
[CrossRef]

Mammarella, M.

G. Campa, M. Mammarella, and M. Napolitano, “A comparison of pose estimation algorithms for machine vision based aerial refueling for UAVs,” in MED'06, 14th Mediterranean Conference on Control and Automation (2006), pp. 1-6.

Martin, B.

F. Park and B. Martin, “Robot sensor calibration: solving AX=XB on the Euclidean group,” IEEE Trans. Rob. Autom. 10, 717-721 (1994).
[CrossRef]

Mjolsness, E.

C. Lu, G. Hager and E. Mjolsness, “Fast and globally convergent pose estimation from video images,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 610-622 (2000).
[CrossRef]

Mochalov, A.

A. Mochalov and A. Kazantsev, “Use of the ring laser units for measurement of the moving object deformation,” Proc. SPIE 4680, 85-92 (2002).
[CrossRef]

Napolitano, M.

G. Campa, M. Mammarella, and M. Napolitano, “A comparison of pose estimation algorithms for machine vision based aerial refueling for UAVs,” in MED'06, 14th Mediterranean Conference on Control and Automation (2006), pp. 1-6.

Niemczuk, J.

C. Baldwin, J. Kiddy, T. Salter, P. Chen, and J. Niemczuk, “Fiber optic structural health monitoring system: Rough sea trials testing of the RV Triton in ,” in Oceans 2002, Proceedings of the MTS/IEEE, Vol. 3 (2002), pp. 1806-1813.
[CrossRef]

Park, F.

F. Park and B. Martin, “Robot sensor calibration: solving AX=XB on the Euclidean group,” IEEE Trans. Rob. Autom. 10, 717-721 (1994).
[CrossRef]

Pran, K.

K. Pran, G. Johnson, A. Jenson, K. Hagstad, G. Sagvolden, S. Farsund, C. Chang, L. Malsawma, and G. Wang, “Instrumentation of a high-speed surface effect ship for structural response characterisation during seatrials,” Proc. SPIE 3986, 372-379 (2002).
[CrossRef]

Sagvolden, G.

K. Pran, G. Johnson, A. Jenson, K. Hagstad, G. Sagvolden, S. Farsund, C. Chang, L. Malsawma, and G. Wang, “Instrumentation of a high-speed surface effect ship for structural response characterisation during seatrials,” Proc. SPIE 3986, 372-379 (2002).
[CrossRef]

Salter, T.

C. Baldwin, J. Kiddy, T. Salter, P. Chen, and J. Niemczuk, “Fiber optic structural health monitoring system: Rough sea trials testing of the RV Triton in ,” in Oceans 2002, Proceedings of the MTS/IEEE, Vol. 3 (2002), pp. 1806-1813.
[CrossRef]

Shang, Y.

Q. Yu, G. Jiang, S. Fu, and Y. Shang, “Measuring deformation of large vessels with innovative broken-ray videometrics,” presented at the 22nd International Congress of Theoretical and Applied Mechanics (ICTAM2008), Adelaide, Australia, 24-30August 2008.

Q. Yu, G. Jiang, X. Ding, and Y. Shang, “Research on the broken-ray videogrammetric method and system for deformation measurement of large vessels,” presented at the Chinese Conference of Theoretical and Applied Mechanics-2007, Beijing, China, 20-22 August, 2007.

Shiu, Y.

Y. Shiu and H. Ahmad, “Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX=XB,” IEEE Trans. Rob. Autom. 5, 16-29 (1989).
[CrossRef]

Wang, G.

K. Pran, G. Johnson, A. Jenson, K. Hagstad, G. Sagvolden, S. Farsund, C. Chang, L. Malsawma, and G. Wang, “Instrumentation of a high-speed surface effect ship for structural response characterisation during seatrials,” Proc. SPIE 3986, 372-379 (2002).
[CrossRef]

Weng, J.

J. Weng, P. Cohen and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 965-980 (1992).
[CrossRef]

Yu, Q.

Q. Yu, G. Jiang, X. Ding, and Y. Shang, “Research on the broken-ray videogrammetric method and system for deformation measurement of large vessels,” presented at the Chinese Conference of Theoretical and Applied Mechanics-2007, Beijing, China, 20-22 August, 2007.

Q. Yu, G. Jiang, S. Fu, and Y. Shang, “Measuring deformation of large vessels with innovative broken-ray videometrics,” presented at the 22nd International Congress of Theoretical and Applied Mechanics (ICTAM2008), Adelaide, Australia, 24-30August 2008.

IEEE Trans. Pattern Anal. Mach. Intell. (3)

C. Lu, G. Hager and E. Mjolsness, “Fast and globally convergent pose estimation from video images,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 610-622 (2000).
[CrossRef]

A. Ansar and K. Daniilidistc, “Linear pose estimation from points or lines,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 578-589 (2003).
[CrossRef]

J. Weng, P. Cohen and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 965-980 (1992).
[CrossRef]

IEEE Trans. Rob. Autom. (2)

Y. Shiu and H. Ahmad, “Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX=XB,” IEEE Trans. Rob. Autom. 5, 16-29 (1989).
[CrossRef]

F. Park and B. Martin, “Robot sensor calibration: solving AX=XB on the Euclidean group,” IEEE Trans. Rob. Autom. 10, 717-721 (1994).
[CrossRef]

Proc. SPIE (2)

A. Mochalov and A. Kazantsev, “Use of the ring laser units for measurement of the moving object deformation,” Proc. SPIE 4680, 85-92 (2002).
[CrossRef]

K. Pran, G. Johnson, A. Jenson, K. Hagstad, G. Sagvolden, S. Farsund, C. Chang, L. Malsawma, and G. Wang, “Instrumentation of a high-speed surface effect ship for structural response characterisation during seatrials,” Proc. SPIE 3986, 372-379 (2002).
[CrossRef]

Other (4)

Q. Yu, G. Jiang, X. Ding, and Y. Shang, “Research on the broken-ray videogrammetric method and system for deformation measurement of large vessels,” presented at the Chinese Conference of Theoretical and Applied Mechanics-2007, Beijing, China, 20-22 August, 2007.

Q. Yu, G. Jiang, S. Fu, and Y. Shang, “Measuring deformation of large vessels with innovative broken-ray videometrics,” presented at the 22nd International Congress of Theoretical and Applied Mechanics (ICTAM2008), Adelaide, Australia, 24-30August 2008.

C. Baldwin, J. Kiddy, T. Salter, P. Chen, and J. Niemczuk, “Fiber optic structural health monitoring system: Rough sea trials testing of the RV Triton in ,” in Oceans 2002, Proceedings of the MTS/IEEE, Vol. 3 (2002), pp. 1806-1813.
[CrossRef]

G. Campa, M. Mammarella, and M. Napolitano, “A comparison of pose estimation algorithms for machine vision based aerial refueling for UAVs,” in MED'06, 14th Mediterranean Conference on Control and Automation (2006), pp. 1-6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration of fold-ray videometrics (B, reference; G, target; M, marker; C 1 , C 2 , C 3 , cameras).

Fig. 2
Fig. 2

Another form of fold-ray videometrics (B, reference; G, target; M, marker; C 1 , C 2 , C 3 , cameras).

Fig. 3
Fig. 3

RMS of angular error over the number of matrices.

Fig. 4
Fig. 4

Cutaway view of the laboratory experimental setup (M, marker; C 1 , C 2 , C 3 , cameras).

Fig. 5
Fig. 5

Comparison of measured and true values: (a) rotated angle around axis Y (b) displacement along axis Y.

Tables (1)

Tables Icon

Table 1 RMS of Errors between Measured and True Values

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

P F = R I F P I + T F ,
P C 1 = R B C 1 P B + T B C 1 ,
P C 2 = R C 1 C 2 P C 1 + T C 1 C 2 .
P C 2 = R C 1 C 2 R B C 1 P B + ( R C 1 C 2 T B C 1 + T C 1 C 2 ) .
R B G = R C 3 G R M C 3 R C 2 M R C 1 C 2 R B C 1 ,
T B G = R C 3 G R M C 3 R C 2 M R C 1 C 2 T B C 1 + R C 3 G R M C 3 R C 2 M T C 1 C 2 + R C 3 G R M C 3 T C 2 M + R C 3 G T M C 3 + T C 3 G .
{ X f = r 11 x w + r 12 y w + r 13 z w + t x r 31 x w + r 32 y w + r 33 z w + t z Y f = r 21 x w + r 22 y w + r 23 z w + t y r 31 x w + r 32 y w + r 33 z w + t z ,
{ X + δ x f = r 11 x w + r 12 y w + r 13 z w + t x r 31 x w + r 32 y w + r 33 z w + t z Y + δ y f = r 21 x w + r 22 y w + r 23 z w + t y r 31 x w + r 32 y w + r 33 z w + t z ,
{ δ x = k 1 X ( X 2 + Y 2 ) + ( k 2 + k 4 ) X 2 + k 5 X Y + k 2 Y 2 δ x = k 1 Y ( X 2 + Y 2 ) + k 3 X 2 + k 4 X Y + ( k 3 + k 5 ) Y 2 ,
R 0 n = i = 0 n 1 R n i 1 n i = R n 1 n R n 2 n 1 R 0 1 ,
T 0 n = T n 1 n + i = 0 n 2 [ ( j = i + 1 n 1 R n j 1 n j ) T i i + 1 ] ,
R 0 n = i = 0 n 1 R n i 1 n i = R n 1 n R n 2 n 1 R 0 1 .

Metrics