Abstract

We report on the reversal of degradation of information masks stored in self-defocusing lithium niobate. After a long writing time, the image degradation appears as the splitting of refractive-index patterns stored in the medium. The reversal is achieved simply by illuminating the crystal with incoherent light from a halogen lamp. The reversal occurs because the refractive-index changes responsible for the splitting are of a smaller magnitude and are therefore erased first during incoherent illumination. Additionally, we gain insight into the storage, degradation, and erasure dynamics using a time- dependent numerical model of the photorefractive effect in this medium. Since the data can be recovered from a degraded state in which the original data are unrecognizable, this technique could be utilized in such applications as image scrambling or encryption.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58, R57-R78 (1985).
    [CrossRef]
  2. F. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915-917 (1993).
    [CrossRef] [PubMed]
  3. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095-3100 (1995).
    [CrossRef] [PubMed]
  4. O. Matoba, K. Itoh, and K. Kuroda, “Photorefractive optics in dynamic interconnection,” Proc. IEEE 87, 2030-2049 (1999).
    [CrossRef]
  5. V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42, 463-465 (2006).
    [CrossRef]
  6. S. Kawata, “Photorefractive optics in three-dimensional digital memory,” Proc. IEEE 87, 2009-2020 (1999).
    [CrossRef]
  7. D. Staebler, W. Burke, W. Phillips, and J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182-184 (1975).
    [CrossRef]
  8. Q. W. Song, C.-P. Zhang, and P. J. Talbot, “Self-defocusing, self-focusing, and speckle in LiNbO3 and LiNbO3:Fe crystals,” Appl. Opt. 32, 7266-7271 (1993).
    [CrossRef] [PubMed]
  9. G. C.Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, “Dark and bright photovoltaic solitons,” Phys. Rev. A 50, R4457-R4460 (1994).
    [CrossRef] [PubMed]
  10. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
    [CrossRef]
  11. S. Juodkazis, V. Mizeikis, M. Sudzius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129-133(2008).
    [CrossRef]
  12. Y. Gao, S. Liu, Z. Liu, and T. Song, “Transmission of digital images consisting of white-light dark solitons,” Appl. Opt. 44, 6948-6951 (2005).
    [CrossRef] [PubMed]
  13. H. D. Wen, S. M. Liu, X. Z. Zhang, R. Guo, G. Q. Zhang, Q. Sun, J. J. Xu, and G. Y. Zhang, “Photorefractive phase mask,” Proc. SPIE 4277, 303-310 (2001).
    [CrossRef]
  14. P. Günter and J. Huignard, eds., Photorefractive Effects and Applications (Springer-Verlag, 1988).
  15. D. Psaltis, F. Mok, and H.-Y. Li, “Nonvolatile storage in photorefractive crystals,” Opt. Lett. 19, 210-212 (1994).
    [CrossRef] [PubMed]
  16. P. Yeh, ed., Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).
  17. F. Devaux, V. Coda, M. Chauvet, and R. Passier, “New time-dependent photorefractive three-dimensional model: application to self-trapped beam with large bending,” J. Opt. Soc. Am. B 25, 1081-1086 (2008).
    [CrossRef]
  18. F. Devaux and M. Chauvet, “Three-dimensional numerical model of the dynamics of photorefractive beam self-focusing in InP:Fe,” Phys. Rev. A 79, 033823 (2009).
    [CrossRef]
  19. C. Johnson, ed., Matrix Theory and Applications (American Mathematical Society, 1990).
  20. Y. Gao, S. Liu, X. Zhang, and Y. Lu, “White-light photorefractive phase mask,” Appl. Opt. 44, 1533-1537(2005).
    [CrossRef] [PubMed]

2009

F. Devaux and M. Chauvet, “Three-dimensional numerical model of the dynamics of photorefractive beam self-focusing in InP:Fe,” Phys. Rev. A 79, 033823 (2009).
[CrossRef]

2008

F. Devaux, V. Coda, M. Chauvet, and R. Passier, “New time-dependent photorefractive three-dimensional model: application to self-trapped beam with large bending,” J. Opt. Soc. Am. B 25, 1081-1086 (2008).
[CrossRef]

S. Juodkazis, V. Mizeikis, M. Sudzius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129-133(2008).
[CrossRef]

2006

V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42, 463-465 (2006).
[CrossRef]

2005

2004

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

2001

H. D. Wen, S. M. Liu, X. Z. Zhang, R. Guo, G. Q. Zhang, Q. Sun, J. J. Xu, and G. Y. Zhang, “Photorefractive phase mask,” Proc. SPIE 4277, 303-310 (2001).
[CrossRef]

1999

S. Kawata, “Photorefractive optics in three-dimensional digital memory,” Proc. IEEE 87, 2009-2020 (1999).
[CrossRef]

O. Matoba, K. Itoh, and K. Kuroda, “Photorefractive optics in dynamic interconnection,” Proc. IEEE 87, 2030-2049 (1999).
[CrossRef]

1995

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095-3100 (1995).
[CrossRef] [PubMed]

1994

G. C.Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, “Dark and bright photovoltaic solitons,” Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

D. Psaltis, F. Mok, and H.-Y. Li, “Nonvolatile storage in photorefractive crystals,” Opt. Lett. 19, 210-212 (1994).
[CrossRef] [PubMed]

1993

1985

G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58, R57-R78 (1985).
[CrossRef]

1975

D. Staebler, W. Burke, W. Phillips, and J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182-184 (1975).
[CrossRef]

Bashaw, M. C.

G. C.Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, “Dark and bright photovoltaic solitons,” Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

Fejer, M. M.

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095-3100 (1995).
[CrossRef] [PubMed]

Song, Q. W.

Valley, G. C.

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095-3100 (1995).
[CrossRef] [PubMed]

Amodei, J.

D. Staebler, W. Burke, W. Phillips, and J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182-184 (1975).
[CrossRef]

Bashaw, M. C.

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095-3100 (1995).
[CrossRef] [PubMed]

Bertolotti, M.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Burke, W.

D. Staebler, W. Burke, W. Phillips, and J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182-184 (1975).
[CrossRef]

Chauvet, M.

F. Devaux and M. Chauvet, “Three-dimensional numerical model of the dynamics of photorefractive beam self-focusing in InP:Fe,” Phys. Rev. A 79, 033823 (2009).
[CrossRef]

F. Devaux, V. Coda, M. Chauvet, and R. Passier, “New time-dependent photorefractive three-dimensional model: application to self-trapped beam with large bending,” J. Opt. Soc. Am. B 25, 1081-1086 (2008).
[CrossRef]

V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42, 463-465 (2006).
[CrossRef]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Coda, V.

F. Devaux, V. Coda, M. Chauvet, and R. Passier, “New time-dependent photorefractive three-dimensional model: application to self-trapped beam with large bending,” J. Opt. Soc. Am. B 25, 1081-1086 (2008).
[CrossRef]

V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42, 463-465 (2006).
[CrossRef]

Crosignani, B.

G. C.Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, “Dark and bright photovoltaic solitons,” Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

Devaux, F.

F. Devaux and M. Chauvet, “Three-dimensional numerical model of the dynamics of photorefractive beam self-focusing in InP:Fe,” Phys. Rev. A 79, 033823 (2009).
[CrossRef]

F. Devaux, V. Coda, M. Chauvet, and R. Passier, “New time-dependent photorefractive three-dimensional model: application to self-trapped beam with large bending,” J. Opt. Soc. Am. B 25, 1081-1086 (2008).
[CrossRef]

Fazio, E.

V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42, 463-465 (2006).
[CrossRef]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Fejer, M. M.

G. C.Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, “Dark and bright photovoltaic solitons,” Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

Gamaly, E. G.

S. Juodkazis, V. Mizeikis, M. Sudzius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129-133(2008).
[CrossRef]

Gao, Y.

Günter, P.

P. Günter and J. Huignard, eds., Photorefractive Effects and Applications (Springer-Verlag, 1988).

Guo, R.

H. D. Wen, S. M. Liu, X. Z. Zhang, R. Guo, G. Q. Zhang, Q. Sun, J. J. Xu, and G. Y. Zhang, “Photorefractive phase mask,” Proc. SPIE 4277, 303-310 (2001).
[CrossRef]

Huignard, J.

P. Günter and J. Huignard, eds., Photorefractive Effects and Applications (Springer-Verlag, 1988).

Itoh, K.

O. Matoba, K. Itoh, and K. Kuroda, “Photorefractive optics in dynamic interconnection,” Proc. IEEE 87, 2030-2049 (1999).
[CrossRef]

Johnson, C.

C. Johnson, ed., Matrix Theory and Applications (American Mathematical Society, 1990).

Juodkazis, S.

S. Juodkazis, V. Mizeikis, M. Sudzius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129-133(2008).
[CrossRef]

Kawata, S.

S. Kawata, “Photorefractive optics in three-dimensional digital memory,” Proc. IEEE 87, 2009-2020 (1999).
[CrossRef]

Kitamura, K.

S. Juodkazis, V. Mizeikis, M. Sudzius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129-133(2008).
[CrossRef]

Krolikowski, W. Z.

S. Juodkazis, V. Mizeikis, M. Sudzius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129-133(2008).
[CrossRef]

Kuroda, K.

O. Matoba, K. Itoh, and K. Kuroda, “Photorefractive optics in dynamic interconnection,” Proc. IEEE 87, 2030-2049 (1999).
[CrossRef]

Li, H.-Y.

Liu, S.

Liu, S. M.

H. D. Wen, S. M. Liu, X. Z. Zhang, R. Guo, G. Q. Zhang, Q. Sun, J. J. Xu, and G. Y. Zhang, “Photorefractive phase mask,” Proc. SPIE 4277, 303-310 (2001).
[CrossRef]

Liu, Z.

Lu, Y.

Matoba, O.

O. Matoba, K. Itoh, and K. Kuroda, “Photorefractive optics in dynamic interconnection,” Proc. IEEE 87, 2030-2049 (1999).
[CrossRef]

Misawa, H.

S. Juodkazis, V. Mizeikis, M. Sudzius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129-133(2008).
[CrossRef]

Mizeikis, V.

S. Juodkazis, V. Mizeikis, M. Sudzius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129-133(2008).
[CrossRef]

Mok, F.

Passier, R.

Petris, A.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Pettazzi, F.

V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42, 463-465 (2006).
[CrossRef]

Phillips, W.

D. Staebler, W. Burke, W. Phillips, and J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182-184 (1975).
[CrossRef]

Psaltis, D.

Ramadan, W.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Renzi, F.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Rinaldi, R.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Rode, A. V.

S. Juodkazis, V. Mizeikis, M. Sudzius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129-133(2008).
[CrossRef]

Seaton, C. T.

G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58, R57-R78 (1985).
[CrossRef]

Segev, M.

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095-3100 (1995).
[CrossRef] [PubMed]

G. C.Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, “Dark and bright photovoltaic solitons,” Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

Song, T.

Staebler, D.

D. Staebler, W. Burke, W. Phillips, and J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182-184 (1975).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58, R57-R78 (1985).
[CrossRef]

Sudzius, M.

S. Juodkazis, V. Mizeikis, M. Sudzius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129-133(2008).
[CrossRef]

Sun, Q.

H. D. Wen, S. M. Liu, X. Z. Zhang, R. Guo, G. Q. Zhang, Q. Sun, J. J. Xu, and G. Y. Zhang, “Photorefractive phase mask,” Proc. SPIE 4277, 303-310 (2001).
[CrossRef]

Takekawa, S.

S. Juodkazis, V. Mizeikis, M. Sudzius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129-133(2008).
[CrossRef]

Talbot, P. J.

Taya, M.

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095-3100 (1995).
[CrossRef] [PubMed]

Valley, G. C.

G. C.Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, “Dark and bright photovoltaic solitons,” Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

Vlad, V. I.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Wen, H. D.

H. D. Wen, S. M. Liu, X. Z. Zhang, R. Guo, G. Q. Zhang, Q. Sun, J. J. Xu, and G. Y. Zhang, “Photorefractive phase mask,” Proc. SPIE 4277, 303-310 (2001).
[CrossRef]

Xu, J. J.

H. D. Wen, S. M. Liu, X. Z. Zhang, R. Guo, G. Q. Zhang, Q. Sun, J. J. Xu, and G. Y. Zhang, “Photorefractive phase mask,” Proc. SPIE 4277, 303-310 (2001).
[CrossRef]

Yariv, A.

G. C.Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, “Dark and bright photovoltaic solitons,” Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

Yeh, P.

P. Yeh, ed., Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).

Zhang, C.-P.

Zhang, G. Q.

H. D. Wen, S. M. Liu, X. Z. Zhang, R. Guo, G. Q. Zhang, Q. Sun, J. J. Xu, and G. Y. Zhang, “Photorefractive phase mask,” Proc. SPIE 4277, 303-310 (2001).
[CrossRef]

Zhang, G. Y.

H. D. Wen, S. M. Liu, X. Z. Zhang, R. Guo, G. Q. Zhang, Q. Sun, J. J. Xu, and G. Y. Zhang, “Photorefractive phase mask,” Proc. SPIE 4277, 303-310 (2001).
[CrossRef]

Zhang, X.

Zhang, X. Z.

H. D. Wen, S. M. Liu, X. Z. Zhang, R. Guo, G. Q. Zhang, Q. Sun, J. J. Xu, and G. Y. Zhang, “Photorefractive phase mask,” Proc. SPIE 4277, 303-310 (2001).
[CrossRef]

Appl. Opt.

Appl. Phys. A

S. Juodkazis, V. Mizeikis, M. Sudzius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129-133(2008).
[CrossRef]

Appl. Phys. Lett.

D. Staebler, W. Burke, W. Phillips, and J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182-184 (1975).
[CrossRef]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Electron. Lett.

V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42, 463-465 (2006).
[CrossRef]

J. Appl. Phys.

G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58, R57-R78 (1985).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. A

G. C.Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, “Dark and bright photovoltaic solitons,” Phys. Rev. A 50, R4457-R4460 (1994).
[CrossRef] [PubMed]

F. Devaux and M. Chauvet, “Three-dimensional numerical model of the dynamics of photorefractive beam self-focusing in InP:Fe,” Phys. Rev. A 79, 033823 (2009).
[CrossRef]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095-3100 (1995).
[CrossRef] [PubMed]

Proc. IEEE

O. Matoba, K. Itoh, and K. Kuroda, “Photorefractive optics in dynamic interconnection,” Proc. IEEE 87, 2030-2049 (1999).
[CrossRef]

S. Kawata, “Photorefractive optics in three-dimensional digital memory,” Proc. IEEE 87, 2009-2020 (1999).
[CrossRef]

Proc. SPIE

H. D. Wen, S. M. Liu, X. Z. Zhang, R. Guo, G. Q. Zhang, Q. Sun, J. J. Xu, and G. Y. Zhang, “Photorefractive phase mask,” Proc. SPIE 4277, 303-310 (2001).
[CrossRef]

Other

P. Günter and J. Huignard, eds., Photorefractive Effects and Applications (Springer-Verlag, 1988).

P. Yeh, ed., Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).

C. Johnson, ed., Matrix Theory and Applications (American Mathematical Society, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup: YAG, Nd:YAG laser at 532 nm ; AM, amplitude mask; BS, beam splitter; LN, LiNbO 3 crystal (c axis in the x direction); BE, beam expander; HeNe, He–Ne laser at 633 nm ; CCD, CCD camera attached to computer.

Fig. 2
Fig. 2

Input amplitude mask of clear stripes (white) on an opaque background (black).

Fig. 3
Fig. 3

Images during the writing and erasure process: (a)–(c)  during writing, (d)–(e) during erasure. The time of exposure to the writing beam is (a) 2 min, (b) 5 min, (c) 40 min. The time from the start of erasure is (d) 1 min, (e) 72 min, (f) 97 min.

Fig. 4
Fig. 4

Profiles I av for the ROI of the images shown in Fig. 3. Exposure time to the writing beam is (a) 2 min, (b) 5 min, (c) 40 min; time from the start of erasure is (d) 1 min, (e) 72 min, (f) 97 min.

Fig. 5
Fig. 5

Readout images from the numerical model during writing and erasure: (a)–(c) during writing; (d)–(e) during erasure. The time of exposure to the writing beam corresponds to the times from Fig. 3, i.e., (a) 2 min, (b) 5 min, (c) 40 min. The time from start of erasure is (d) 1 min, (e) 72 min, (f) 97 min.

Fig. 6
Fig. 6

Propagation of the write beam at the start of the writing process showing a complicated beam structure.

Fig. 7
Fig. 7

Readout images for different feature sizes: (a) degraded and (b) recovered images for the 146 μm feature size; (c) degraded and (d) recovered images for the 18 μm feature size.

Fig. 8
Fig. 8

FC of the readout image over the write and erase processes clearly showing that the information mask is scrambled and then recovered.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I av ( m ) = 1 N n I ( m , n ) ;     m = 1 , 2 , , M ,
Δ n = 1 2 n e 3 r 33 E x ,
FC = | k = 0 M 1 l = 0 N 1 X ( k , l ) Y ( k , l ) | ,
F ( k , l ) = n = 0 N 1 m = 0 M 1 x ( m , n ) exp ( j 2 π ( k m M + l n N ) ) ,

Metrics