Abstract

Optical channel waveguides in Nd/Ce codoped YAG laser crystal have been fabricated by using mask-assisted carbon ion implantation. The measured waveguide mode distributions were in good agreement with the calculated modal profiles, which implies the feasibility of designable devices. After thermal annealing treatment at 260°C for 30min in air, the propagation loss of the waveguide was reduced down to 2dB/cm at a wavelength of 632.8nm. The microluminescence spectra of the waveguides show that the fluorescence properties of both Ce and Nd ions (including the energy transfer between them) are not significantly affected by the waveguide formation processing, which indicates a fairly good potential for further laser actions in a compact device.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Dong, P. Deng, F. Gan, Y. Urata, R. Hua, S. Wada, and H. Tashiro, “Highly doped Nd:YAG crystal used for microchip lasers,” Opt. Commun. 197, 413-418 (2001).
    [CrossRef]
  2. E. Kanchanavaleerat, D. Cochet-Muchy, M. Kokta, J. Stone-Sundberg, P. Sarkies, J. Sarkies, and J. Sarkies, “Crystal growth of high doped Nd:YAG,” Opt. Mater. 26, 337-341(2004).
    [CrossRef]
  3. J. X. Meng, J. Q. Li, Z. P. Shi, and K. W. Cheah, “Efficient energy transfer for Ce to Nd in Nd/Ce codoped yttrium aluminium garnet,” Appl. Phys. Lett. 93, 221908 (2008).
    [CrossRef]
  4. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131-150(1998).
    [CrossRef]
  5. G. Lifante, Integrated Photonics: Fundamentals (Wiley, 2007).
  6. J. I. Mackenzie, “Dielectic solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13, 626-637 (2007).
    [CrossRef]
  7. F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33, 165-182(2008).
    [CrossRef]
  8. J. Lamela, A. Rodenas, D. Jaque, and F. Jaque, “Field optical and micro-luminescence investigations of femtosecond laser micro-structured Nd:YAG crystals,” Opt. Express 15, 3285-3290 (2007).
    [CrossRef] [PubMed]
  9. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried `waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30, 2248-2250 (2005).
    [CrossRef] [PubMed]
  10. G. A. Torchia, C. Mendez, L. Roso, and J. O. Tocho, “Optical spectroscopy in channel waveguides made in Nd:YAG crystals by femtosecond laser writing,” J. Lumin. 128, 754-756 (2008).
    [CrossRef]
  11. P. Moretti, M. F. Joubert, S. Tascu, B. Jacquier, M. Kaczkan, M. Malinowskii, and J. Samecki, “Luminescence of Nd3+ in proton or helium-implanted channel waveguides in Nd:YAG crystals,” Opt. Mater. 24, 315-319 (2003).
    [CrossRef]
  12. E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Optical channel waveguides by proton and carbon implantation in Nd:YAG crystals,” Opt. Express 15, 8513-8520 (2007).
    [CrossRef] [PubMed]
  13. E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Laser emission in proton-implanted Nd:YAG channel waveguides,” Opt. Express 15, 17874-17880 (2007).
    [CrossRef] [PubMed]
  14. S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Low threshold ion-implanted Nd:YAG channel waveguide laser,” Electron. Lett. 27, 2375-2376 (1991).
    [CrossRef]
  15. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994).
    [CrossRef]
  16. F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523-1542 (2007).
    [CrossRef]
  17. F. Chen, Y. Tan, and D. Jaque, “Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation,” Opt. Lett. 34, 28-30 (2009).
    [CrossRef]
  18. Y. X. Kong, F. Chen, D. Jaque, Y. Tan, N. N. Dong, Q. M. Lu, and H. J. Ma, “Low-dose O3+ ion implanted active optical planar waveguides in Nd:YAG crystals: guiding properties and micro-luminescence,” J. Phys. D 41, 175112 (2008).
    [CrossRef]
  19. M. Domenech, G. V. Vázquez, E. Flores-Romero, E. Cantelar, and G. Lifante, “Continuous-wave laser oscillation at 1.3 μm in Nd:YAG proton-implanted planar waveguides,” Appl. Phys. Lett. 86, 151108 (2005).
    [CrossRef]
  20. M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, “CW laser action at λ=1064.3 nm in proton and carbon implanted Nd:YAG waveguides,” Appl. Phys. Lett. 83, 4110-4112 (2003).
    [CrossRef]
  21. Y. Tan and F. Chen, “Experimental observation and numerical simulation of guided modes in Nd:YLiF4 channel waveguides produced by carbon ion implantation,” Phys. Status Solidi RRL 1, 277-229 (2007).
    [CrossRef]
  22. F. Chen, Y. Tan, D. Jaque, L. Wang, X. L. Wang, and K. M. Wang, “Active waveguide in Nd3+:MgO:LiNbO3 crystal produced by low-dose carbon ion implantation,” Appl. Phys. Lett. 92, 021110 (2008).
    [CrossRef]
  23. M. E. Sanchez-Morales, G. V. Vazquez, E. B. Mejia, H. Marquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064 nm,” Appl. Phys. B 94, 215-219 (2009).
    [CrossRef]
  24. J. F. Ziegler, Computer code SRIM 2006, http://www.srim.org.
  25. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127-142(1986).
    [CrossRef]
  26. Rsoft Design Group, Computer software BeamPROP version 8.0, http://www.rsoftdesign.com.
  27. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143-147 (1985).
    [CrossRef]
  28. Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightwave Technol. 26, 1304-1308 (2008).
    [CrossRef]

2009 (2)

M. E. Sanchez-Morales, G. V. Vazquez, E. B. Mejia, H. Marquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064 nm,” Appl. Phys. B 94, 215-219 (2009).
[CrossRef]

F. Chen, Y. Tan, and D. Jaque, “Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation,” Opt. Lett. 34, 28-30 (2009).
[CrossRef]

2008 (6)

Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightwave Technol. 26, 1304-1308 (2008).
[CrossRef]

F. Chen, Y. Tan, D. Jaque, L. Wang, X. L. Wang, and K. M. Wang, “Active waveguide in Nd3+:MgO:LiNbO3 crystal produced by low-dose carbon ion implantation,” Appl. Phys. Lett. 92, 021110 (2008).
[CrossRef]

J. X. Meng, J. Q. Li, Z. P. Shi, and K. W. Cheah, “Efficient energy transfer for Ce to Nd in Nd/Ce codoped yttrium aluminium garnet,” Appl. Phys. Lett. 93, 221908 (2008).
[CrossRef]

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33, 165-182(2008).
[CrossRef]

G. A. Torchia, C. Mendez, L. Roso, and J. O. Tocho, “Optical spectroscopy in channel waveguides made in Nd:YAG crystals by femtosecond laser writing,” J. Lumin. 128, 754-756 (2008).
[CrossRef]

Y. X. Kong, F. Chen, D. Jaque, Y. Tan, N. N. Dong, Q. M. Lu, and H. J. Ma, “Low-dose O3+ ion implanted active optical planar waveguides in Nd:YAG crystals: guiding properties and micro-luminescence,” J. Phys. D 41, 175112 (2008).
[CrossRef]

2007 (6)

F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

J. I. Mackenzie, “Dielectic solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13, 626-637 (2007).
[CrossRef]

Y. Tan and F. Chen, “Experimental observation and numerical simulation of guided modes in Nd:YLiF4 channel waveguides produced by carbon ion implantation,” Phys. Status Solidi RRL 1, 277-229 (2007).
[CrossRef]

J. Lamela, A. Rodenas, D. Jaque, and F. Jaque, “Field optical and micro-luminescence investigations of femtosecond laser micro-structured Nd:YAG crystals,” Opt. Express 15, 3285-3290 (2007).
[CrossRef] [PubMed]

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Optical channel waveguides by proton and carbon implantation in Nd:YAG crystals,” Opt. Express 15, 8513-8520 (2007).
[CrossRef] [PubMed]

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Laser emission in proton-implanted Nd:YAG channel waveguides,” Opt. Express 15, 17874-17880 (2007).
[CrossRef] [PubMed]

2005 (2)

A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried `waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30, 2248-2250 (2005).
[CrossRef] [PubMed]

M. Domenech, G. V. Vázquez, E. Flores-Romero, E. Cantelar, and G. Lifante, “Continuous-wave laser oscillation at 1.3 μm in Nd:YAG proton-implanted planar waveguides,” Appl. Phys. Lett. 86, 151108 (2005).
[CrossRef]

2004 (1)

E. Kanchanavaleerat, D. Cochet-Muchy, M. Kokta, J. Stone-Sundberg, P. Sarkies, J. Sarkies, and J. Sarkies, “Crystal growth of high doped Nd:YAG,” Opt. Mater. 26, 337-341(2004).
[CrossRef]

2003 (2)

M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, “CW laser action at λ=1064.3 nm in proton and carbon implanted Nd:YAG waveguides,” Appl. Phys. Lett. 83, 4110-4112 (2003).
[CrossRef]

P. Moretti, M. F. Joubert, S. Tascu, B. Jacquier, M. Kaczkan, M. Malinowskii, and J. Samecki, “Luminescence of Nd3+ in proton or helium-implanted channel waveguides in Nd:YAG crystals,” Opt. Mater. 24, 315-319 (2003).
[CrossRef]

2001 (1)

J. Dong, P. Deng, F. Gan, Y. Urata, R. Hua, S. Wada, and H. Tashiro, “Highly doped Nd:YAG crystal used for microchip lasers,” Opt. Commun. 197, 413-418 (2001).
[CrossRef]

1998 (1)

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131-150(1998).
[CrossRef]

1991 (1)

S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Low threshold ion-implanted Nd:YAG channel waveguide laser,” Electron. Lett. 27, 2375-2376 (1991).
[CrossRef]

1986 (1)

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127-142(1986).
[CrossRef]

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143-147 (1985).
[CrossRef]

Cantelar, E.

M. Domenech, G. V. Vázquez, E. Flores-Romero, E. Cantelar, and G. Lifante, “Continuous-wave laser oscillation at 1.3 μm in Nd:YAG proton-implanted planar waveguides,” Appl. Phys. Lett. 86, 151108 (2005).
[CrossRef]

M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, “CW laser action at λ=1064.3 nm in proton and carbon implanted Nd:YAG waveguides,” Appl. Phys. Lett. 83, 4110-4112 (2003).
[CrossRef]

Chandler, P. J.

S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Low threshold ion-implanted Nd:YAG channel waveguide laser,” Electron. Lett. 27, 2375-2376 (1991).
[CrossRef]

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127-142(1986).
[CrossRef]

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994).
[CrossRef]

Cheah, K. W.

J. X. Meng, J. Q. Li, Z. P. Shi, and K. W. Cheah, “Efficient energy transfer for Ce to Nd in Nd/Ce codoped yttrium aluminium garnet,” Appl. Phys. Lett. 93, 221908 (2008).
[CrossRef]

Chen, F.

F. Chen, Y. Tan, and D. Jaque, “Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation,” Opt. Lett. 34, 28-30 (2009).
[CrossRef]

F. Chen, Y. Tan, D. Jaque, L. Wang, X. L. Wang, and K. M. Wang, “Active waveguide in Nd3+:MgO:LiNbO3 crystal produced by low-dose carbon ion implantation,” Appl. Phys. Lett. 92, 021110 (2008).
[CrossRef]

Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightwave Technol. 26, 1304-1308 (2008).
[CrossRef]

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33, 165-182(2008).
[CrossRef]

Y. X. Kong, F. Chen, D. Jaque, Y. Tan, N. N. Dong, Q. M. Lu, and H. J. Ma, “Low-dose O3+ ion implanted active optical planar waveguides in Nd:YAG crystals: guiding properties and micro-luminescence,” J. Phys. D 41, 175112 (2008).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

Y. Tan and F. Chen, “Experimental observation and numerical simulation of guided modes in Nd:YLiF4 channel waveguides produced by carbon ion implantation,” Phys. Status Solidi RRL 1, 277-229 (2007).
[CrossRef]

Cochet-Muchy, D.

E. Kanchanavaleerat, D. Cochet-Muchy, M. Kokta, J. Stone-Sundberg, P. Sarkies, J. Sarkies, and J. Sarkies, “Crystal growth of high doped Nd:YAG,” Opt. Mater. 26, 337-341(2004).
[CrossRef]

Deng, P.

J. Dong, P. Deng, F. Gan, Y. Urata, R. Hua, S. Wada, and H. Tashiro, “Highly doped Nd:YAG crystal used for microchip lasers,” Opt. Commun. 197, 413-418 (2001).
[CrossRef]

Domenech, M.

M. Domenech, G. V. Vázquez, E. Flores-Romero, E. Cantelar, and G. Lifante, “Continuous-wave laser oscillation at 1.3 μm in Nd:YAG proton-implanted planar waveguides,” Appl. Phys. Lett. 86, 151108 (2005).
[CrossRef]

M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, “CW laser action at λ=1064.3 nm in proton and carbon implanted Nd:YAG waveguides,” Appl. Phys. Lett. 83, 4110-4112 (2003).
[CrossRef]

Dong, J.

J. Dong, P. Deng, F. Gan, Y. Urata, R. Hua, S. Wada, and H. Tashiro, “Highly doped Nd:YAG crystal used for microchip lasers,” Opt. Commun. 197, 413-418 (2001).
[CrossRef]

Dong, N. N.

Y. X. Kong, F. Chen, D. Jaque, Y. Tan, N. N. Dong, Q. M. Lu, and H. J. Ma, “Low-dose O3+ ion implanted active optical planar waveguides in Nd:YAG crystals: guiding properties and micro-luminescence,” J. Phys. D 41, 175112 (2008).
[CrossRef]

Field, S. J.

S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Low threshold ion-implanted Nd:YAG channel waveguide laser,” Electron. Lett. 27, 2375-2376 (1991).
[CrossRef]

Flores-Romero, E.

Gan, F.

J. Dong, P. Deng, F. Gan, Y. Urata, R. Hua, S. Wada, and H. Tashiro, “Highly doped Nd:YAG crystal used for microchip lasers,” Opt. Commun. 197, 413-418 (2001).
[CrossRef]

Hanna, D. C.

S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Low threshold ion-implanted Nd:YAG channel waveguide laser,” Electron. Lett. 27, 2375-2376 (1991).
[CrossRef]

Hua, R.

J. Dong, P. Deng, F. Gan, Y. Urata, R. Hua, S. Wada, and H. Tashiro, “Highly doped Nd:YAG crystal used for microchip lasers,” Opt. Commun. 197, 413-418 (2001).
[CrossRef]

Jacquier, B.

P. Moretti, M. F. Joubert, S. Tascu, B. Jacquier, M. Kaczkan, M. Malinowskii, and J. Samecki, “Luminescence of Nd3+ in proton or helium-implanted channel waveguides in Nd:YAG crystals,” Opt. Mater. 24, 315-319 (2003).
[CrossRef]

Jaque, D.

F. Chen, Y. Tan, and D. Jaque, “Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation,” Opt. Lett. 34, 28-30 (2009).
[CrossRef]

F. Chen, Y. Tan, D. Jaque, L. Wang, X. L. Wang, and K. M. Wang, “Active waveguide in Nd3+:MgO:LiNbO3 crystal produced by low-dose carbon ion implantation,” Appl. Phys. Lett. 92, 021110 (2008).
[CrossRef]

Y. X. Kong, F. Chen, D. Jaque, Y. Tan, N. N. Dong, Q. M. Lu, and H. J. Ma, “Low-dose O3+ ion implanted active optical planar waveguides in Nd:YAG crystals: guiding properties and micro-luminescence,” J. Phys. D 41, 175112 (2008).
[CrossRef]

J. Lamela, A. Rodenas, D. Jaque, and F. Jaque, “Field optical and micro-luminescence investigations of femtosecond laser micro-structured Nd:YAG crystals,” Opt. Express 15, 3285-3290 (2007).
[CrossRef] [PubMed]

Jaque, F.

Joubert, M. F.

P. Moretti, M. F. Joubert, S. Tascu, B. Jacquier, M. Kaczkan, M. Malinowskii, and J. Samecki, “Luminescence of Nd3+ in proton or helium-implanted channel waveguides in Nd:YAG crystals,” Opt. Mater. 24, 315-319 (2003).
[CrossRef]

Kaczkan, M.

P. Moretti, M. F. Joubert, S. Tascu, B. Jacquier, M. Kaczkan, M. Malinowskii, and J. Samecki, “Luminescence of Nd3+ in proton or helium-implanted channel waveguides in Nd:YAG crystals,” Opt. Mater. 24, 315-319 (2003).
[CrossRef]

Kanchanavaleerat, E.

E. Kanchanavaleerat, D. Cochet-Muchy, M. Kokta, J. Stone-Sundberg, P. Sarkies, J. Sarkies, and J. Sarkies, “Crystal growth of high doped Nd:YAG,” Opt. Mater. 26, 337-341(2004).
[CrossRef]

Khrushchev, I.

Kip, D.

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131-150(1998).
[CrossRef]

Kokta, M.

E. Kanchanavaleerat, D. Cochet-Muchy, M. Kokta, J. Stone-Sundberg, P. Sarkies, J. Sarkies, and J. Sarkies, “Crystal growth of high doped Nd:YAG,” Opt. Mater. 26, 337-341(2004).
[CrossRef]

Kong, Y. X.

Y. X. Kong, F. Chen, D. Jaque, Y. Tan, N. N. Dong, Q. M. Lu, and H. J. Ma, “Low-dose O3+ ion implanted active optical planar waveguides in Nd:YAG crystals: guiding properties and micro-luminescence,” J. Phys. D 41, 175112 (2008).
[CrossRef]

Lama, F. L.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127-142(1986).
[CrossRef]

Lamela, J.

Large, A. C.

S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Low threshold ion-implanted Nd:YAG channel waveguide laser,” Electron. Lett. 27, 2375-2376 (1991).
[CrossRef]

Li, J. Q.

J. X. Meng, J. Q. Li, Z. P. Shi, and K. W. Cheah, “Efficient energy transfer for Ce to Nd in Nd/Ce codoped yttrium aluminium garnet,” Appl. Phys. Lett. 93, 221908 (2008).
[CrossRef]

Lifante, G.

M. Domenech, G. V. Vázquez, E. Flores-Romero, E. Cantelar, and G. Lifante, “Continuous-wave laser oscillation at 1.3 μm in Nd:YAG proton-implanted planar waveguides,” Appl. Phys. Lett. 86, 151108 (2005).
[CrossRef]

M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, “CW laser action at λ=1064.3 nm in proton and carbon implanted Nd:YAG waveguides,” Appl. Phys. Lett. 83, 4110-4112 (2003).
[CrossRef]

G. Lifante, Integrated Photonics: Fundamentals (Wiley, 2007).

Lu, Q. M.

Y. X. Kong, F. Chen, D. Jaque, Y. Tan, N. N. Dong, Q. M. Lu, and H. J. Ma, “Low-dose O3+ ion implanted active optical planar waveguides in Nd:YAG crystals: guiding properties and micro-luminescence,” J. Phys. D 41, 175112 (2008).
[CrossRef]

Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightwave Technol. 26, 1304-1308 (2008).
[CrossRef]

Ma, H. J.

Y. X. Kong, F. Chen, D. Jaque, Y. Tan, N. N. Dong, Q. M. Lu, and H. J. Ma, “Low-dose O3+ ion implanted active optical planar waveguides in Nd:YAG crystals: guiding properties and micro-luminescence,” J. Phys. D 41, 175112 (2008).
[CrossRef]

Mackenzie, J. I.

J. I. Mackenzie, “Dielectic solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13, 626-637 (2007).
[CrossRef]

Malinowskii, M.

P. Moretti, M. F. Joubert, S. Tascu, B. Jacquier, M. Kaczkan, M. Malinowskii, and J. Samecki, “Luminescence of Nd3+ in proton or helium-implanted channel waveguides in Nd:YAG crystals,” Opt. Mater. 24, 315-319 (2003).
[CrossRef]

Marquez, H.

M. E. Sanchez-Morales, G. V. Vazquez, E. B. Mejia, H. Marquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064 nm,” Appl. Phys. B 94, 215-219 (2009).
[CrossRef]

Márquez, H.

Mejia, E. B.

M. E. Sanchez-Morales, G. V. Vazquez, E. B. Mejia, H. Marquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064 nm,” Appl. Phys. B 94, 215-219 (2009).
[CrossRef]

Mendez, C.

G. A. Torchia, C. Mendez, L. Roso, and J. O. Tocho, “Optical spectroscopy in channel waveguides made in Nd:YAG crystals by femtosecond laser writing,” J. Lumin. 128, 754-756 (2008).
[CrossRef]

Meng, J. X.

J. X. Meng, J. Q. Li, Z. P. Shi, and K. W. Cheah, “Efficient energy transfer for Ce to Nd in Nd/Ce codoped yttrium aluminium garnet,” Appl. Phys. Lett. 93, 221908 (2008).
[CrossRef]

Mitchell, J.

Moretti, P.

P. Moretti, M. F. Joubert, S. Tascu, B. Jacquier, M. Kaczkan, M. Malinowskii, and J. Samecki, “Luminescence of Nd3+ in proton or helium-implanted channel waveguides in Nd:YAG crystals,” Opt. Mater. 24, 315-319 (2003).
[CrossRef]

Okhrimchuk, A. G.

Rangel-Rojo, R.

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143-147 (1985).
[CrossRef]

Rickards, J.

Rodenas, A.

Roso, L.

G. A. Torchia, C. Mendez, L. Roso, and J. O. Tocho, “Optical spectroscopy in channel waveguides made in Nd:YAG crystals by femtosecond laser writing,” J. Lumin. 128, 754-756 (2008).
[CrossRef]

Samecki, J.

P. Moretti, M. F. Joubert, S. Tascu, B. Jacquier, M. Kaczkan, M. Malinowskii, and J. Samecki, “Luminescence of Nd3+ in proton or helium-implanted channel waveguides in Nd:YAG crystals,” Opt. Mater. 24, 315-319 (2003).
[CrossRef]

Sanchez-Morales, M. E.

M. E. Sanchez-Morales, G. V. Vazquez, E. B. Mejia, H. Marquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064 nm,” Appl. Phys. B 94, 215-219 (2009).
[CrossRef]

Sarkies, J.

E. Kanchanavaleerat, D. Cochet-Muchy, M. Kokta, J. Stone-Sundberg, P. Sarkies, J. Sarkies, and J. Sarkies, “Crystal growth of high doped Nd:YAG,” Opt. Mater. 26, 337-341(2004).
[CrossRef]

E. Kanchanavaleerat, D. Cochet-Muchy, M. Kokta, J. Stone-Sundberg, P. Sarkies, J. Sarkies, and J. Sarkies, “Crystal growth of high doped Nd:YAG,” Opt. Mater. 26, 337-341(2004).
[CrossRef]

Sarkies, P.

E. Kanchanavaleerat, D. Cochet-Muchy, M. Kokta, J. Stone-Sundberg, P. Sarkies, J. Sarkies, and J. Sarkies, “Crystal growth of high doped Nd:YAG,” Opt. Mater. 26, 337-341(2004).
[CrossRef]

Shepherd, D. P.

S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Low threshold ion-implanted Nd:YAG channel waveguide laser,” Electron. Lett. 27, 2375-2376 (1991).
[CrossRef]

Shestakov, A. V.

Shi, Z. P.

J. X. Meng, J. Q. Li, Z. P. Shi, and K. W. Cheah, “Efficient energy transfer for Ce to Nd in Nd/Ce codoped yttrium aluminium garnet,” Appl. Phys. Lett. 93, 221908 (2008).
[CrossRef]

Sohler, W.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143-147 (1985).
[CrossRef]

Stone-Sundberg, J.

E. Kanchanavaleerat, D. Cochet-Muchy, M. Kokta, J. Stone-Sundberg, P. Sarkies, J. Sarkies, and J. Sarkies, “Crystal growth of high doped Nd:YAG,” Opt. Mater. 26, 337-341(2004).
[CrossRef]

Tan, Y.

F. Chen, Y. Tan, and D. Jaque, “Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation,” Opt. Lett. 34, 28-30 (2009).
[CrossRef]

F. Chen, Y. Tan, D. Jaque, L. Wang, X. L. Wang, and K. M. Wang, “Active waveguide in Nd3+:MgO:LiNbO3 crystal produced by low-dose carbon ion implantation,” Appl. Phys. Lett. 92, 021110 (2008).
[CrossRef]

Y. X. Kong, F. Chen, D. Jaque, Y. Tan, N. N. Dong, Q. M. Lu, and H. J. Ma, “Low-dose O3+ ion implanted active optical planar waveguides in Nd:YAG crystals: guiding properties and micro-luminescence,” J. Phys. D 41, 175112 (2008).
[CrossRef]

Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightwave Technol. 26, 1304-1308 (2008).
[CrossRef]

Y. Tan and F. Chen, “Experimental observation and numerical simulation of guided modes in Nd:YLiF4 channel waveguides produced by carbon ion implantation,” Phys. Status Solidi RRL 1, 277-229 (2007).
[CrossRef]

Tascu, S.

P. Moretti, M. F. Joubert, S. Tascu, B. Jacquier, M. Kaczkan, M. Malinowskii, and J. Samecki, “Luminescence of Nd3+ in proton or helium-implanted channel waveguides in Nd:YAG crystals,” Opt. Mater. 24, 315-319 (2003).
[CrossRef]

Tashiro, H.

J. Dong, P. Deng, F. Gan, Y. Urata, R. Hua, S. Wada, and H. Tashiro, “Highly doped Nd:YAG crystal used for microchip lasers,” Opt. Commun. 197, 413-418 (2001).
[CrossRef]

Tocho, J. O.

G. A. Torchia, C. Mendez, L. Roso, and J. O. Tocho, “Optical spectroscopy in channel waveguides made in Nd:YAG crystals by femtosecond laser writing,” J. Lumin. 128, 754-756 (2008).
[CrossRef]

Torchia, G. A.

G. A. Torchia, C. Mendez, L. Roso, and J. O. Tocho, “Optical spectroscopy in channel waveguides made in Nd:YAG crystals by femtosecond laser writing,” J. Lumin. 128, 754-756 (2008).
[CrossRef]

Townsend, P. D.

S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Low threshold ion-implanted Nd:YAG channel waveguide laser,” Electron. Lett. 27, 2375-2376 (1991).
[CrossRef]

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994).
[CrossRef]

Trejo-Luna, R.

Tropper, A. C.

S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Low threshold ion-implanted Nd:YAG channel waveguide laser,” Electron. Lett. 27, 2375-2376 (1991).
[CrossRef]

Urata, Y.

J. Dong, P. Deng, F. Gan, Y. Urata, R. Hua, S. Wada, and H. Tashiro, “Highly doped Nd:YAG crystal used for microchip lasers,” Opt. Commun. 197, 413-418 (2001).
[CrossRef]

Vazquez, G. V.

M. E. Sanchez-Morales, G. V. Vazquez, E. B. Mejia, H. Marquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064 nm,” Appl. Phys. B 94, 215-219 (2009).
[CrossRef]

Vázquez, G. V.

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Optical channel waveguides by proton and carbon implantation in Nd:YAG crystals,” Opt. Express 15, 8513-8520 (2007).
[CrossRef] [PubMed]

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Laser emission in proton-implanted Nd:YAG channel waveguides,” Opt. Express 15, 17874-17880 (2007).
[CrossRef] [PubMed]

M. Domenech, G. V. Vázquez, E. Flores-Romero, E. Cantelar, and G. Lifante, “Continuous-wave laser oscillation at 1.3 μm in Nd:YAG proton-implanted planar waveguides,” Appl. Phys. Lett. 86, 151108 (2005).
[CrossRef]

M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, “CW laser action at λ=1064.3 nm in proton and carbon implanted Nd:YAG waveguides,” Appl. Phys. Lett. 83, 4110-4112 (2003).
[CrossRef]

Wada, S.

J. Dong, P. Deng, F. Gan, Y. Urata, R. Hua, S. Wada, and H. Tashiro, “Highly doped Nd:YAG crystal used for microchip lasers,” Opt. Commun. 197, 413-418 (2001).
[CrossRef]

Wang, K. M.

F. Chen, Y. Tan, D. Jaque, L. Wang, X. L. Wang, and K. M. Wang, “Active waveguide in Nd3+:MgO:LiNbO3 crystal produced by low-dose carbon ion implantation,” Appl. Phys. Lett. 92, 021110 (2008).
[CrossRef]

Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightwave Technol. 26, 1304-1308 (2008).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

Wang, L.

Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightwave Technol. 26, 1304-1308 (2008).
[CrossRef]

F. Chen, Y. Tan, D. Jaque, L. Wang, X. L. Wang, and K. M. Wang, “Active waveguide in Nd3+:MgO:LiNbO3 crystal produced by low-dose carbon ion implantation,” Appl. Phys. Lett. 92, 021110 (2008).
[CrossRef]

Wang, X. L.

F. Chen, Y. Tan, D. Jaque, L. Wang, X. L. Wang, and K. M. Wang, “Active waveguide in Nd3+:MgO:LiNbO3 crystal produced by low-dose carbon ion implantation,” Appl. Phys. Lett. 92, 021110 (2008).
[CrossRef]

Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, “Optical channel waveguides in KTiOPO4 crystal produced by proton implantation,” J. Lightwave Technol. 26, 1304-1308 (2008).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

Zhang, L.

S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Low threshold ion-implanted Nd:YAG channel waveguide laser,” Electron. Lett. 27, 2375-2376 (1991).
[CrossRef]

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994).
[CrossRef]

Ziegler, J. F.

J. F. Ziegler, Computer code SRIM 2006, http://www.srim.org.

Appl. Phys. B (3)

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131-150(1998).
[CrossRef]

M. E. Sanchez-Morales, G. V. Vazquez, E. B. Mejia, H. Marquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064 nm,” Appl. Phys. B 94, 215-219 (2009).
[CrossRef]

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143-147 (1985).
[CrossRef]

Appl. Phys. Lett. (4)

F. Chen, Y. Tan, D. Jaque, L. Wang, X. L. Wang, and K. M. Wang, “Active waveguide in Nd3+:MgO:LiNbO3 crystal produced by low-dose carbon ion implantation,” Appl. Phys. Lett. 92, 021110 (2008).
[CrossRef]

M. Domenech, G. V. Vázquez, E. Flores-Romero, E. Cantelar, and G. Lifante, “Continuous-wave laser oscillation at 1.3 μm in Nd:YAG proton-implanted planar waveguides,” Appl. Phys. Lett. 86, 151108 (2005).
[CrossRef]

M. Domenech, G. V. Vázquez, E. Cantelar, and G. Lifante, “CW laser action at λ=1064.3 nm in proton and carbon implanted Nd:YAG waveguides,” Appl. Phys. Lett. 83, 4110-4112 (2003).
[CrossRef]

J. X. Meng, J. Q. Li, Z. P. Shi, and K. W. Cheah, “Efficient energy transfer for Ce to Nd in Nd/Ce codoped yttrium aluminium garnet,” Appl. Phys. Lett. 93, 221908 (2008).
[CrossRef]

Crit. Rev. Solid State Mater. Sci. (1)

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33, 165-182(2008).
[CrossRef]

Electron. Lett. (1)

S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Low threshold ion-implanted Nd:YAG channel waveguide laser,” Electron. Lett. 27, 2375-2376 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. I. Mackenzie, “Dielectic solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13, 626-637 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Lumin. (1)

G. A. Torchia, C. Mendez, L. Roso, and J. O. Tocho, “Optical spectroscopy in channel waveguides made in Nd:YAG crystals by femtosecond laser writing,” J. Lumin. 128, 754-756 (2008).
[CrossRef]

J. Phys. D (1)

Y. X. Kong, F. Chen, D. Jaque, Y. Tan, N. N. Dong, Q. M. Lu, and H. J. Ma, “Low-dose O3+ ion implanted active optical planar waveguides in Nd:YAG crystals: guiding properties and micro-luminescence,” J. Phys. D 41, 175112 (2008).
[CrossRef]

Opt. Acta (1)

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127-142(1986).
[CrossRef]

Opt. Commun. (1)

J. Dong, P. Deng, F. Gan, Y. Urata, R. Hua, S. Wada, and H. Tashiro, “Highly doped Nd:YAG crystal used for microchip lasers,” Opt. Commun. 197, 413-418 (2001).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. (3)

E. Kanchanavaleerat, D. Cochet-Muchy, M. Kokta, J. Stone-Sundberg, P. Sarkies, J. Sarkies, and J. Sarkies, “Crystal growth of high doped Nd:YAG,” Opt. Mater. 26, 337-341(2004).
[CrossRef]

P. Moretti, M. F. Joubert, S. Tascu, B. Jacquier, M. Kaczkan, M. Malinowskii, and J. Samecki, “Luminescence of Nd3+ in proton or helium-implanted channel waveguides in Nd:YAG crystals,” Opt. Mater. 24, 315-319 (2003).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

Phys. Status Solidi RRL (1)

Y. Tan and F. Chen, “Experimental observation and numerical simulation of guided modes in Nd:YLiF4 channel waveguides produced by carbon ion implantation,” Phys. Status Solidi RRL 1, 277-229 (2007).
[CrossRef]

Other (4)

J. F. Ziegler, Computer code SRIM 2006, http://www.srim.org.

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994).
[CrossRef]

G. Lifante, Integrated Photonics: Fundamentals (Wiley, 2007).

Rsoft Design Group, Computer software BeamPROP version 8.0, http://www.rsoftdesign.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic plot of the channel waveguide fabrication process in Nd:Ce:YAG substrate by C 3 + ion implantation. The inset shows the microscopic photograph of the cross section of the Nd:Ce:YAG channel waveguide sample.

Fig. 2
Fig. 2

(a) Dark-mode spectra for TM modes, (b) reconstructed 1D refractive index profile of planar waveguide, and (c) 2D index distribution of the channel waveguides in C 3 + ion-implanted Nd:Ce:YAG crystals.

Fig. 3
Fig. 3

(a) Measured near-field intensity distributions and (b) calculated corresponding modal profiles of the quazi-TM modes of the channel waveguides by BeamPROP simulation: from the top to bottom, TM 00 , TM 10 , and TM 20 .

Fig. 4
Fig. 4

Intensity of output light versus heating time obtained for the annealed Nd:Ce:YAG channel waveguide. The propagation loss of 2 dB / cm is determined.

Fig. 5
Fig. 5

Comparison of room temperature microluminescence spectra from the Nd:Ce:YAG channel waveguide (solid line) and the bulk (dashed line).

Metrics