Abstract

A method for calculating the coupling coefficient in step-index multimode optical fibers is verified for glass fibers by comparison to published data and to an analytical solution for the steady-state mode distribution. The coefficient that the method calculates is used to determine the state of mode coupling along the fiber, including the coupling length for achieving the equilibrium mode distribution when measurement of fiber characteristics (such as linear attenuation or bandwidth) becomes meaningful.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Dugas and G. Maurel, “Mode-coupling processes in polymethyl methacrylate-core optical fibers,” Appl. Opt. 31, 5069-5079 (1992).
    [CrossRef] [PubMed]
  2. M. Eve and J. H. Hannay, “Ray theory and random mode coupling in an optical fibre waveguide, I.,” Opt. Quantum Electron. 8, 503-508 (1976).
    [CrossRef]
  3. J. Arrue, G. Aldabaldetreku, G. Durana, J. Zubía, I. Garcés, and F. Jiménez, “Design of mode scramblers for step-index and graded-index plastic optical fibers,” J. Lightwave Technol. 23, 1253-1260 (2005.
    [CrossRef]
  4. W. A. Gambling, D. P. Payne, and H. Matsumura, “Mode conversion coefficients in optical fibers,” Appl. Opt. 14, 1538-1542 (1975).
    [CrossRef] [PubMed]
  5. D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767-1783 (1972).
  6. M. Rousseau and L. Jeunhomme, “Numerical solution of the coupled-power equation in step index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577-585 (1977).
    [CrossRef]
  7. A. Djordjevich and S. Savović, “Investigation of mode coupling in step index plastic optical fibers using the power flow equation,” IEEE Photon. Technol. Lett. 12, 1489-1491 (2000).
    [CrossRef]
  8. S. Savović and A. Djordjevich, “Optical power flow in plastic clad silica fibers,” Appl. Opt. 41, 7588-7591 (2002).
    [CrossRef]
  9. S. Savović and A. Djordjevich, “Solution of mode coupling in step-index optical fibers by the Fokker-Planck equation and the Langevin equation,” Appl. Opt. 41, 2826-2830 (2002).
    [CrossRef] [PubMed]
  10. M. A. Losada, J. Mateo, I. Garcés, J. Zubía, J. A. Casao, and P. Peréz-Vela, “Analysis of strained plastic optical fibers,” IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
    [CrossRef]
  11. M. A. Losada, I. Garcés, J. Mateo, I. Salinas, J. Lou, and J. Zubía, “Mode coupling contribution to radiation losses in curvatures for high and low numerical aperture plastic optical fibers,” J. Lightwave Technol. 20, 1160-1164 (2002).
    [CrossRef]
  12. J. Zubía, G. Durana, G. Aldabaldetreku, J. Arrue, M. A. Losada, and M. Lopez-Higuera, “New method to calculate mode conversion coefficients in Si multimode optical fibers,” J. Lightwave Technol. 21, 776-781 (2003).
    [CrossRef]
  13. S. Savović and A. Djordjevich, “Method for calculating the coupling coefficient in step index optical fibers,” Appl. Opt. 46, 1477-1481 (2007).
    [CrossRef] [PubMed]
  14. K. Kitayama and M. Ikeda, “Mode coupling measurements in optical fibers,” Appl. Opt. 17, 3979-3983 (1978).
    [CrossRef] [PubMed]
  15. L. Jeunhomme, M. Fraise, and J. P. Pocholle, “Propagation model for long step-index optical fibers,” Appl. Opt. 15, 3040-3046 (1976).
    [CrossRef] [PubMed]
  16. S. Savović and A. Djordjevich, “Mode coupling in strained and unstrained step-index plastic optical fibers,” Appl. Opt. 45, 6775-6780 (2006).
    [CrossRef] [PubMed]
  17. S. Savović and A. Djordjevich, “Influence of numerical aperture on mode coupling in step-index plastic optical fibers,” Appl. Opt. 43, 5542-5546 (2004).
    [CrossRef] [PubMed]
  18. J. D. Anderson, Computational Fluid Dynamics (McGraw-Hill, 1995).
  19. A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962-967 (1998).
    [CrossRef] [PubMed]

2007 (1)

2006 (1)

2005 (1)

2004 (2)

S. Savović and A. Djordjevich, “Influence of numerical aperture on mode coupling in step-index plastic optical fibers,” Appl. Opt. 43, 5542-5546 (2004).
[CrossRef] [PubMed]

M. A. Losada, J. Mateo, I. Garcés, J. Zubía, J. A. Casao, and P. Peréz-Vela, “Analysis of strained plastic optical fibers,” IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
[CrossRef]

2003 (1)

2002 (3)

2000 (1)

A. Djordjevich and S. Savović, “Investigation of mode coupling in step index plastic optical fibers using the power flow equation,” IEEE Photon. Technol. Lett. 12, 1489-1491 (2000).
[CrossRef]

1998 (1)

A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962-967 (1998).
[CrossRef] [PubMed]

1992 (1)

1978 (1)

1977 (1)

M. Rousseau and L. Jeunhomme, “Numerical solution of the coupled-power equation in step index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577-585 (1977).
[CrossRef]

1976 (2)

M. Eve and J. H. Hannay, “Ray theory and random mode coupling in an optical fibre waveguide, I.,” Opt. Quantum Electron. 8, 503-508 (1976).
[CrossRef]

L. Jeunhomme, M. Fraise, and J. P. Pocholle, “Propagation model for long step-index optical fibers,” Appl. Opt. 15, 3040-3046 (1976).
[CrossRef] [PubMed]

1975 (1)

1972 (1)

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767-1783 (1972).

Aldabaldetreku, G.

Anderson, J. D.

J. D. Anderson, Computational Fluid Dynamics (McGraw-Hill, 1995).

Arrue, J.

Casao, J. A.

M. A. Losada, J. Mateo, I. Garcés, J. Zubía, J. A. Casao, and P. Peréz-Vela, “Analysis of strained plastic optical fibers,” IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
[CrossRef]

Djordjevich, A.

Dugas, J.

Durana, G.

Eve, M.

M. Eve and J. H. Hannay, “Ray theory and random mode coupling in an optical fibre waveguide, I.,” Opt. Quantum Electron. 8, 503-508 (1976).
[CrossRef]

Fraise, M.

Gambling, W. A.

Gao, R.

A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962-967 (1998).
[CrossRef] [PubMed]

Garcés, I.

Garito, A. F.

A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962-967 (1998).
[CrossRef] [PubMed]

Gloge, D.

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767-1783 (1972).

Hannay, J. H.

M. Eve and J. H. Hannay, “Ray theory and random mode coupling in an optical fibre waveguide, I.,” Opt. Quantum Electron. 8, 503-508 (1976).
[CrossRef]

Ikeda, M.

Jeunhomme, L.

M. Rousseau and L. Jeunhomme, “Numerical solution of the coupled-power equation in step index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577-585 (1977).
[CrossRef]

L. Jeunhomme, M. Fraise, and J. P. Pocholle, “Propagation model for long step-index optical fibers,” Appl. Opt. 15, 3040-3046 (1976).
[CrossRef] [PubMed]

Jiménez, F.

Kitayama, K.

Lopez-Higuera, M.

Losada, M. A.

Lou, J.

Mateo, J.

M. A. Losada, J. Mateo, I. Garcés, J. Zubía, J. A. Casao, and P. Peréz-Vela, “Analysis of strained plastic optical fibers,” IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
[CrossRef]

M. A. Losada, I. Garcés, J. Mateo, I. Salinas, J. Lou, and J. Zubía, “Mode coupling contribution to radiation losses in curvatures for high and low numerical aperture plastic optical fibers,” J. Lightwave Technol. 20, 1160-1164 (2002).
[CrossRef]

Matsumura, H.

Maurel, G.

Payne, D. P.

Peréz-Vela, P.

M. A. Losada, J. Mateo, I. Garcés, J. Zubía, J. A. Casao, and P. Peréz-Vela, “Analysis of strained plastic optical fibers,” IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
[CrossRef]

Pocholle, J. P.

Rousseau, M.

M. Rousseau and L. Jeunhomme, “Numerical solution of the coupled-power equation in step index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577-585 (1977).
[CrossRef]

Salinas, I.

Savovic, S.

Wang, J.

A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962-967 (1998).
[CrossRef] [PubMed]

Zubía, J.

Appl. Opt. (9)

Bell Syst. Tech. J. (1)

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767-1783 (1972).

IEEE Photon. Technol. Lett. (2)

A. Djordjevich and S. Savović, “Investigation of mode coupling in step index plastic optical fibers using the power flow equation,” IEEE Photon. Technol. Lett. 12, 1489-1491 (2000).
[CrossRef]

M. A. Losada, J. Mateo, I. Garcés, J. Zubía, J. A. Casao, and P. Peréz-Vela, “Analysis of strained plastic optical fibers,” IEEE Photon. Technol. Lett. 16, 1513-1515 (2004).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

M. Rousseau and L. Jeunhomme, “Numerical solution of the coupled-power equation in step index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577-585 (1977).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Quantum Electron. (1)

M. Eve and J. H. Hannay, “Ray theory and random mode coupling in an optical fibre waveguide, I.,” Opt. Quantum Electron. 8, 503-508 (1976).
[CrossRef]

Science (1)

A. F. Garito, J. Wang, and R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962-967 (1998).
[CrossRef] [PubMed]

Other (1)

J. D. Anderson, Computational Fluid Dynamics (McGraw-Hill, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Cylindrically symmetric input.

Fig. 2
Fig. 2

Experimental input angular power distribution and output angular power distribution at fiber length z = 8500 m for an SI GOF illuminated with laser beam ( FWHM ) z = 0 = 9.65 ° parallel to the fiber axis, obtained by Kitayama and Ikeda [14].

Fig. 3
Fig. 3

Normalized output angular power distribution at different locations along the SI GOF calculated for three Gaussian input angles θ 0 = 0 ° (solid curve), 4 ° (dashed curve), and 8 ° (dash–dotted curve) with ( FWHM ) z = 0 = 9.65 ° for (a)  z = 500 m , (b)  z = 2000 m , (c)  z = 4300 m , and (d)  z = 8100 m (filled squares represent the analytical steady-state solution).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P ( θ , z ) z = α ( θ ) P ( θ , z ) + D θ θ [ θ P ( θ , z ) θ ] ,
P ( θ , z ) z = D θ P ( θ , z ) θ + D 2 P ( θ , z ) θ 2 .
P ( θ , z ) = J 0 ( 2.405 θ θ c ) exp ( γ 0 z ) ,
P ( θ , z ) = exp [ ( θ θ 0 ) 2 σ 0 2 ] ,
σ z 2 = σ 0 2 + 2 D z ,
D = σ z 2 σ 0 2 2 z .
D = σ z 2 2 σ z 1 2 2 ( z 2 z 1 ) ,

Metrics