Abstract

We report the application of molecular tagging velocimetry (MTV) toward two-component velocimetry as demonstrated in an underexpanded free jet flowfield. Two variants of the MTV technique are presented: 1) electronic excitation of seeded nitric oxide (NO) with gated fluorescence imaging (fluorescence lifetime) and 2) photodissociation of seeded NO2 followed by NO fluorescence imaging (NO2 photodissociation). The seeded NO fluorescence lifetime technique is advantageous in low-quenching, high-velocity flowfields, while the photodissociation technique is useful in high-quenching environments, and either high- or low-velocity flowfields due to long lifetime of the NO photoproduct. Both techniques are viable for single-shot measurements, with determined root mean squared results for streamwise and radial velocities of 5%. This study represents the first known application of MTV utilizing either the fluorescence lifetime or the photodissociation technique toward two-component velocity mapping in a gaseous flowfield. Methods for increasing the spatial resolution to be comparable to particle-based tracking techniques are discussed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Huffman and G. Elliott, “An experimental investigation of accurate particle tracking in supersonic, rarefied axisymmetric jets,” in 47th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2009-1265 (AIAA, 2009).
  2. D. G. Bohl and M. M. Koochesfahani, “Molecular tagging velocimetry measurements of axial flow in a concentrated vortex core,” Phys. Fluids 16, 4185-4191 (2004).
    [CrossRef]
  3. H. Hu and M. M. Koochesfahani, “Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder,” Meas. Sci. Technol. 17, 1269-1281(2006).
    [CrossRef]
  4. H. Hu and M. M. Koochesfahani, “Molecular tagging velocimetry for the simultaneous measurements of flow velocity and temperature fields,” n 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2006-41 (AIAA, 2006).
  5. R. W. Pitz, T. M. Brown, S. P. Nandula, P. A. Skaggs, P. A. DeBarber, M. S. Brown, and J. Segall, “Unseeded velocity measurement by ozone tagging velocimetry,” Opt. Lett. 21, 755-757 (1996).
    [CrossRef] [PubMed]
  6. L. A. Ribarov, J. A. Wehrmeyer, S. Hu, and R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65-74(2004).
    [CrossRef]
  7. R. W. Pitz, M. D. Lahr, Z. W. Douglas, J. A. Wehrmeyer, S. Hu, C. D. Carter, K. Y. Hsu, C. Lum, and M. M. Koochesfahani, “Hydroxyl tagging velocimetry in a Mach 2 flow with a wall cavity,” in 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2005-36 (AIAA, 2005).
  8. J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, and R. W. Pitz, “Flame flow tagging velocimetry with 193 nm H2O photodissociation,” Appl. Opt. 38, 6912-6917 (1999).
    [CrossRef]
  9. R. Miles, D. Zhou, B. Zhang, and W. Lempert, “Fundamental turbulence measurements by relief flow tagging,” AIAA J. 31, 447-452 (1993).
    [CrossRef]
  10. P. Danehy, S. O'Byrne, F. Houwing, J. Fox, and D. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263-271 (2003).
    [CrossRef]
  11. W. P. N. van der Laan, R. A. L. Tolboom, and J. J. ter Meulen, “Molecular tagging velocimetry in the wake of an Object in supersonic flow,” Exp. Fluids 34, 531-533 (2003).
  12. S. P. Nandula, R. W. Pitz, J. Bominaar, C. Schoemaecker, N. J. Dam, and J. J. ter Meulen, “Kinetics of NO tag formation in air for unseeded molecular tagging velocimetry,” in 42nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2004-390 (AIAA, 2004).
  13. W. R. Lempert, N. Jiang, S. Sethuram, and M. Samimy, “Molecular tagging velocimetry measurements in supersonic microjets,” AIAA J. 40, 1065-1070 (2002).
    [CrossRef]
  14. W. R. Lempert, M. Boehm, N. Jiang, S. Gimelshein, and D. Levin, “Comparison of molecular tagging velocimetry data and direct simulation Monte Carlo simulations in supersonic micro jet flows,” Exp. Fluids 34, 403-411 (2003).
  15. M. M. IsmailovH. J. Schock, and A. M. Fedewa, “Gaseous flow measurements in an internal combustion engine assembly using molecular tagging velocimetry,” Exp. Fluids 41, 57-66(2006).
    [CrossRef]
  16. S. Nakaya, M. Kasahara, M. Tsue, and M. Kono, “Velocity measurements of reactive and non-reactive flows by NO-LIF method using NO2 photodissociation,” Heat Trans. Asian Res. 34, 40-52 (2005).
    [CrossRef]
  17. C. Orlemann, C. Schulz, and J. Wolfrum, “NO-flow tagging by photodissociation of NO2. A new approach for measuring small-scale flow structures,” Chem. Phys. Lett. 307, 15-20(1999).
    [CrossRef]
  18. S. Kruger and G. Grunefeld, “Stereoscopic flow-tagging velocimetry,” Appl. Phys. B 69, 509-512 (1999).
    [CrossRef]
  19. M. Hunter, S. A. Reid, D. C. Robie, and H. Reisler, “The monoenergetic unimolecular reaction of expansion-cooled NO2: NO product state distributions at excess energies 0-3000 cm−1,” J. Chem. Phys. 99, 1093-1108 (1993).
    [CrossRef]
  20. C. Brooks, G. Hancock, and M. Saunders, “Dependence of the nascent vibrational distribution of NO(v) on the photolysis wavelength of NO2 in the range λ=266-327 nm measured by time-resolved Fourier transform infrared emission,” Phys. Chem. Chem. Phys. 9, 5232-5240 (2007).
    [CrossRef] [PubMed]
  21. J. Harrison, X. Yang, M. Rosslein, P. Felder, and J. Huber, “Photodissociation of NO2 at 355 and 351 nm investigated by photofragment translational spectroscopy,” J. Phys. Chem. 98, 12260-12269 (1994).
    [CrossRef]
  22. A. Hsu, R. Srinivasan, R. Bowersox, and S. North, “Molecular tagging using vibrationally excited nitric oxide in an underexpanded jet flowfield,” AIAA J. (to be published).
  23. A. Hsu, “Application of advanced laser and optical diagnostics towards non-thermochemical equilibrium systems,” (Ph.D. dissertation (Texas A&M University, 2009).
  24. M. M. Ismailov, H. J. Schock, and A. M. Fedewa, “Gaseous flow measurements in an internal combustion engine assembly using molecular tagging velocimetry,” Exp. Fluids 41, 57-66(2006).
    [CrossRef]
  25. B. Stier and M. Koochesfahani, “Molecular tagging velocimetry (MTV) measurements in gas phase flows,” Exp. Fluids 26, 297-304 (1999).
    [CrossRef]
  26. M. A. Woodmansee, V. Iyer, J. C. Dutton, and R. P. Lucht, “Nonintrusive pressure and temperature measurements in an underexpanded sonic jet flowfield,” AIAA J. 42, 1170-1180(2004).
    [CrossRef]
  27. C. D. Donaldson and R. S. Snedeker, “A study of free jet impingement. Part 1. Mean properties of free and impinging jets,” J. Fluid Mech. 45, 281-319 (1971).
    [CrossRef]
  28. J. A. Wilkes, C. E. Glass, P. M. Danehy, and R. J. Nowak, “Fluorescence imaging of underexpanded jets and comparison with CFD,” in 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2006-910 (AIAA, 2006).
  29. W. Z. Strang, R. F. Tomaro, and M. J. Grismer, “The defining methods of Cobalt 60: A parallel, implicit, unstructured Euler/Navier-Stokes flow solver,” 37th Aerospace Sciences Meeting and Exhibit, AIAA 1999-786 (AIAA, 1999).
  30. F. R. Menter, “Zonal two equation turbulence model predictions,” in AIAA 24th Fluid Dynamics Conference, AIAA 93-2906 (AIAA, 1993).

2007 (1)

C. Brooks, G. Hancock, and M. Saunders, “Dependence of the nascent vibrational distribution of NO(v) on the photolysis wavelength of NO2 in the range λ=266-327 nm measured by time-resolved Fourier transform infrared emission,” Phys. Chem. Chem. Phys. 9, 5232-5240 (2007).
[CrossRef] [PubMed]

2006 (3)

M. M. Ismailov, H. J. Schock, and A. M. Fedewa, “Gaseous flow measurements in an internal combustion engine assembly using molecular tagging velocimetry,” Exp. Fluids 41, 57-66(2006).
[CrossRef]

M. M. IsmailovH. J. Schock, and A. M. Fedewa, “Gaseous flow measurements in an internal combustion engine assembly using molecular tagging velocimetry,” Exp. Fluids 41, 57-66(2006).
[CrossRef]

H. Hu and M. M. Koochesfahani, “Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder,” Meas. Sci. Technol. 17, 1269-1281(2006).
[CrossRef]

2005 (1)

S. Nakaya, M. Kasahara, M. Tsue, and M. Kono, “Velocity measurements of reactive and non-reactive flows by NO-LIF method using NO2 photodissociation,” Heat Trans. Asian Res. 34, 40-52 (2005).
[CrossRef]

2004 (3)

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, and R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65-74(2004).
[CrossRef]

D. G. Bohl and M. M. Koochesfahani, “Molecular tagging velocimetry measurements of axial flow in a concentrated vortex core,” Phys. Fluids 16, 4185-4191 (2004).
[CrossRef]

M. A. Woodmansee, V. Iyer, J. C. Dutton, and R. P. Lucht, “Nonintrusive pressure and temperature measurements in an underexpanded sonic jet flowfield,” AIAA J. 42, 1170-1180(2004).
[CrossRef]

2003 (3)

W. R. Lempert, M. Boehm, N. Jiang, S. Gimelshein, and D. Levin, “Comparison of molecular tagging velocimetry data and direct simulation Monte Carlo simulations in supersonic micro jet flows,” Exp. Fluids 34, 403-411 (2003).

P. Danehy, S. O'Byrne, F. Houwing, J. Fox, and D. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263-271 (2003).
[CrossRef]

W. P. N. van der Laan, R. A. L. Tolboom, and J. J. ter Meulen, “Molecular tagging velocimetry in the wake of an Object in supersonic flow,” Exp. Fluids 34, 531-533 (2003).

2002 (1)

W. R. Lempert, N. Jiang, S. Sethuram, and M. Samimy, “Molecular tagging velocimetry measurements in supersonic microjets,” AIAA J. 40, 1065-1070 (2002).
[CrossRef]

1999 (4)

J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, and R. W. Pitz, “Flame flow tagging velocimetry with 193 nm H2O photodissociation,” Appl. Opt. 38, 6912-6917 (1999).
[CrossRef]

C. Orlemann, C. Schulz, and J. Wolfrum, “NO-flow tagging by photodissociation of NO2. A new approach for measuring small-scale flow structures,” Chem. Phys. Lett. 307, 15-20(1999).
[CrossRef]

S. Kruger and G. Grunefeld, “Stereoscopic flow-tagging velocimetry,” Appl. Phys. B 69, 509-512 (1999).
[CrossRef]

B. Stier and M. Koochesfahani, “Molecular tagging velocimetry (MTV) measurements in gas phase flows,” Exp. Fluids 26, 297-304 (1999).
[CrossRef]

1996 (1)

1994 (1)

J. Harrison, X. Yang, M. Rosslein, P. Felder, and J. Huber, “Photodissociation of NO2 at 355 and 351 nm investigated by photofragment translational spectroscopy,” J. Phys. Chem. 98, 12260-12269 (1994).
[CrossRef]

1993 (2)

M. Hunter, S. A. Reid, D. C. Robie, and H. Reisler, “The monoenergetic unimolecular reaction of expansion-cooled NO2: NO product state distributions at excess energies 0-3000 cm−1,” J. Chem. Phys. 99, 1093-1108 (1993).
[CrossRef]

R. Miles, D. Zhou, B. Zhang, and W. Lempert, “Fundamental turbulence measurements by relief flow tagging,” AIAA J. 31, 447-452 (1993).
[CrossRef]

1971 (1)

C. D. Donaldson and R. S. Snedeker, “A study of free jet impingement. Part 1. Mean properties of free and impinging jets,” J. Fluid Mech. 45, 281-319 (1971).
[CrossRef]

Boehm, M.

W. R. Lempert, M. Boehm, N. Jiang, S. Gimelshein, and D. Levin, “Comparison of molecular tagging velocimetry data and direct simulation Monte Carlo simulations in supersonic micro jet flows,” Exp. Fluids 34, 403-411 (2003).

Bohl, D. G.

D. G. Bohl and M. M. Koochesfahani, “Molecular tagging velocimetry measurements of axial flow in a concentrated vortex core,” Phys. Fluids 16, 4185-4191 (2004).
[CrossRef]

Bominaar, J.

S. P. Nandula, R. W. Pitz, J. Bominaar, C. Schoemaecker, N. J. Dam, and J. J. ter Meulen, “Kinetics of NO tag formation in air for unseeded molecular tagging velocimetry,” in 42nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2004-390 (AIAA, 2004).

Bowersox, R.

A. Hsu, R. Srinivasan, R. Bowersox, and S. North, “Molecular tagging using vibrationally excited nitric oxide in an underexpanded jet flowfield,” AIAA J. (to be published).

Brooks, C.

C. Brooks, G. Hancock, and M. Saunders, “Dependence of the nascent vibrational distribution of NO(v) on the photolysis wavelength of NO2 in the range λ=266-327 nm measured by time-resolved Fourier transform infrared emission,” Phys. Chem. Chem. Phys. 9, 5232-5240 (2007).
[CrossRef] [PubMed]

Brown, M. S.

Brown, T. M.

Carter, C. D.

R. W. Pitz, M. D. Lahr, Z. W. Douglas, J. A. Wehrmeyer, S. Hu, C. D. Carter, K. Y. Hsu, C. Lum, and M. M. Koochesfahani, “Hydroxyl tagging velocimetry in a Mach 2 flow with a wall cavity,” in 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2005-36 (AIAA, 2005).

Dam, N. J.

S. P. Nandula, R. W. Pitz, J. Bominaar, C. Schoemaecker, N. J. Dam, and J. J. ter Meulen, “Kinetics of NO tag formation in air for unseeded molecular tagging velocimetry,” in 42nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2004-390 (AIAA, 2004).

Danehy, P.

P. Danehy, S. O'Byrne, F. Houwing, J. Fox, and D. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263-271 (2003).
[CrossRef]

Danehy, P. M.

J. A. Wilkes, C. E. Glass, P. M. Danehy, and R. J. Nowak, “Fluorescence imaging of underexpanded jets and comparison with CFD,” in 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2006-910 (AIAA, 2006).

DeBarber, P. A.

Donaldson, C. D.

C. D. Donaldson and R. S. Snedeker, “A study of free jet impingement. Part 1. Mean properties of free and impinging jets,” J. Fluid Mech. 45, 281-319 (1971).
[CrossRef]

Douglas, Z. W.

R. W. Pitz, M. D. Lahr, Z. W. Douglas, J. A. Wehrmeyer, S. Hu, C. D. Carter, K. Y. Hsu, C. Lum, and M. M. Koochesfahani, “Hydroxyl tagging velocimetry in a Mach 2 flow with a wall cavity,” in 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2005-36 (AIAA, 2005).

Dutton, J. C.

M. A. Woodmansee, V. Iyer, J. C. Dutton, and R. P. Lucht, “Nonintrusive pressure and temperature measurements in an underexpanded sonic jet flowfield,” AIAA J. 42, 1170-1180(2004).
[CrossRef]

Elliott, G.

R. Huffman and G. Elliott, “An experimental investigation of accurate particle tracking in supersonic, rarefied axisymmetric jets,” in 47th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2009-1265 (AIAA, 2009).

Fedewa, A. M.

M. M. IsmailovH. J. Schock, and A. M. Fedewa, “Gaseous flow measurements in an internal combustion engine assembly using molecular tagging velocimetry,” Exp. Fluids 41, 57-66(2006).
[CrossRef]

M. M. Ismailov, H. J. Schock, and A. M. Fedewa, “Gaseous flow measurements in an internal combustion engine assembly using molecular tagging velocimetry,” Exp. Fluids 41, 57-66(2006).
[CrossRef]

Felder, P.

J. Harrison, X. Yang, M. Rosslein, P. Felder, and J. Huber, “Photodissociation of NO2 at 355 and 351 nm investigated by photofragment translational spectroscopy,” J. Phys. Chem. 98, 12260-12269 (1994).
[CrossRef]

Fox, J.

P. Danehy, S. O'Byrne, F. Houwing, J. Fox, and D. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263-271 (2003).
[CrossRef]

Gimelshein, S.

W. R. Lempert, M. Boehm, N. Jiang, S. Gimelshein, and D. Levin, “Comparison of molecular tagging velocimetry data and direct simulation Monte Carlo simulations in supersonic micro jet flows,” Exp. Fluids 34, 403-411 (2003).

Glass, C. E.

J. A. Wilkes, C. E. Glass, P. M. Danehy, and R. J. Nowak, “Fluorescence imaging of underexpanded jets and comparison with CFD,” in 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2006-910 (AIAA, 2006).

Grismer, M. J.

W. Z. Strang, R. F. Tomaro, and M. J. Grismer, “The defining methods of Cobalt 60: A parallel, implicit, unstructured Euler/Navier-Stokes flow solver,” 37th Aerospace Sciences Meeting and Exhibit, AIAA 1999-786 (AIAA, 1999).

Grunefeld, G.

S. Kruger and G. Grunefeld, “Stereoscopic flow-tagging velocimetry,” Appl. Phys. B 69, 509-512 (1999).
[CrossRef]

Hancock, G.

C. Brooks, G. Hancock, and M. Saunders, “Dependence of the nascent vibrational distribution of NO(v) on the photolysis wavelength of NO2 in the range λ=266-327 nm measured by time-resolved Fourier transform infrared emission,” Phys. Chem. Chem. Phys. 9, 5232-5240 (2007).
[CrossRef] [PubMed]

Harrison, J.

J. Harrison, X. Yang, M. Rosslein, P. Felder, and J. Huber, “Photodissociation of NO2 at 355 and 351 nm investigated by photofragment translational spectroscopy,” J. Phys. Chem. 98, 12260-12269 (1994).
[CrossRef]

Houwing, F.

P. Danehy, S. O'Byrne, F. Houwing, J. Fox, and D. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263-271 (2003).
[CrossRef]

Hsu, A.

A. Hsu, R. Srinivasan, R. Bowersox, and S. North, “Molecular tagging using vibrationally excited nitric oxide in an underexpanded jet flowfield,” AIAA J. (to be published).

A. Hsu, “Application of advanced laser and optical diagnostics towards non-thermochemical equilibrium systems,” (Ph.D. dissertation (Texas A&M University, 2009).

Hsu, K. Y.

R. W. Pitz, M. D. Lahr, Z. W. Douglas, J. A. Wehrmeyer, S. Hu, C. D. Carter, K. Y. Hsu, C. Lum, and M. M. Koochesfahani, “Hydroxyl tagging velocimetry in a Mach 2 flow with a wall cavity,” in 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2005-36 (AIAA, 2005).

Hu, H.

H. Hu and M. M. Koochesfahani, “Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder,” Meas. Sci. Technol. 17, 1269-1281(2006).
[CrossRef]

H. Hu and M. M. Koochesfahani, “Molecular tagging velocimetry for the simultaneous measurements of flow velocity and temperature fields,” n 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2006-41 (AIAA, 2006).

Hu, S.

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, and R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65-74(2004).
[CrossRef]

R. W. Pitz, M. D. Lahr, Z. W. Douglas, J. A. Wehrmeyer, S. Hu, C. D. Carter, K. Y. Hsu, C. Lum, and M. M. Koochesfahani, “Hydroxyl tagging velocimetry in a Mach 2 flow with a wall cavity,” in 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2005-36 (AIAA, 2005).

Huber, J.

J. Harrison, X. Yang, M. Rosslein, P. Felder, and J. Huber, “Photodissociation of NO2 at 355 and 351 nm investigated by photofragment translational spectroscopy,” J. Phys. Chem. 98, 12260-12269 (1994).
[CrossRef]

Huffman, R.

R. Huffman and G. Elliott, “An experimental investigation of accurate particle tracking in supersonic, rarefied axisymmetric jets,” in 47th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2009-1265 (AIAA, 2009).

Hunter, M.

M. Hunter, S. A. Reid, D. C. Robie, and H. Reisler, “The monoenergetic unimolecular reaction of expansion-cooled NO2: NO product state distributions at excess energies 0-3000 cm−1,” J. Chem. Phys. 99, 1093-1108 (1993).
[CrossRef]

Ismailov, M. M.

M. M. Ismailov, H. J. Schock, and A. M. Fedewa, “Gaseous flow measurements in an internal combustion engine assembly using molecular tagging velocimetry,” Exp. Fluids 41, 57-66(2006).
[CrossRef]

M. M. IsmailovH. J. Schock, and A. M. Fedewa, “Gaseous flow measurements in an internal combustion engine assembly using molecular tagging velocimetry,” Exp. Fluids 41, 57-66(2006).
[CrossRef]

Iyer, V.

M. A. Woodmansee, V. Iyer, J. C. Dutton, and R. P. Lucht, “Nonintrusive pressure and temperature measurements in an underexpanded sonic jet flowfield,” AIAA J. 42, 1170-1180(2004).
[CrossRef]

Jiang, N.

W. R. Lempert, M. Boehm, N. Jiang, S. Gimelshein, and D. Levin, “Comparison of molecular tagging velocimetry data and direct simulation Monte Carlo simulations in supersonic micro jet flows,” Exp. Fluids 34, 403-411 (2003).

W. R. Lempert, N. Jiang, S. Sethuram, and M. Samimy, “Molecular tagging velocimetry measurements in supersonic microjets,” AIAA J. 40, 1065-1070 (2002).
[CrossRef]

Kasahara, M.

S. Nakaya, M. Kasahara, M. Tsue, and M. Kono, “Velocity measurements of reactive and non-reactive flows by NO-LIF method using NO2 photodissociation,” Heat Trans. Asian Res. 34, 40-52 (2005).
[CrossRef]

Kono, M.

S. Nakaya, M. Kasahara, M. Tsue, and M. Kono, “Velocity measurements of reactive and non-reactive flows by NO-LIF method using NO2 photodissociation,” Heat Trans. Asian Res. 34, 40-52 (2005).
[CrossRef]

Koochesfahani, M.

B. Stier and M. Koochesfahani, “Molecular tagging velocimetry (MTV) measurements in gas phase flows,” Exp. Fluids 26, 297-304 (1999).
[CrossRef]

Koochesfahani, M. M.

H. Hu and M. M. Koochesfahani, “Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder,” Meas. Sci. Technol. 17, 1269-1281(2006).
[CrossRef]

D. G. Bohl and M. M. Koochesfahani, “Molecular tagging velocimetry measurements of axial flow in a concentrated vortex core,” Phys. Fluids 16, 4185-4191 (2004).
[CrossRef]

H. Hu and M. M. Koochesfahani, “Molecular tagging velocimetry for the simultaneous measurements of flow velocity and temperature fields,” n 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2006-41 (AIAA, 2006).

R. W. Pitz, M. D. Lahr, Z. W. Douglas, J. A. Wehrmeyer, S. Hu, C. D. Carter, K. Y. Hsu, C. Lum, and M. M. Koochesfahani, “Hydroxyl tagging velocimetry in a Mach 2 flow with a wall cavity,” in 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2005-36 (AIAA, 2005).

Kruger, S.

S. Kruger and G. Grunefeld, “Stereoscopic flow-tagging velocimetry,” Appl. Phys. B 69, 509-512 (1999).
[CrossRef]

Lahr, M. D.

R. W. Pitz, M. D. Lahr, Z. W. Douglas, J. A. Wehrmeyer, S. Hu, C. D. Carter, K. Y. Hsu, C. Lum, and M. M. Koochesfahani, “Hydroxyl tagging velocimetry in a Mach 2 flow with a wall cavity,” in 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2005-36 (AIAA, 2005).

Lempert, W.

R. Miles, D. Zhou, B. Zhang, and W. Lempert, “Fundamental turbulence measurements by relief flow tagging,” AIAA J. 31, 447-452 (1993).
[CrossRef]

Lempert, W. R.

W. R. Lempert, M. Boehm, N. Jiang, S. Gimelshein, and D. Levin, “Comparison of molecular tagging velocimetry data and direct simulation Monte Carlo simulations in supersonic micro jet flows,” Exp. Fluids 34, 403-411 (2003).

W. R. Lempert, N. Jiang, S. Sethuram, and M. Samimy, “Molecular tagging velocimetry measurements in supersonic microjets,” AIAA J. 40, 1065-1070 (2002).
[CrossRef]

Levin, D.

W. R. Lempert, M. Boehm, N. Jiang, S. Gimelshein, and D. Levin, “Comparison of molecular tagging velocimetry data and direct simulation Monte Carlo simulations in supersonic micro jet flows,” Exp. Fluids 34, 403-411 (2003).

Lucht, R. P.

M. A. Woodmansee, V. Iyer, J. C. Dutton, and R. P. Lucht, “Nonintrusive pressure and temperature measurements in an underexpanded sonic jet flowfield,” AIAA J. 42, 1170-1180(2004).
[CrossRef]

Lum, C.

R. W. Pitz, M. D. Lahr, Z. W. Douglas, J. A. Wehrmeyer, S. Hu, C. D. Carter, K. Y. Hsu, C. Lum, and M. M. Koochesfahani, “Hydroxyl tagging velocimetry in a Mach 2 flow with a wall cavity,” in 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2005-36 (AIAA, 2005).

Menter, F. R.

F. R. Menter, “Zonal two equation turbulence model predictions,” in AIAA 24th Fluid Dynamics Conference, AIAA 93-2906 (AIAA, 1993).

Miles, R.

R. Miles, D. Zhou, B. Zhang, and W. Lempert, “Fundamental turbulence measurements by relief flow tagging,” AIAA J. 31, 447-452 (1993).
[CrossRef]

Nakaya, S.

S. Nakaya, M. Kasahara, M. Tsue, and M. Kono, “Velocity measurements of reactive and non-reactive flows by NO-LIF method using NO2 photodissociation,” Heat Trans. Asian Res. 34, 40-52 (2005).
[CrossRef]

Nandula, S. P.

R. W. Pitz, T. M. Brown, S. P. Nandula, P. A. Skaggs, P. A. DeBarber, M. S. Brown, and J. Segall, “Unseeded velocity measurement by ozone tagging velocimetry,” Opt. Lett. 21, 755-757 (1996).
[CrossRef] [PubMed]

S. P. Nandula, R. W. Pitz, J. Bominaar, C. Schoemaecker, N. J. Dam, and J. J. ter Meulen, “Kinetics of NO tag formation in air for unseeded molecular tagging velocimetry,” in 42nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2004-390 (AIAA, 2004).

North, S.

A. Hsu, R. Srinivasan, R. Bowersox, and S. North, “Molecular tagging using vibrationally excited nitric oxide in an underexpanded jet flowfield,” AIAA J. (to be published).

Nowak, R. J.

J. A. Wilkes, C. E. Glass, P. M. Danehy, and R. J. Nowak, “Fluorescence imaging of underexpanded jets and comparison with CFD,” in 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2006-910 (AIAA, 2006).

O'Byrne, S.

P. Danehy, S. O'Byrne, F. Houwing, J. Fox, and D. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263-271 (2003).
[CrossRef]

Oguss, D. A.

Orlemann, C.

C. Orlemann, C. Schulz, and J. Wolfrum, “NO-flow tagging by photodissociation of NO2. A new approach for measuring small-scale flow structures,” Chem. Phys. Lett. 307, 15-20(1999).
[CrossRef]

Pitz, R. W.

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, and R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65-74(2004).
[CrossRef]

J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, and R. W. Pitz, “Flame flow tagging velocimetry with 193 nm H2O photodissociation,” Appl. Opt. 38, 6912-6917 (1999).
[CrossRef]

R. W. Pitz, T. M. Brown, S. P. Nandula, P. A. Skaggs, P. A. DeBarber, M. S. Brown, and J. Segall, “Unseeded velocity measurement by ozone tagging velocimetry,” Opt. Lett. 21, 755-757 (1996).
[CrossRef] [PubMed]

R. W. Pitz, M. D. Lahr, Z. W. Douglas, J. A. Wehrmeyer, S. Hu, C. D. Carter, K. Y. Hsu, C. Lum, and M. M. Koochesfahani, “Hydroxyl tagging velocimetry in a Mach 2 flow with a wall cavity,” in 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2005-36 (AIAA, 2005).

S. P. Nandula, R. W. Pitz, J. Bominaar, C. Schoemaecker, N. J. Dam, and J. J. ter Meulen, “Kinetics of NO tag formation in air for unseeded molecular tagging velocimetry,” in 42nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2004-390 (AIAA, 2004).

Reid, S. A.

M. Hunter, S. A. Reid, D. C. Robie, and H. Reisler, “The monoenergetic unimolecular reaction of expansion-cooled NO2: NO product state distributions at excess energies 0-3000 cm−1,” J. Chem. Phys. 99, 1093-1108 (1993).
[CrossRef]

Reisler, H.

M. Hunter, S. A. Reid, D. C. Robie, and H. Reisler, “The monoenergetic unimolecular reaction of expansion-cooled NO2: NO product state distributions at excess energies 0-3000 cm−1,” J. Chem. Phys. 99, 1093-1108 (1993).
[CrossRef]

Ribarov, L. A.

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, and R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65-74(2004).
[CrossRef]

J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, and R. W. Pitz, “Flame flow tagging velocimetry with 193 nm H2O photodissociation,” Appl. Opt. 38, 6912-6917 (1999).
[CrossRef]

Robie, D. C.

M. Hunter, S. A. Reid, D. C. Robie, and H. Reisler, “The monoenergetic unimolecular reaction of expansion-cooled NO2: NO product state distributions at excess energies 0-3000 cm−1,” J. Chem. Phys. 99, 1093-1108 (1993).
[CrossRef]

Rosslein, M.

J. Harrison, X. Yang, M. Rosslein, P. Felder, and J. Huber, “Photodissociation of NO2 at 355 and 351 nm investigated by photofragment translational spectroscopy,” J. Phys. Chem. 98, 12260-12269 (1994).
[CrossRef]

Samimy, M.

W. R. Lempert, N. Jiang, S. Sethuram, and M. Samimy, “Molecular tagging velocimetry measurements in supersonic microjets,” AIAA J. 40, 1065-1070 (2002).
[CrossRef]

Saunders, M.

C. Brooks, G. Hancock, and M. Saunders, “Dependence of the nascent vibrational distribution of NO(v) on the photolysis wavelength of NO2 in the range λ=266-327 nm measured by time-resolved Fourier transform infrared emission,” Phys. Chem. Chem. Phys. 9, 5232-5240 (2007).
[CrossRef] [PubMed]

Schock, H. J.

M. M. Ismailov, H. J. Schock, and A. M. Fedewa, “Gaseous flow measurements in an internal combustion engine assembly using molecular tagging velocimetry,” Exp. Fluids 41, 57-66(2006).
[CrossRef]

M. M. IsmailovH. J. Schock, and A. M. Fedewa, “Gaseous flow measurements in an internal combustion engine assembly using molecular tagging velocimetry,” Exp. Fluids 41, 57-66(2006).
[CrossRef]

Schoemaecker, C.

S. P. Nandula, R. W. Pitz, J. Bominaar, C. Schoemaecker, N. J. Dam, and J. J. ter Meulen, “Kinetics of NO tag formation in air for unseeded molecular tagging velocimetry,” in 42nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2004-390 (AIAA, 2004).

Schulz, C.

C. Orlemann, C. Schulz, and J. Wolfrum, “NO-flow tagging by photodissociation of NO2. A new approach for measuring small-scale flow structures,” Chem. Phys. Lett. 307, 15-20(1999).
[CrossRef]

Segall, J.

Sethuram, S.

W. R. Lempert, N. Jiang, S. Sethuram, and M. Samimy, “Molecular tagging velocimetry measurements in supersonic microjets,” AIAA J. 40, 1065-1070 (2002).
[CrossRef]

Skaggs, P. A.

Smith, D.

P. Danehy, S. O'Byrne, F. Houwing, J. Fox, and D. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263-271 (2003).
[CrossRef]

Snedeker, R. S.

C. D. Donaldson and R. S. Snedeker, “A study of free jet impingement. Part 1. Mean properties of free and impinging jets,” J. Fluid Mech. 45, 281-319 (1971).
[CrossRef]

Srinivasan, R.

A. Hsu, R. Srinivasan, R. Bowersox, and S. North, “Molecular tagging using vibrationally excited nitric oxide in an underexpanded jet flowfield,” AIAA J. (to be published).

Stier, B.

B. Stier and M. Koochesfahani, “Molecular tagging velocimetry (MTV) measurements in gas phase flows,” Exp. Fluids 26, 297-304 (1999).
[CrossRef]

Strang, W. Z.

W. Z. Strang, R. F. Tomaro, and M. J. Grismer, “The defining methods of Cobalt 60: A parallel, implicit, unstructured Euler/Navier-Stokes flow solver,” 37th Aerospace Sciences Meeting and Exhibit, AIAA 1999-786 (AIAA, 1999).

ter Meulen, J. J.

W. P. N. van der Laan, R. A. L. Tolboom, and J. J. ter Meulen, “Molecular tagging velocimetry in the wake of an Object in supersonic flow,” Exp. Fluids 34, 531-533 (2003).

S. P. Nandula, R. W. Pitz, J. Bominaar, C. Schoemaecker, N. J. Dam, and J. J. ter Meulen, “Kinetics of NO tag formation in air for unseeded molecular tagging velocimetry,” in 42nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2004-390 (AIAA, 2004).

Tolboom, R. A. L.

W. P. N. van der Laan, R. A. L. Tolboom, and J. J. ter Meulen, “Molecular tagging velocimetry in the wake of an Object in supersonic flow,” Exp. Fluids 34, 531-533 (2003).

Tomaro, R. F.

W. Z. Strang, R. F. Tomaro, and M. J. Grismer, “The defining methods of Cobalt 60: A parallel, implicit, unstructured Euler/Navier-Stokes flow solver,” 37th Aerospace Sciences Meeting and Exhibit, AIAA 1999-786 (AIAA, 1999).

Tsue, M.

S. Nakaya, M. Kasahara, M. Tsue, and M. Kono, “Velocity measurements of reactive and non-reactive flows by NO-LIF method using NO2 photodissociation,” Heat Trans. Asian Res. 34, 40-52 (2005).
[CrossRef]

van der Laan, W. P. N.

W. P. N. van der Laan, R. A. L. Tolboom, and J. J. ter Meulen, “Molecular tagging velocimetry in the wake of an Object in supersonic flow,” Exp. Fluids 34, 531-533 (2003).

Wehrmeyer, J. A.

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, and R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65-74(2004).
[CrossRef]

J. A. Wehrmeyer, L. A. Ribarov, D. A. Oguss, and R. W. Pitz, “Flame flow tagging velocimetry with 193 nm H2O photodissociation,” Appl. Opt. 38, 6912-6917 (1999).
[CrossRef]

R. W. Pitz, M. D. Lahr, Z. W. Douglas, J. A. Wehrmeyer, S. Hu, C. D. Carter, K. Y. Hsu, C. Lum, and M. M. Koochesfahani, “Hydroxyl tagging velocimetry in a Mach 2 flow with a wall cavity,” in 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2005-36 (AIAA, 2005).

Wilkes, J. A.

J. A. Wilkes, C. E. Glass, P. M. Danehy, and R. J. Nowak, “Fluorescence imaging of underexpanded jets and comparison with CFD,” in 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2006-910 (AIAA, 2006).

Wolfrum, J.

C. Orlemann, C. Schulz, and J. Wolfrum, “NO-flow tagging by photodissociation of NO2. A new approach for measuring small-scale flow structures,” Chem. Phys. Lett. 307, 15-20(1999).
[CrossRef]

Woodmansee, M. A.

M. A. Woodmansee, V. Iyer, J. C. Dutton, and R. P. Lucht, “Nonintrusive pressure and temperature measurements in an underexpanded sonic jet flowfield,” AIAA J. 42, 1170-1180(2004).
[CrossRef]

Yang, X.

J. Harrison, X. Yang, M. Rosslein, P. Felder, and J. Huber, “Photodissociation of NO2 at 355 and 351 nm investigated by photofragment translational spectroscopy,” J. Phys. Chem. 98, 12260-12269 (1994).
[CrossRef]

Zhang, B.

R. Miles, D. Zhou, B. Zhang, and W. Lempert, “Fundamental turbulence measurements by relief flow tagging,” AIAA J. 31, 447-452 (1993).
[CrossRef]

Zhou, D.

R. Miles, D. Zhou, B. Zhang, and W. Lempert, “Fundamental turbulence measurements by relief flow tagging,” AIAA J. 31, 447-452 (1993).
[CrossRef]

AIAA J. (4)

R. Miles, D. Zhou, B. Zhang, and W. Lempert, “Fundamental turbulence measurements by relief flow tagging,” AIAA J. 31, 447-452 (1993).
[CrossRef]

P. Danehy, S. O'Byrne, F. Houwing, J. Fox, and D. Smith, “Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide,” AIAA J. 41, 263-271 (2003).
[CrossRef]

W. R. Lempert, N. Jiang, S. Sethuram, and M. Samimy, “Molecular tagging velocimetry measurements in supersonic microjets,” AIAA J. 40, 1065-1070 (2002).
[CrossRef]

M. A. Woodmansee, V. Iyer, J. C. Dutton, and R. P. Lucht, “Nonintrusive pressure and temperature measurements in an underexpanded sonic jet flowfield,” AIAA J. 42, 1170-1180(2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

S. Kruger and G. Grunefeld, “Stereoscopic flow-tagging velocimetry,” Appl. Phys. B 69, 509-512 (1999).
[CrossRef]

Chem. Phys. Lett. (1)

C. Orlemann, C. Schulz, and J. Wolfrum, “NO-flow tagging by photodissociation of NO2. A new approach for measuring small-scale flow structures,” Chem. Phys. Lett. 307, 15-20(1999).
[CrossRef]

Exp. Fluids (6)

M. M. Ismailov, H. J. Schock, and A. M. Fedewa, “Gaseous flow measurements in an internal combustion engine assembly using molecular tagging velocimetry,” Exp. Fluids 41, 57-66(2006).
[CrossRef]

B. Stier and M. Koochesfahani, “Molecular tagging velocimetry (MTV) measurements in gas phase flows,” Exp. Fluids 26, 297-304 (1999).
[CrossRef]

L. A. Ribarov, J. A. Wehrmeyer, S. Hu, and R. W. Pitz, “Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows,” Exp. Fluids 37, 65-74(2004).
[CrossRef]

W. R. Lempert, M. Boehm, N. Jiang, S. Gimelshein, and D. Levin, “Comparison of molecular tagging velocimetry data and direct simulation Monte Carlo simulations in supersonic micro jet flows,” Exp. Fluids 34, 403-411 (2003).

M. M. IsmailovH. J. Schock, and A. M. Fedewa, “Gaseous flow measurements in an internal combustion engine assembly using molecular tagging velocimetry,” Exp. Fluids 41, 57-66(2006).
[CrossRef]

W. P. N. van der Laan, R. A. L. Tolboom, and J. J. ter Meulen, “Molecular tagging velocimetry in the wake of an Object in supersonic flow,” Exp. Fluids 34, 531-533 (2003).

Heat Trans. Asian Res. (1)

S. Nakaya, M. Kasahara, M. Tsue, and M. Kono, “Velocity measurements of reactive and non-reactive flows by NO-LIF method using NO2 photodissociation,” Heat Trans. Asian Res. 34, 40-52 (2005).
[CrossRef]

J. Chem. Phys. (1)

M. Hunter, S. A. Reid, D. C. Robie, and H. Reisler, “The monoenergetic unimolecular reaction of expansion-cooled NO2: NO product state distributions at excess energies 0-3000 cm−1,” J. Chem. Phys. 99, 1093-1108 (1993).
[CrossRef]

J. Fluid Mech. (1)

C. D. Donaldson and R. S. Snedeker, “A study of free jet impingement. Part 1. Mean properties of free and impinging jets,” J. Fluid Mech. 45, 281-319 (1971).
[CrossRef]

J. Phys. Chem. (1)

J. Harrison, X. Yang, M. Rosslein, P. Felder, and J. Huber, “Photodissociation of NO2 at 355 and 351 nm investigated by photofragment translational spectroscopy,” J. Phys. Chem. 98, 12260-12269 (1994).
[CrossRef]

Meas. Sci. Technol. (1)

H. Hu and M. M. Koochesfahani, “Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder,” Meas. Sci. Technol. 17, 1269-1281(2006).
[CrossRef]

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

C. Brooks, G. Hancock, and M. Saunders, “Dependence of the nascent vibrational distribution of NO(v) on the photolysis wavelength of NO2 in the range λ=266-327 nm measured by time-resolved Fourier transform infrared emission,” Phys. Chem. Chem. Phys. 9, 5232-5240 (2007).
[CrossRef] [PubMed]

Phys. Fluids (1)

D. G. Bohl and M. M. Koochesfahani, “Molecular tagging velocimetry measurements of axial flow in a concentrated vortex core,” Phys. Fluids 16, 4185-4191 (2004).
[CrossRef]

Other (9)

R. Huffman and G. Elliott, “An experimental investigation of accurate particle tracking in supersonic, rarefied axisymmetric jets,” in 47th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2009-1265 (AIAA, 2009).

H. Hu and M. M. Koochesfahani, “Molecular tagging velocimetry for the simultaneous measurements of flow velocity and temperature fields,” n 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2006-41 (AIAA, 2006).

R. W. Pitz, M. D. Lahr, Z. W. Douglas, J. A. Wehrmeyer, S. Hu, C. D. Carter, K. Y. Hsu, C. Lum, and M. M. Koochesfahani, “Hydroxyl tagging velocimetry in a Mach 2 flow with a wall cavity,” in 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2005-36 (AIAA, 2005).

S. P. Nandula, R. W. Pitz, J. Bominaar, C. Schoemaecker, N. J. Dam, and J. J. ter Meulen, “Kinetics of NO tag formation in air for unseeded molecular tagging velocimetry,” in 42nd AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2004-390 (AIAA, 2004).

A. Hsu, R. Srinivasan, R. Bowersox, and S. North, “Molecular tagging using vibrationally excited nitric oxide in an underexpanded jet flowfield,” AIAA J. (to be published).

A. Hsu, “Application of advanced laser and optical diagnostics towards non-thermochemical equilibrium systems,” (Ph.D. dissertation (Texas A&M University, 2009).

J. A. Wilkes, C. E. Glass, P. M. Danehy, and R. J. Nowak, “Fluorescence imaging of underexpanded jets and comparison with CFD,” in 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2006-910 (AIAA, 2006).

W. Z. Strang, R. F. Tomaro, and M. J. Grismer, “The defining methods of Cobalt 60: A parallel, implicit, unstructured Euler/Navier-Stokes flow solver,” 37th Aerospace Sciences Meeting and Exhibit, AIAA 1999-786 (AIAA, 1999).

F. R. Menter, “Zonal two equation turbulence model predictions,” in AIAA 24th Fluid Dynamics Conference, AIAA 93-2906 (AIAA, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Relevant structures associated with a highly underexpanded jet flowfield.

Fig. 2
Fig. 2

Schematic diagram of experiments for the two-component velocimetry measurements employed in the present study.

Fig. 3
Fig. 3

Run 1, 60 s integrated images obtained under low-quenching conditions (see text for details).

Fig. 4
Fig. 4

Run 1, single-shot images obtained under low-quenching conditions.

Fig. 5
Fig. 5

Run 2, 60 s integrated images obtained under high-quenching conditions (see text for details).

Fig. 6
Fig. 6

Run 3, 60 s integrated images under high-quenching conditions employing NO 2 photodissociation.

Fig. 7
Fig. 7

Full resolution streamwise and radial veloc ity maps (meters/second) for Run 1.

Fig. 8
Fig. 8

Interpolated velocity maps for Run 1 derived from the integrated images (meters/second) under low-quenching conditions.

Fig. 9
Fig. 9

Interpolated velocity maps for Run 2, derived from the integrated images (meters/second) under high-quenching conditions.

Fig. 10
Fig. 10

Interpolated velocity maps for Run 3, derived from the integrated images (meters/second) under high-quenching conditions and employing NO 2 photodissociation.

Fig. 11
Fig. 11

Comparison of experimental streamwise velocity maps (meters/second) with CFD simulations.

Fig. 12
Fig. 12

Comparison of experimental radial velocity maps (meters/second) with CFD simulations.

Tables (1)

Tables Icon

Table 1 Two-Component Velocimetry Experimental Run Conditions

Metrics