Abstract

We investigate the phase coherence between a seed laser and a laser amplified by a tapered semi conductor amplifier (TSA) when the seed laser is either continuous wave (CW) or pulsed. The phase fluctuations in the time domain are employed to describe the degradation of phase coherence induced by a TSA. The amplified laser is measured to be approximately 99.98% coherent with the seed, when the CW or pulsed laser is seeded, at different supplying currents of the TSA. Furthermore, the phase coherence is measured when the seed laser is modulated. The results reveal that the phase coherence degradations induced by the TSA remain the same for a seed laser with and without modulation, when different supplying currents of the TSA are applied.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Electron. 28, 623-645 (1996).
    [CrossRef]
  2. G. Ferrari, M. O. Mewes, F. Schreck, and C. Salomon, “High-power multiple-frequency narrow-linewidth laser source based on a semiconductor tapered amplifier,” Opt. Lett. 24, 151-153 (1999).
    [CrossRef]
  3. C. Schwedes, E. Peik, J. V. Zanthier, A. Y. Nevsky, and H. Walther, “Narrow-bandwidth diode-laser-based blue and ultraviolet light source,” Appl. Phys. B 76, 143-147 (2003).
    [CrossRef]
  4. E. S. Kintzer, J. N. Walpole, S. R. Chinn, C. A. Wang, and L. J. Missaggia, in Optical Fiber Communication Conference Technical Digest, D. Fye and R. Wagner, eds. (Optical Society of America, 1992), paper TuH5.
  5. K. Kikuchi, C. E. Zah, and T. P. Lee, “Measurement and analysis of phase noise generated from semiconductor optical amplifiers,” IEEE J. Quantum Electron. 27, 416-422 (1991).
    [CrossRef]
  6. F. C. Cruz, M. C. Stowe, and J. Ye, “Tapered semiconductor amplifiers for optical frequency combs in the near infrared,” Opt. Lett. 31, 1337-1339 (2006).
    [CrossRef] [PubMed]
  7. L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201, 391-397 (2002).
    [CrossRef]
  8. H. Guan, B. Guo, G. L. Huang, H. L. Shu, X. R. Huang, and K. L. Gao, “Stabilization of the 397 nm and 866 nm external cavity diode lasers for cooling a single calcium ion,” Opt. Commun. 274, 182-186 (2007).
    [CrossRef]
  9. R. W. Fox, S. A. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements with the global positioning system: tests with an iodine-stabilized He-Ne laser,” Appl. Opt. 44, 7793 (2005).
    [CrossRef] [PubMed]
  10. J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. G. Mehuys, and S. Sanders, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” Proc. SPIE 2834, 34-40(1996).
    [CrossRef]
  11. Q. L. Ma, L. Xia, B. Lu, W. Xiong, Y. Zhang, X. J. Zhou, and X. Z. Chen, “High performance of semiconductor optical amplifier available for cold atom physics research,” Chin. Opt. Lett. 7, 46-48 (2009).
    [CrossRef]
  12. R. W. Tkach and A. R. Chraplyvy, “Phase noise and linewidth in an InGaAsP DFB laser,” IEEE J. Lightwave Technol. LT-4, 1711-1716 (1986).
    [CrossRef]
  13. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221-230 (1966).
    [CrossRef]
  14. M. J. Snadden, R. B. M. Clarke, and E. Riis, “Injection-locking technique for heterodyne optical phase locking of a diode laser,” Opt. Lett. 22, 892-894 (1997).
    [CrossRef] [PubMed]

2009 (1)

2007 (1)

H. Guan, B. Guo, G. L. Huang, H. L. Shu, X. R. Huang, and K. L. Gao, “Stabilization of the 397 nm and 866 nm external cavity diode lasers for cooling a single calcium ion,” Opt. Commun. 274, 182-186 (2007).
[CrossRef]

2006 (1)

2005 (1)

2003 (1)

C. Schwedes, E. Peik, J. V. Zanthier, A. Y. Nevsky, and H. Walther, “Narrow-bandwidth diode-laser-based blue and ultraviolet light source,” Appl. Phys. B 76, 143-147 (2003).
[CrossRef]

2002 (1)

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201, 391-397 (2002).
[CrossRef]

1999 (1)

1997 (1)

1996 (2)

J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Electron. 28, 623-645 (1996).
[CrossRef]

J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. G. Mehuys, and S. Sanders, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” Proc. SPIE 2834, 34-40(1996).
[CrossRef]

1991 (1)

K. Kikuchi, C. E. Zah, and T. P. Lee, “Measurement and analysis of phase noise generated from semiconductor optical amplifiers,” IEEE J. Quantum Electron. 27, 416-422 (1991).
[CrossRef]

1986 (1)

R. W. Tkach and A. R. Chraplyvy, “Phase noise and linewidth in an InGaAsP DFB laser,” IEEE J. Lightwave Technol. LT-4, 1711-1716 (1986).
[CrossRef]

1966 (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221-230 (1966).
[CrossRef]

Allan, D. W.

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221-230 (1966).
[CrossRef]

Bartels, A.

Bergquist, J. C.

J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. G. Mehuys, and S. Sanders, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” Proc. SPIE 2834, 34-40(1996).
[CrossRef]

Chen, X. Z.

Chinn, S. R.

E. S. Kintzer, J. N. Walpole, S. R. Chinn, C. A. Wang, and L. J. Missaggia, in Optical Fiber Communication Conference Technical Digest, D. Fye and R. Wagner, eds. (Optical Society of America, 1992), paper TuH5.

Chraplyvy, A. R.

R. W. Tkach and A. R. Chraplyvy, “Phase noise and linewidth in an InGaAsP DFB laser,” IEEE J. Lightwave Technol. LT-4, 1711-1716 (1986).
[CrossRef]

Clarke, R. B. M.

Cruz, F. C.

F. C. Cruz, M. C. Stowe, and J. Ye, “Tapered semiconductor amplifiers for optical frequency combs in the near infrared,” Opt. Lett. 31, 1337-1339 (2006).
[CrossRef] [PubMed]

J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. G. Mehuys, and S. Sanders, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” Proc. SPIE 2834, 34-40(1996).
[CrossRef]

Diddams, S. A.

Ferrari, G.

Fox, R. W.

Gao, K. L.

H. Guan, B. Guo, G. L. Huang, H. L. Shu, X. R. Huang, and K. L. Gao, “Stabilization of the 397 nm and 866 nm external cavity diode lasers for cooling a single calcium ion,” Opt. Commun. 274, 182-186 (2007).
[CrossRef]

Guan, H.

H. Guan, B. Guo, G. L. Huang, H. L. Shu, X. R. Huang, and K. L. Gao, “Stabilization of the 397 nm and 866 nm external cavity diode lasers for cooling a single calcium ion,” Opt. Commun. 274, 182-186 (2007).
[CrossRef]

Guo, B.

H. Guan, B. Guo, G. L. Huang, H. L. Shu, X. R. Huang, and K. L. Gao, “Stabilization of the 397 nm and 866 nm external cavity diode lasers for cooling a single calcium ion,” Opt. Commun. 274, 182-186 (2007).
[CrossRef]

Hawthorn, C. J.

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201, 391-397 (2002).
[CrossRef]

Hollberg, L.

Hollberg, L. W.

J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. G. Mehuys, and S. Sanders, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” Proc. SPIE 2834, 34-40(1996).
[CrossRef]

Huang, G. L.

H. Guan, B. Guo, G. L. Huang, H. L. Shu, X. R. Huang, and K. L. Gao, “Stabilization of the 397 nm and 866 nm external cavity diode lasers for cooling a single calcium ion,” Opt. Commun. 274, 182-186 (2007).
[CrossRef]

Huang, X. R.

H. Guan, B. Guo, G. L. Huang, H. L. Shu, X. R. Huang, and K. L. Gao, “Stabilization of the 397 nm and 866 nm external cavity diode lasers for cooling a single calcium ion,” Opt. Commun. 274, 182-186 (2007).
[CrossRef]

Kikuchi, K.

K. Kikuchi, C. E. Zah, and T. P. Lee, “Measurement and analysis of phase noise generated from semiconductor optical amplifiers,” IEEE J. Quantum Electron. 27, 416-422 (1991).
[CrossRef]

Kintzer, E. S.

E. S. Kintzer, J. N. Walpole, S. R. Chinn, C. A. Wang, and L. J. Missaggia, in Optical Fiber Communication Conference Technical Digest, D. Fye and R. Wagner, eds. (Optical Society of America, 1992), paper TuH5.

Lee, T. P.

K. Kikuchi, C. E. Zah, and T. P. Lee, “Measurement and analysis of phase noise generated from semiconductor optical amplifiers,” IEEE J. Quantum Electron. 27, 416-422 (1991).
[CrossRef]

Lu, B.

Ma, Q. L.

Marquardt, J. H.

J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. G. Mehuys, and S. Sanders, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” Proc. SPIE 2834, 34-40(1996).
[CrossRef]

Mehuys, D. G.

J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. G. Mehuys, and S. Sanders, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” Proc. SPIE 2834, 34-40(1996).
[CrossRef]

Mewes, M. O.

Missaggia, L. J.

E. S. Kintzer, J. N. Walpole, S. R. Chinn, C. A. Wang, and L. J. Missaggia, in Optical Fiber Communication Conference Technical Digest, D. Fye and R. Wagner, eds. (Optical Society of America, 1992), paper TuH5.

Nevsky, A. Y.

C. Schwedes, E. Peik, J. V. Zanthier, A. Y. Nevsky, and H. Walther, “Narrow-bandwidth diode-laser-based blue and ultraviolet light source,” Appl. Phys. B 76, 143-147 (2003).
[CrossRef]

Oates, C. W.

J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. G. Mehuys, and S. Sanders, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” Proc. SPIE 2834, 34-40(1996).
[CrossRef]

Peik, E.

C. Schwedes, E. Peik, J. V. Zanthier, A. Y. Nevsky, and H. Walther, “Narrow-bandwidth diode-laser-based blue and ultraviolet light source,” Appl. Phys. B 76, 143-147 (2003).
[CrossRef]

Riis, E.

Salomon, C.

Sanders, S.

J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. G. Mehuys, and S. Sanders, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” Proc. SPIE 2834, 34-40(1996).
[CrossRef]

Scholten, R. E.

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201, 391-397 (2002).
[CrossRef]

Schreck, F.

Schwedes, C.

C. Schwedes, E. Peik, J. V. Zanthier, A. Y. Nevsky, and H. Walther, “Narrow-bandwidth diode-laser-based blue and ultraviolet light source,” Appl. Phys. B 76, 143-147 (2003).
[CrossRef]

Shu, H. L.

H. Guan, B. Guo, G. L. Huang, H. L. Shu, X. R. Huang, and K. L. Gao, “Stabilization of the 397 nm and 866 nm external cavity diode lasers for cooling a single calcium ion,” Opt. Commun. 274, 182-186 (2007).
[CrossRef]

Snadden, M. J.

Stephens, M.

J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. G. Mehuys, and S. Sanders, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” Proc. SPIE 2834, 34-40(1996).
[CrossRef]

Stowe, M. C.

Tkach, R. W.

R. W. Tkach and A. R. Chraplyvy, “Phase noise and linewidth in an InGaAsP DFB laser,” IEEE J. Lightwave Technol. LT-4, 1711-1716 (1986).
[CrossRef]

Turner, L. D.

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201, 391-397 (2002).
[CrossRef]

Walpole, J. N.

J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Electron. 28, 623-645 (1996).
[CrossRef]

E. S. Kintzer, J. N. Walpole, S. R. Chinn, C. A. Wang, and L. J. Missaggia, in Optical Fiber Communication Conference Technical Digest, D. Fye and R. Wagner, eds. (Optical Society of America, 1992), paper TuH5.

Walther, H.

C. Schwedes, E. Peik, J. V. Zanthier, A. Y. Nevsky, and H. Walther, “Narrow-bandwidth diode-laser-based blue and ultraviolet light source,” Appl. Phys. B 76, 143-147 (2003).
[CrossRef]

Wang, C. A.

E. S. Kintzer, J. N. Walpole, S. R. Chinn, C. A. Wang, and L. J. Missaggia, in Optical Fiber Communication Conference Technical Digest, D. Fye and R. Wagner, eds. (Optical Society of America, 1992), paper TuH5.

Weber, K. P.

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201, 391-397 (2002).
[CrossRef]

Welch, D. F.

J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. G. Mehuys, and S. Sanders, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” Proc. SPIE 2834, 34-40(1996).
[CrossRef]

Xia, L.

Xiong, W.

Ye, J.

Zah, C. E.

K. Kikuchi, C. E. Zah, and T. P. Lee, “Measurement and analysis of phase noise generated from semiconductor optical amplifiers,” IEEE J. Quantum Electron. 27, 416-422 (1991).
[CrossRef]

Zanthier, J. V.

C. Schwedes, E. Peik, J. V. Zanthier, A. Y. Nevsky, and H. Walther, “Narrow-bandwidth diode-laser-based blue and ultraviolet light source,” Appl. Phys. B 76, 143-147 (2003).
[CrossRef]

Zhang, Y.

Zhou, X. J.

Appl. Opt. (1)

Appl. Phys. B (1)

C. Schwedes, E. Peik, J. V. Zanthier, A. Y. Nevsky, and H. Walther, “Narrow-bandwidth diode-laser-based blue and ultraviolet light source,” Appl. Phys. B 76, 143-147 (2003).
[CrossRef]

Chin. Opt. Lett. (1)

IEEE J. Lightwave Technol. (1)

R. W. Tkach and A. R. Chraplyvy, “Phase noise and linewidth in an InGaAsP DFB laser,” IEEE J. Lightwave Technol. LT-4, 1711-1716 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Kikuchi, C. E. Zah, and T. P. Lee, “Measurement and analysis of phase noise generated from semiconductor optical amplifiers,” IEEE J. Quantum Electron. 27, 416-422 (1991).
[CrossRef]

Opt. Commun. (2)

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201, 391-397 (2002).
[CrossRef]

H. Guan, B. Guo, G. L. Huang, H. L. Shu, X. R. Huang, and K. L. Gao, “Stabilization of the 397 nm and 866 nm external cavity diode lasers for cooling a single calcium ion,” Opt. Commun. 274, 182-186 (2007).
[CrossRef]

Opt. Lett. (3)

Opt. Quantum Electron. (1)

J. N. Walpole, “Semiconductor amplifiers and lasers with tapered gain regions,” Opt. Quantum Electron. 28, 623-645 (1996).
[CrossRef]

Proc. IEEE (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221-230 (1966).
[CrossRef]

Proc. SPIE (1)

J. H. Marquardt, F. C. Cruz, M. Stephens, C. W. Oates, L. W. Hollberg, J. C. Bergquist, D. F. Welch, D. G. Mehuys, and S. Sanders, “Grating-tuned semiconductor MOPA lasers for precision spectroscopy,” Proc. SPIE 2834, 34-40(1996).
[CrossRef]

Other (1)

E. S. Kintzer, J. N. Walpole, S. R. Chinn, C. A. Wang, and L. J. Missaggia, in Optical Fiber Communication Conference Technical Digest, D. Fye and R. Wagner, eds. (Optical Society of America, 1992), paper TuH5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental scheme for the phase coherence measurements: OBPF, 10 nm bandwidth optical bandpass filter at 850 nm ; BS, beam splitter; ATT., attenuator.

Fig. 2
Fig. 2

(a) Measured Allan variances for beats A and B for a 10 mW unmodulated CW seed with 1000 mA supplying current. The data at an averaging time above 1 ms obviously deviated from the straight lines because the fluctuations of the optical path length obviously grew. (b) The Allan variances for the carrier of the CW seed modulated at 1 MHz ; the other parameters are the same as in (a).

Fig. 3
Fig. 3

Relative phase coherence coh TSA of (a) CW seed and (b) pulsed seed under all the conditions: four supplying currents of TSA, two modulation frequencies, and three modulation sidebands.

Fig. 4
Fig. 4

(a) Scheme to estimate the phase error between the two sets of electronic measurement devices. (b) The relative phase coherences measured in two beating light cases, unmodulated (▴) and modulated (♦), with different beating light powers.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ 2 ( τ ) = 1 τ 2 [ ϕ ( t + τ ) ϕ ( t ) ] 2 t ,
g ( τ ) = exp { 1 2 [ ϕ ( t + τ ) ϕ ( t ) ] 2 t } .
g ( τ ) τ exp { [ ϕ ( t ) ] 2 t } ,
coh TSA = exp { [ Δ ϕ ( t ) ] 2 t } = exp { [ ϕ B ( t ) ] 2 t } exp { [ ϕ A ( t ) ] 2 t } .

Metrics