Abstract

We propose a simple and cost-effective technique that can reduce the electrical bandwidth for Brillouin frequency-shift sensors with heterodyne detection without the need for expensive instruments or a complicated system. With this technique we use only a reference fiber. The reference Brillouin scattering light in the reference fiber is used as a local light for heterodyne detection. We confirm that this method can be used for measuring the Brillouin scattering spectrum distribution with a much lower frequency bandwidth (0.2GHz) than that employed for conventional heterodyne detection (11GHz). The method operates in a way similar to conventional Brillouin optical time domain reflectometry with comparable accuracy. Moreover, we successfully demonstrate temperature distribution sensing and show that we can compensate for temperature variation in the reference fiber.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296-1302 (1995).
    [CrossRef]
  2. S. M. Maughan, H. H. Kee, and T. P. Newson, “A calibrated 27 km distributed fiber temperature sensor based on microwave heterodyne detection of spontaneous Brillouin scattered power,” IEEE Photonics Technol. Lett. 13, 511-513 (2001).
    [CrossRef]
  3. H. Izumita, T. Sato, M. Tateda, and Y. Koyamada, “Brillouin OTDR employing optical frequency shifter using side-band generation technique with high-speed LN phase-modulator,” IEEE Photonics Technol. Lett. 8, 1674-1676 (1996).
    [CrossRef]
  4. J. Geng, S. Staines, M. Blake, and S. Jiang, “Distributed fiber temperature and strain sensor using coherent radio-frequency detection of spontaneous Brillouin scattering,” Appl. Opt. 46, 5928-5932 (2007).
    [CrossRef] [PubMed]
  5. D. Iida and F. Ito, “Bandwidth-reduced Brillouin optical time domain reflectometry using reference Brillouin scattering,” in Optical Fiber Communication Conference (Optical Society of America, 2009), paper OMP7.
  6. D. Iida and F. Ito, “Low bandwidth cost-effective Brillouin frequency sensing using reference Brillouin-scattered beam,” IEEE Photonics Technol. Lett. 20, 1845-1847 (2008).
    [CrossRef]
  7. D. Iida, N. Honda, H. Izumita, and F. Ito, “Design of identification fibers with individually assigned Brillouin frequency shifts for monitoring passive optical networks,” J. Lightwave Technol. 25, 1290-1297 (2007).
    [CrossRef]
  8. T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Temperature and strain dependence of the power level and frequency for spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787-789 (1997).
    [CrossRef] [PubMed]
  9. T. Kurashima, T. Horiguchi, and M. Tateda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photonics Technol. Lett. 2, 718-720 (1990).
    [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  11. R. W. Boyd, K. Rzazewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514-5521 (1990).
    [CrossRef] [PubMed]
  12. A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44), 3205-3209 (1991).
    [CrossRef] [PubMed]
  13. T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382-390 (1993).

2008 (1)

D. Iida and F. Ito, “Low bandwidth cost-effective Brillouin frequency sensing using reference Brillouin-scattered beam,” IEEE Photonics Technol. Lett. 20, 1845-1847 (2008).
[CrossRef]

2007 (2)

2001 (1)

S. M. Maughan, H. H. Kee, and T. P. Newson, “A calibrated 27 km distributed fiber temperature sensor based on microwave heterodyne detection of spontaneous Brillouin scattered power,” IEEE Photonics Technol. Lett. 13, 511-513 (2001).
[CrossRef]

1997 (1)

1996 (1)

H. Izumita, T. Sato, M. Tateda, and Y. Koyamada, “Brillouin OTDR employing optical frequency shifter using side-band generation technique with high-speed LN phase-modulator,” IEEE Photonics Technol. Lett. 8, 1674-1676 (1996).
[CrossRef]

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

1993 (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382-390 (1993).

1991 (1)

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44), 3205-3209 (1991).
[CrossRef] [PubMed]

1990 (2)

T. Kurashima, T. Horiguchi, and M. Tateda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photonics Technol. Lett. 2, 718-720 (1990).
[CrossRef]

R. W. Boyd, K. Rzazewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514-5521 (1990).
[CrossRef] [PubMed]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Blake, M.

Boyd, R. W.

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44), 3205-3209 (1991).
[CrossRef] [PubMed]

R. W. Boyd, K. Rzazewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514-5521 (1990).
[CrossRef] [PubMed]

Farhadiroushan, M.

Furukawa, S.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382-390 (1993).

Gaeta, A. L.

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44), 3205-3209 (1991).
[CrossRef] [PubMed]

Geng, J.

Handerek, V. A.

Honda, N.

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382-390 (1993).

T. Kurashima, T. Horiguchi, and M. Tateda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photonics Technol. Lett. 2, 718-720 (1990).
[CrossRef]

Iida, D.

D. Iida and F. Ito, “Low bandwidth cost-effective Brillouin frequency sensing using reference Brillouin-scattered beam,” IEEE Photonics Technol. Lett. 20, 1845-1847 (2008).
[CrossRef]

D. Iida, N. Honda, H. Izumita, and F. Ito, “Design of identification fibers with individually assigned Brillouin frequency shifts for monitoring passive optical networks,” J. Lightwave Technol. 25, 1290-1297 (2007).
[CrossRef]

D. Iida and F. Ito, “Bandwidth-reduced Brillouin optical time domain reflectometry using reference Brillouin scattering,” in Optical Fiber Communication Conference (Optical Society of America, 2009), paper OMP7.

Ito, F.

D. Iida and F. Ito, “Low bandwidth cost-effective Brillouin frequency sensing using reference Brillouin-scattered beam,” IEEE Photonics Technol. Lett. 20, 1845-1847 (2008).
[CrossRef]

D. Iida, N. Honda, H. Izumita, and F. Ito, “Design of identification fibers with individually assigned Brillouin frequency shifts for monitoring passive optical networks,” J. Lightwave Technol. 25, 1290-1297 (2007).
[CrossRef]

D. Iida and F. Ito, “Bandwidth-reduced Brillouin optical time domain reflectometry using reference Brillouin scattering,” in Optical Fiber Communication Conference (Optical Society of America, 2009), paper OMP7.

Izumita, H.

D. Iida, N. Honda, H. Izumita, and F. Ito, “Design of identification fibers with individually assigned Brillouin frequency shifts for monitoring passive optical networks,” J. Lightwave Technol. 25, 1290-1297 (2007).
[CrossRef]

H. Izumita, T. Sato, M. Tateda, and Y. Koyamada, “Brillouin OTDR employing optical frequency shifter using side-band generation technique with high-speed LN phase-modulator,” IEEE Photonics Technol. Lett. 8, 1674-1676 (1996).
[CrossRef]

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382-390 (1993).

Jiang, S.

Kee, H. H.

S. M. Maughan, H. H. Kee, and T. P. Newson, “A calibrated 27 km distributed fiber temperature sensor based on microwave heterodyne detection of spontaneous Brillouin scattered power,” IEEE Photonics Technol. Lett. 13, 511-513 (2001).
[CrossRef]

Koyamada, Y.

H. Izumita, T. Sato, M. Tateda, and Y. Koyamada, “Brillouin OTDR employing optical frequency shifter using side-band generation technique with high-speed LN phase-modulator,” IEEE Photonics Technol. Lett. 8, 1674-1676 (1996).
[CrossRef]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382-390 (1993).

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382-390 (1993).

T. Kurashima, T. Horiguchi, and M. Tateda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photonics Technol. Lett. 2, 718-720 (1990).
[CrossRef]

Maughan, S. M.

S. M. Maughan, H. H. Kee, and T. P. Newson, “A calibrated 27 km distributed fiber temperature sensor based on microwave heterodyne detection of spontaneous Brillouin scattered power,” IEEE Photonics Technol. Lett. 13, 511-513 (2001).
[CrossRef]

Narum, P.

R. W. Boyd, K. Rzazewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514-5521 (1990).
[CrossRef] [PubMed]

Newson, T. P.

S. M. Maughan, H. H. Kee, and T. P. Newson, “A calibrated 27 km distributed fiber temperature sensor based on microwave heterodyne detection of spontaneous Brillouin scattered power,” IEEE Photonics Technol. Lett. 13, 511-513 (2001).
[CrossRef]

Parker, T. R.

Rogers, A. J.

Rzazewski, K.

R. W. Boyd, K. Rzazewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514-5521 (1990).
[CrossRef] [PubMed]

Sato, T.

H. Izumita, T. Sato, M. Tateda, and Y. Koyamada, “Brillouin OTDR employing optical frequency shifter using side-band generation technique with high-speed LN phase-modulator,” IEEE Photonics Technol. Lett. 8, 1674-1676 (1996).
[CrossRef]

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

Staines, S.

Tateda, M.

H. Izumita, T. Sato, M. Tateda, and Y. Koyamada, “Brillouin OTDR employing optical frequency shifter using side-band generation technique with high-speed LN phase-modulator,” IEEE Photonics Technol. Lett. 8, 1674-1676 (1996).
[CrossRef]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

T. Kurashima, T. Horiguchi, and M. Tateda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photonics Technol. Lett. 2, 718-720 (1990).
[CrossRef]

Appl. Opt. (1)

IEEE Photonics Technol. Lett. (4)

D. Iida and F. Ito, “Low bandwidth cost-effective Brillouin frequency sensing using reference Brillouin-scattered beam,” IEEE Photonics Technol. Lett. 20, 1845-1847 (2008).
[CrossRef]

S. M. Maughan, H. H. Kee, and T. P. Newson, “A calibrated 27 km distributed fiber temperature sensor based on microwave heterodyne detection of spontaneous Brillouin scattered power,” IEEE Photonics Technol. Lett. 13, 511-513 (2001).
[CrossRef]

H. Izumita, T. Sato, M. Tateda, and Y. Koyamada, “Brillouin OTDR employing optical frequency shifter using side-band generation technique with high-speed LN phase-modulator,” IEEE Photonics Technol. Lett. 8, 1674-1676 (1996).
[CrossRef]

T. Kurashima, T. Horiguchi, and M. Tateda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photonics Technol. Lett. 2, 718-720 (1990).
[CrossRef]

IEICE Trans. Commun. (1)

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin optical fiber time domain reflectometry,” IEICE Trans. Commun. E76-B, 382-390 (1993).

J. Lightwave Technol. (2)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

D. Iida, N. Honda, H. Izumita, and F. Ito, “Design of identification fibers with individually assigned Brillouin frequency shifts for monitoring passive optical networks,” J. Lightwave Technol. 25, 1290-1297 (2007).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (2)

R. W. Boyd, K. Rzazewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514-5521 (1990).
[CrossRef] [PubMed]

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44), 3205-3209 (1991).
[CrossRef] [PubMed]

Other (2)

D. Iida and F. Ito, “Bandwidth-reduced Brillouin optical time domain reflectometry using reference Brillouin scattering,” in Optical Fiber Communication Conference (Optical Society of America, 2009), paper OMP7.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Configuration of bandwidth-reduced BOTDR using reference Brillouin scattering.

Fig. 2
Fig. 2

Relation between measured Brillouin backscattering power and input pump power.

Fig. 3
Fig. 3

(a) Measured Brillouin spectra at 300 and 1300 m of 1 μs pulse width with 40 km reference fiber, (b) Measured Brillouin spectra at 300 and 1300 m of 100 ns pulse width with 40 km reference fiber, (c) Measured Brillouin spectra at 300 and 1300 m of 1 μs pulse width with 10 km reference fiber. (d) Measured Brillouin spectra at 300 and 1300 m of 100 ns pulse width with 10 km reference fiber.

Fig. 4
Fig. 4

BFS distribution of 100 ns pulse width obtained with the proposed method for reference fiber lengths of 40 and 10 km and with conventional BOTDR.

Fig. 5
Fig. 5

Experimental setup for measuring the amplitude noise of the SBS local light.

Fig. 6
Fig. 6

Waveform in the time axis direction at a frequency of 11 , 080 MHz , which is the peak frequency of the SBS spectrum for 2 13 averaging and single measurement.

Fig. 7
Fig. 7

Measured Brillouin frequency-shift distribution for reference fiber temperatures of 20 ° C and 0 ° C .

Fig. 8
Fig. 8

Temperature-dependence coefficients at 2000, 2500, and 2800 m for reference fiber temperatures of 20 ° C and 0 ° C .

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

P = N ( ( NEP ) 2 + 2 e e η h ν P L ) B ,
| ν r ν s 1 ν AOM | = 11.07 10.79 0.111 = 0.169 GHz .
ν B ( MHz ) = 11069 ν c 111.
W = i s 2 = ( P L + δ P L ) P S + n 0 ,
W = P S P L .
σ W = ( W W ) 2 = P S 2 σ L 2 + σ 0 2 ,
R B = W σ W = P S P L P S 2 σ L 2 + σ 0 2 .
R C = W C σ W C = P S P L σ 0 .
R B = 1 σ L 2 P L 2 + ( 1 R C ) 2 .
W σ W = P S P L P S 2 σ L 2 + σ 0 2 P L σ L .
R B = 1 σ L 2 P L 2 + ( 1 R C ) 2 = 1 ( 1 0.36 ) 2 + ( 1 0.33 ) 2 0.24.
| ν r ν s ν AOM | = 11.07 10.79 0.111 = 0.169 GHz .

Metrics