Abstract

We demonstrate a 12km differential pulse-width pair Brillouin optical time-domain analysis (DPP- BOTDA) using 40ns and 50ns pulses with DC-coupled detection. A spatial resolution of 1m and a narrowband Brillouin gain spectrum of 33MHz are obtained simultaneously compared with 88MHz with the use of 10ns pulses in a conventional BOTDA. The experimental results show that the differential Brillouin gain of a 40/50ns pulse pair is 7 times stronger than the direct Brillouin gain of BOTDA with the use of a 10ns pulse, and the temperature uncertainty is 0.25°C compared with 1.8°C for a 10ns pulse. As the pulse-width difference decreases from 10ns to 1ns, corresponding to a spatial resolution from 1m to 10cm, the prediction of temperature uncertainty will only increase from 0.25°C to 0.8°C for DPP-BOTDA over a 12km long single-mode fiber.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Maughan, H. H. Kee, and T. P. Newson, “57 km single-ended spontaneous Brillouin-based distributed fiber temperature sensor using microwave coherent detection,” Opt. Lett. 26, 331-333 (2001).
    [CrossRef]
  2. K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber,” Opt. Lett. 18, 185-187 (1993).
    [CrossRef] [PubMed]
  3. X. Bao, D. J. Webb, and D. A. Jackon, “22 km distributed temperature sensor using Brillouin gain in an optical fiber,” Opt. Lett. 18, 552-554 (1993).
    [CrossRef] [PubMed]
  4. M. Nikles, L. Thevenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758-760 (1996).
    [CrossRef] [PubMed]
  5. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16, 21616-21625 (2008).
    [CrossRef] [PubMed]
  6. X. Bao, Q. Yu, V. P. Kalosha, and L. Chen, “Influence of transient phonon relaxation on the Brillouin loss spectrum of nanosecond pulses,” Opt. Lett. 31, 888-890 (2006).
    [CrossRef] [PubMed]
  7. C. Zhang, W. Li, X. Bao, L. Chen, and M. Du, “Tensile strain dependence of the Brillouin gain spectrum in carbon/polyimide coated fibers,” Opt. Lett. 32, 2565-2567 (2007).
    [CrossRef] [PubMed]
  8. T. Horiguchi, K. Shimizu, and T. Kurashima, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296-1302 (1995).
    [CrossRef]
  9. H. Naruse and M. Tateda, “Trade-off between the spatial and the frequency resolutions in measuring the power spectrum of the Brillouin backscattered light in an optical fiber,” Appl. Opt. 38, 6516-6521 (1999).
    [CrossRef]

2008

2007

2006

2001

1999

1996

1995

T. Horiguchi, K. Shimizu, and T. Kurashima, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

1993

Bao, X.

Chen, L.

Du, M.

Horiguchi, T.

T. Horiguchi, K. Shimizu, and T. Kurashima, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber,” Opt. Lett. 18, 185-187 (1993).
[CrossRef] [PubMed]

Jackon, D. A.

Kalosha, V. P.

Kee, H. H.

Koyamada, Y.

Kurashima, T.

T. Horiguchi, K. Shimizu, and T. Kurashima, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber,” Opt. Lett. 18, 185-187 (1993).
[CrossRef] [PubMed]

Li, W.

Li, Y.

Maughan, S. M.

Naruse, H.

Newson, T. P.

Nikles, M.

Robert, P. A.

Shimizu, K.

T. Horiguchi, K. Shimizu, and T. Kurashima, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber,” Opt. Lett. 18, 185-187 (1993).
[CrossRef] [PubMed]

Tateda, M.

Thevenaz, L.

Webb, D. J.

Yu, Q.

Zhang, C.

Appl. Opt.

J. Lightwave Technol.

T. Horiguchi, K. Shimizu, and T. Kurashima, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for DPP-BOTDA: PD, photodetectors; PC, polarization controller; PS, polarization scrambler; EOM, electro-optic modulator; EDFA, erbium-doped fiber amplifier; DAQ, data acquisition.

Fig. 2
Fig. 2

Time traces of 40 ns and 50 ns pulses and their differential pulse.

Fig. 3
Fig. 3

(a) Brillouin loss signals of the transition region for 40 ns and 50 ns pulses and their differential signal at the frequency difference of 10910 MHz . (b) Comparison of the direct gain signal and the differential gain signal.

Fig. 4
Fig. 4

Measured BGSs for a 10 ns pulse and a 50 / 40 ns differential pulse pair.

Fig. 5
Fig. 5

Comparison of the temperature uncertainty for BOTDA and DPP-BOTDA.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

g S ( ν S ) = g S 0 ( ν S ) P p ( ν p ) .
P p ( ν p ) = P 0 [ sin π ( ν p ν 0 ) τ π ( ν p ν 0 ) ] 2 ,
δ ν B = Δ ν B / 2 ( SNR ) 1 / 4 .

Metrics