Abstract

We propose a holey fiber design to achieve single-polarization single-mode (SPSM) guidance. The photonic crystal fiber (PCF) has a triangular-lattice with elliptical airholes in the microstructured cladding and circular airholes in the core. The SPSM guidance can be obtained by designing the PCF structure such that the fundamental space-filling mode (FSM) of the core region is positioned between the indices of the two nondegenerate orthogonally polarized FSMs of the microstructured cladding.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M.-J. Li, X. Chen, D. A. Nolan, G. E. Berkey, J. Wang, W. A. Wood, and L. A. Zenteno, “High bandwidth single polarization fiber with elliptical central air hole,” J. Lightwave Technol. 23, 3454-3460 (2005).
    [CrossRef]
  2. T. Okoshi and K. Oyamada, “Single-polarization single-mode optical fiber with refractive-index pits on both sides of the core,” Electron. Lett. 16, 712-713 (1980).
    [CrossRef]
  3. J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370-374 (1983).
    [CrossRef]
  4. K. S. Chiang, “Stress-induced birefringence fibers designed for single-polarization single-mode operation,” J. Lightwave Technol. 7, 436-441 (1989).
    [CrossRef]
  5. K. Tajima, M. Ohashi, and Y. Sasaki, “A new single-polarization optical fiber,” J. Lightwave Technol. 7, 1499-1503 (1989).
    [CrossRef]
  6. S. Furukawa, T. Fujimoto, and T. Hinata, “Propagation characteristics of a single-polarization optical fiber with an elliptic core and triple-clad,” J. Lightwave Technol. 21, 1307-1312 (2003).
    [CrossRef]
  7. T. A. Birks, C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  8. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
    [CrossRef]
  9. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676-680 (2001).
    [CrossRef] [PubMed]
  10. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
    [CrossRef]
  11. M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488-490 (2001).
    [CrossRef]
  12. M. Szpulak, J. Olszewski, T. Martynkien, W. Urbanńczyk, and J. Wojcik, “Polarizing photonic crystal fibers with wide operation range,” Opt. Commun. 239, 91-97 (2004).
  13. K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
    [CrossRef]
  14. H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182-184 (2004).
    [CrossRef]
  15. J. R. Folkenberg, M. D. Nielsen, and C. Jakobsen, “Broadband single-polarization photonic crystal fiber,” Opt. Lett. 30, 1446-1448 (2005).
    [CrossRef] [PubMed]
  16. J. Ju, W. Jin, and M. S. Demokan, “Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 μm,” J. Lightwave Technol. 24, 825-830(2006).
    [CrossRef]
  17. F. Zhang, M. Zhang, X. Liu, and P. Ye, “Design of wideband single-polarization single-mode photonic crystal fiber,” J. Lightwave Technol. 25, 1184-1189 (2007).
    [CrossRef]
  18. A. Argyros and N. Issa, “Microstructured optical fiber for single-polarization air guidance,” Opt. Lett. 29, 20-22 (2004).
    [CrossRef] [PubMed]
  19. M. Szpulak, T. Martynkien, J. Olszewski, W. Urbanńczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Single-polarization single-mode photonic band gap fiber,” Acta Phys. Pol. A 111, 239-245 (2007).
  20. K. K. Y. Lee, Y. Avniel, and S. G. Johnson, “Design strategies and rigorous conditions for single-polarization single-mode waveguides,” Opt. Express 16, 15170-15184 (2008).
    [CrossRef] [PubMed]
  21. M. Eguchi and Y. Tsuji, “Single-mode single-polarization holey fiber using anisotropic fundamental space-filling mode,” Opt. Lett. 32, 2112-2114 (2007).
    [CrossRef] [PubMed]
  22. M. Eguchi and Y. Tsuji, “Design of single-polarization elliptical-hole core circular-hole holey fibers with zero dispersion at 1.55 μm,” J. Opt. Soc. Am. B 25, 1690-1701 (2008).
    [CrossRef]
  23. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  24. D. Marcuse, “Influence of curvature on the losses of doubly clad fibers,” Appl. Opt. 21, 4208-4213 (1982).
    [CrossRef] [PubMed]

2008

2007

2006

2005

2004

A. Argyros and N. Issa, “Microstructured optical fiber for single-polarization air guidance,” Opt. Lett. 29, 20-22 (2004).
[CrossRef] [PubMed]

M. Szpulak, J. Olszewski, T. Martynkien, W. Urbanńczyk, and J. Wojcik, “Polarizing photonic crystal fibers with wide operation range,” Opt. Commun. 239, 91-97 (2004).

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182-184 (2004).
[CrossRef]

2003

2001

2000

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

1997

1996

1989

K. S. Chiang, “Stress-induced birefringence fibers designed for single-polarization single-mode operation,” J. Lightwave Technol. 7, 436-441 (1989).
[CrossRef]

K. Tajima, M. Ohashi, and Y. Sasaki, “A new single-polarization optical fiber,” J. Lightwave Technol. 7, 1499-1503 (1989).
[CrossRef]

1983

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370-374 (1983).
[CrossRef]

1982

1980

T. Okoshi and K. Oyamada, “Single-polarization single-mode optical fiber with refractive-index pits on both sides of the core,” Electron. Lett. 16, 712-713 (1980).
[CrossRef]

Argyros, A.

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Atkin, D. M.

Avniel, Y.

Berghmans, F.

M. Szpulak, T. Martynkien, J. Olszewski, W. Urbanńczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Single-polarization single-mode photonic band gap fiber,” Acta Phys. Pol. A 111, 239-245 (2007).

Berkey, G. E.

Birks, T. A.

Bjarklev, A.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Botten, L. C.

Broeng, J.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Chen, X.

Chiang, K. S.

K. S. Chiang, “Stress-induced birefringence fibers designed for single-polarization single-mode operation,” J. Lightwave Technol. 7, 436-441 (1989).
[CrossRef]

de Sterke, C. M.

Demokan, M. S.

Eguchi, M.

Folkenberg, J. R.

Fujimoto, T.

Fujita, M.

Furukawa, S.

Hansen, T. P.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Hinata, T.

Howard, R. E.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370-374 (1983).
[CrossRef]

Issa, N.

Jakobsen, C.

Jensen, J. R.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Jin, W.

Johnson, S. G.

Ju, J.

Kawanishi, S.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182-184 (2004).
[CrossRef]

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676-680 (2001).
[CrossRef] [PubMed]

Knight, C.

Knight, J. C.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).
[CrossRef] [PubMed]

Knudsen, E.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Koshiba, M.

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

Koyanagi, S.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182-184 (2004).
[CrossRef]

Kubota, H.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182-184 (2004).
[CrossRef]

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676-680 (2001).
[CrossRef] [PubMed]

Lee, K. K. Y.

Li, M.-J.

Libori, S. E. B.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Liu, X.

MacChesney, J. B.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370-374 (1983).
[CrossRef]

Marcuse, D.

Martynkien, T.

M. Szpulak, T. Martynkien, J. Olszewski, W. Urbanńczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Single-polarization single-mode photonic band gap fiber,” Acta Phys. Pol. A 111, 239-245 (2007).

M. Szpulak, J. Olszewski, T. Martynkien, W. Urbanńczyk, and J. Wojcik, “Polarizing photonic crystal fibers with wide operation range,” Opt. Commun. 239, 91-97 (2004).

McPhedran, R. C.

Nasilowski, T.

M. Szpulak, T. Martynkien, J. Olszewski, W. Urbanńczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Single-polarization single-mode photonic band gap fiber,” Acta Phys. Pol. A 111, 239-245 (2007).

Nielsen, M. D.

Nolan, D. A.

Ohashi, M.

K. Tajima, M. Ohashi, and Y. Sasaki, “A new single-polarization optical fiber,” J. Lightwave Technol. 7, 1499-1503 (1989).
[CrossRef]

Okoshi, T.

T. Okoshi and K. Oyamada, “Single-polarization single-mode optical fiber with refractive-index pits on both sides of the core,” Electron. Lett. 16, 712-713 (1980).
[CrossRef]

Olszewski, J.

M. Szpulak, T. Martynkien, J. Olszewski, W. Urbanńczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Single-polarization single-mode photonic band gap fiber,” Acta Phys. Pol. A 111, 239-245 (2007).

M. Szpulak, J. Olszewski, T. Martynkien, W. Urbanńczyk, and J. Wojcik, “Polarizing photonic crystal fibers with wide operation range,” Opt. Commun. 239, 91-97 (2004).

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Oyamada, K.

T. Okoshi and K. Oyamada, “Single-polarization single-mode optical fiber with refractive-index pits on both sides of the core,” Electron. Lett. 16, 712-713 (1980).
[CrossRef]

Pleibel, W.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370-374 (1983).
[CrossRef]

Russell, P. St. J.

Saitoh, K.

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

Sasaki, Y.

K. Tajima, M. Ohashi, and Y. Sasaki, “A new single-polarization optical fiber,” J. Lightwave Technol. 7, 1499-1503 (1989).
[CrossRef]

Sears, F. M.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370-374 (1983).
[CrossRef]

Simonsen, H.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Simpson, J. R.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370-374 (1983).
[CrossRef]

Steel, M. J.

Stolen, R. H.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370-374 (1983).
[CrossRef]

Suzuki, K.

Szpulak, M.

M. Szpulak, T. Martynkien, J. Olszewski, W. Urbanńczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Single-polarization single-mode photonic band gap fiber,” Acta Phys. Pol. A 111, 239-245 (2007).

M. Szpulak, J. Olszewski, T. Martynkien, W. Urbanńczyk, and J. Wojcik, “Polarizing photonic crystal fibers with wide operation range,” Opt. Commun. 239, 91-97 (2004).

Tajima, K.

K. Tajima, M. Ohashi, and Y. Sasaki, “A new single-polarization optical fiber,” J. Lightwave Technol. 7, 1499-1503 (1989).
[CrossRef]

Tanaka, M.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182-184 (2004).
[CrossRef]

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676-680 (2001).
[CrossRef] [PubMed]

Thienpont, H.

M. Szpulak, T. Martynkien, J. Olszewski, W. Urbanńczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Single-polarization single-mode photonic band gap fiber,” Acta Phys. Pol. A 111, 239-245 (2007).

Tsuji, Y.

Urbannczyk, W.

M. Szpulak, T. Martynkien, J. Olszewski, W. Urbanńczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Single-polarization single-mode photonic band gap fiber,” Acta Phys. Pol. A 111, 239-245 (2007).

M. Szpulak, J. Olszewski, T. Martynkien, W. Urbanńczyk, and J. Wojcik, “Polarizing photonic crystal fibers with wide operation range,” Opt. Commun. 239, 91-97 (2004).

Wadsworth, W. J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Wang, J.

White, T. P.

Wojcik, J.

M. Szpulak, J. Olszewski, T. Martynkien, W. Urbanńczyk, and J. Wojcik, “Polarizing photonic crystal fibers with wide operation range,” Opt. Commun. 239, 91-97 (2004).

Wood, W. A.

Yamaguchi, S.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182-184 (2004).
[CrossRef]

Ye, P.

Zenteno, L. A.

Zhang, F.

Zhang, M.

Acta Phys. Pol. A

M. Szpulak, T. Martynkien, J. Olszewski, W. Urbanńczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Single-polarization single-mode photonic band gap fiber,” Acta Phys. Pol. A 111, 239-245 (2007).

Appl. Opt.

Electron. Lett.

T. Okoshi and K. Oyamada, “Single-polarization single-mode optical fiber with refractive-index pits on both sides of the core,” Electron. Lett. 16, 712-713 (1980).
[CrossRef]

IEEE Photon. Technol. Lett.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182-184 (2004).
[CrossRef]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Commun.

M. Szpulak, J. Olszewski, T. Martynkien, W. Urbanńczyk, and J. Wojcik, “Polarizing photonic crystal fibers with wide operation range,” Opt. Commun. 239, 91-97 (2004).

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Cross section of the proposed PCF with elliptical airhole cladding and a circular hole core.

Fig. 2
Fig. 2

Effective index of the FSM curves of the circular airhole core FSM c at d c / Λ = 0.62 , 0.64, 0.66 and the two orthogonal nondegenerate FSM curves of the elliptical airhole cladding, FSM e x and FSM e y . The other structural parameters of the PCF are d y / Λ = 0.9 and η = 2 .

Fig. 3
Fig. 3

Single-polarization guidance region as a function of d c / Λ . The SPSM operation is possible above the cutoff wavelength of the HE 21 x mode (dashed curve) in the single polarization range. The other structural parameters of the PCF are d y / Λ = 0.9 and η = 2 .

Fig. 4
Fig. 4

Effective index of the FSM curves of the elliptical airhole cladding FSM e at η = 1.9 , 2, 2.1 and the FSM curve of the circular airhole core at d c / Λ = 0.63 . The other structural parameter of the PCF is d y / Λ = 0.9 .

Fig. 5
Fig. 5

Single-polarization guidance region as a function of η. The SPSM operation is possible above the cutoff wavelength of the HE 21 x mode (dashed curve) in the single-polarization range. The other structural parameters of the PCF are d y / Λ = 0.9 and d c / Λ = 0.63 .

Fig. 6
Fig. 6

Effective index of the FSM curves of the elliptical airhole cladding FSM e at d y / Λ = 0.88 (dotted curve), 0.9 (solid curve), and 0.92 (dashed curve) and the FSM curve of the circular airhole core at d c / Λ = 0.63 (solid dot line). η = 2 was used in the simulation.

Fig. 7
Fig. 7

Single-polarization guidance region as a function of d y / Λ . The SPSM operation is possible above the cutoff wavelength of the HE 21 x mode (dashed curve) in the single-polarization range. The other structural parameters of the PCF are η = 2 and d c / Λ = 0.63 .

Fig. 8
Fig. 8

Effective index of the x-polarized fundamental core of the HE 11 x mode (filled circles curve), the FSM curve of the circular airhole core FSM c (solid curve), and the two orthogonal nondegenerate FSM curves of the elliptical airhole cladding FSM e x and FSM e y (dotted and dashed curves, respectively). The structural parameters of the PCF are d c / Λ = 0.63 , d y / Λ = 0.9 , and η = 2 .

Fig. 9
Fig. 9

Field distribution of the E x component of the x-polarized fundamental mode HE 11 x at (a)  λ / Λ = 0.5 and (b)  λ / Λ = 1.4 .

Fig. 10
Fig. 10

Confinement loss of the HE 11 x mode in the proposed PCF structure with one ring of airholes in the core region (dotted curve) and two rings of airholes in the core region (solid curve).

Fig. 11
Fig. 11

Bending loss of the PCF structure with one ring of airholes in the core region at λ = 1.35 μm (solid curve) and two rings of airholes in the core region at λ = 1.6 μm (dotted curve) as a function of bending radius.

Fig. 12
Fig. 12

Bending loss of the PCF structure with a bending radius of 5 μm . The loss curves represent one ring of airholes in the core region (solid curve), and two rings of airholes in the core region (dotted curve) as a function of wavelength.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

l oss ( dB / m ) = 2 π λ 20 ln 10 Im ( n eff ) .

Metrics