Abstract

Coherence-domain imaging systems can be operated in a single-photon-counting mode, offering low detector noise; this in turn leads to increased sensitivity for weak light sources and weakly reflecting samples. We have demonstrated that excellent axial resolution can be obtained in a photon-counting coherence-domain imaging (CDI) system that uses light generated via spontaneous parametric downconversion (SPDC) in a chirped periodically poled stoichiometric lithium tantalate (chirped-PPSLT) structure, in conjunction with a niobium nitride superconducting single-photon detector (SSPD). The bandwidth of the light generated via SPDC, as well as the bandwidth over which the SSPD is sensitive, can extend over a wavelength region that stretches from 700 to 1500nm. This ultrabroad wavelength band offers a near-ideal combination of deep penetration and ultrahigh axial resolution for the imaging of biological tissue. The generation of SPDC light of adjustable bandwidth in the vicinity of 1064nm, via the use of chirped-PPSLT structures, had not been previously achieved. To demonstrate the usefulness of this technique, we construct images for a hierarchy of samples of increasing complexity: a mirror, a nitrocellulose membrane, and a biological sample comprising onion-skin cells.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007), Sections 11.2B, 21.2E, and 24.5.
  2. M. E. Brezinski, Optical Coherence Tomography: Principles and Applications (Academic, 2006).
  3. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  4. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4, 861-865 (1998).
    [CrossRef] [PubMed]
  5. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325-332 (1995).
    [CrossRef] [PubMed]
  6. J. Welzel, “Optical coherence tomography in dermatology: A review,” Skin Res. and Technol. 7, 1-9 (2001).
    [CrossRef]
  7. G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, “Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,” Circulation 107, 113-119 (2003).
    [CrossRef] [PubMed]
  8. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in-vivo,” Nat. Med. 12, 1429-1433 (2007).
    [CrossRef]
  9. W. Drexler, “Ultra-high resolution optical coherence tomography,” J Biomed. Opt. 9, 47-74 (2004).
    [CrossRef] [PubMed]
  10. N. Mohan, O. Minaeva, G. N. Goltsman, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Photon-counting optical coherence-domain reflectometry using superconducting single-photon detectors,” Opt. Express 16, 18118-18130 (2008).
    [CrossRef] [PubMed]
  11. S. Carrasco, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Broadband light generation by noncollinear parametric downconversion,” Opt. Lett. 31, 253-255 (2006).
    [CrossRef] [PubMed]
  12. S. E. Harris, “Chirp and compress: toward single-cycle biphotons,” Phys. Rev. Lett. 98, 063602 (2007).
    [CrossRef] [PubMed]
  13. M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
    [CrossRef] [PubMed]
  14. M. B. Nasr, O. Minaeva, G. N. Goltsman, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Submicron axial resolution in an ultrabroadband two-photon interferometer using superconducting single-photon detectors,” Opt. Express 16, 15104-15108 (2008).
    [CrossRef] [PubMed]
  15. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28, 194-196 (2003).
    [CrossRef] [PubMed]
  16. G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, and A. Dzardanov, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705-707 (2001).
    [CrossRef]
  17. G. N. Goltsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
    [CrossRef]
  18. G. N. Goltsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” Phys. Status Solidi C 2, 1480-1488 (2005).
    [CrossRef]
  19. M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154-1159 (2009).
    [CrossRef]
  20. H. Lim, Y. Jiang, Y. Wang, Y. Huang, Z. Chen, and F. W. Wise, “Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm,” Opt. Lett. 30, 1171-1173 (2005).
    [CrossRef] [PubMed]
  21. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800-1802 (2002).
    [CrossRef]

2009 (1)

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154-1159 (2009).
[CrossRef]

2008 (3)

2007 (2)

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in-vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

S. E. Harris, “Chirp and compress: toward single-cycle biphotons,” Phys. Rev. Lett. 98, 063602 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (2)

H. Lim, Y. Jiang, Y. Wang, Y. Huang, Z. Chen, and F. W. Wise, “Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm,” Opt. Lett. 30, 1171-1173 (2005).
[CrossRef] [PubMed]

G. N. Goltsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

2004 (1)

W. Drexler, “Ultra-high resolution optical coherence tomography,” J Biomed. Opt. 9, 47-74 (2004).
[CrossRef] [PubMed]

2003 (4)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, “Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,” Circulation 107, 113-119 (2003).
[CrossRef] [PubMed]

G. N. Goltsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
[CrossRef]

A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28, 194-196 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (2)

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, and A. Dzardanov, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

J. Welzel, “Optical coherence tomography in dermatology: A review,” Skin Res. and Technol. 7, 1-9 (2001).
[CrossRef]

1998 (1)

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4, 861-865 (1998).
[CrossRef] [PubMed]

1995 (1)

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325-332 (1995).
[CrossRef] [PubMed]

Apolonski, A.

Aretz, H. T.

G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, “Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,” Circulation 107, 113-119 (2003).
[CrossRef] [PubMed]

Bizheva, K.

Blau, P.

Boppart, S. A.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4, 861-865 (1998).
[CrossRef] [PubMed]

Bouma, B. E.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in-vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, “Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,” Circulation 107, 113-119 (2003).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4, 861-865 (1998).
[CrossRef] [PubMed]

Brezinski, M. E.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4, 861-865 (1998).
[CrossRef] [PubMed]

M. E. Brezinski, Optical Coherence Tomography: Principles and Applications (Academic, 2006).

Bruner, A.

Carrasco, S.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef] [PubMed]

S. Carrasco, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Broadband light generation by noncollinear parametric downconversion,” Opt. Lett. 31, 253-255 (2006).
[CrossRef] [PubMed]

Chan, R. C.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in-vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Chen, Z.

Chulkova, G.

G. N. Goltsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, and A. Dzardanov, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

de Boer, J. F.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in-vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Desjardins, A. E.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in-vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Drakinsky, V.

G. N. Goltsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
[CrossRef]

Drexler, W.

W. Drexler, “Ultra-high resolution optical coherence tomography,” J Biomed. Opt. 9, 47-74 (2004).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800-1802 (2002).
[CrossRef]

Dzardanov, A.

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, and A. Dzardanov, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Eger, D.

Evans, J. A.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in-vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Fejer, M. M.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef] [PubMed]

Fercher, A. F.

Fujimoto, J. G.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4, 861-865 (1998).
[CrossRef] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325-332 (1995).
[CrossRef] [PubMed]

Goltsman, G. N.

M. B. Nasr, O. Minaeva, G. N. Goltsman, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Submicron axial resolution in an ultrabroadband two-photon interferometer using superconducting single-photon detectors,” Opt. Express 16, 15104-15108 (2008).
[CrossRef] [PubMed]

N. Mohan, O. Minaeva, G. N. Goltsman, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Photon-counting optical coherence-domain reflectometry using superconducting single-photon detectors,” Opt. Express 16, 18118-18130 (2008).
[CrossRef] [PubMed]

G. N. Goltsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

G. N. Goltsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
[CrossRef]

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, and A. Dzardanov, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Goode, D. P.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154-1159 (2009).
[CrossRef]

Halpern, E. F.

G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, “Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,” Circulation 107, 113-119 (2003).
[CrossRef] [PubMed]

Harris, S. E.

S. E. Harris, “Chirp and compress: toward single-cycle biphotons,” Phys. Rev. Lett. 98, 063602 (2007).
[CrossRef] [PubMed]

Hee, M. R.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325-332 (1995).
[CrossRef] [PubMed]

Hermann, B.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Houser, S. L.

G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, “Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,” Circulation 107, 113-119 (2003).
[CrossRef] [PubMed]

Huang, D.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325-332 (1995).
[CrossRef] [PubMed]

Huang, Y.

Hum, D. S.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef] [PubMed]

Izatt, J. A.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325-332 (1995).
[CrossRef] [PubMed]

Jang, I. K.

G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, “Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,” Circulation 107, 113-119 (2003).
[CrossRef] [PubMed]

Jang, I.-K.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in-vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Jiang, Y.

Katz, M.

Kauffman, C. R.

G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, “Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,” Circulation 107, 113-119 (2003).
[CrossRef] [PubMed]

Kaurova, N.

G. N. Goltsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
[CrossRef]

Knight, J. C.

Korneev, A.

G. N. Goltsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

Kouminov, P.

G. N. Goltsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
[CrossRef]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Lim, H.

Lin, C. P.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325-332 (1995).
[CrossRef] [PubMed]

Lipatov, A.

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, and A. Dzardanov, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Milostnaya, I.

G. N. Goltsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

Minaeva, O.

Mohan, N.

Nasr, M. B.

Nguyen, N.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154-1159 (2009).
[CrossRef]

Nishioka, N. S.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in-vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Oh, W. Y.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in-vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Okunev, O.

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, and A. Dzardanov, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Oron, M. B.

Pearlman, A.

G. N. Goltsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

Pitris, C.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4, 861-865 (1998).
[CrossRef] [PubMed]

Povazay, B.

Puliafito, C. A.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325-332 (1995).
[CrossRef] [PubMed]

Reinhard, B. M.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154-1159 (2009).
[CrossRef]

Rong, G.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154-1159 (2009).
[CrossRef]

Rubtsova, I.

G. N. Goltsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

Ruschin, S.

Russell, P. St. J.

Saleh, B. E. A.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154-1159 (2009).
[CrossRef]

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef] [PubMed]

N. Mohan, O. Minaeva, G. N. Goltsman, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Photon-counting optical coherence-domain reflectometry using superconducting single-photon detectors,” Opt. Express 16, 18118-18130 (2008).
[CrossRef] [PubMed]

M. B. Nasr, O. Minaeva, G. N. Goltsman, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Submicron axial resolution in an ultrabroadband two-photon interferometer using superconducting single-photon detectors,” Opt. Express 16, 15104-15108 (2008).
[CrossRef] [PubMed]

S. Carrasco, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Broadband light generation by noncollinear parametric downconversion,” Opt. Lett. 31, 253-255 (2006).
[CrossRef] [PubMed]

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007), Sections 11.2B, 21.2E, and 24.5.

Sattmann, H.

Scherzer, E.

Schlendorf, K.

G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, “Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,” Circulation 107, 113-119 (2003).
[CrossRef] [PubMed]

Schuman, J. S.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325-332 (1995).
[CrossRef] [PubMed]

Semenov, A.

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, and A. Dzardanov, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Sergienko, A. V.

Shishkov, M.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in-vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, “Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,” Circulation 107, 113-119 (2003).
[CrossRef] [PubMed]

Slysz, W.

G. N. Goltsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

Smirnov, K.

G. N. Goltsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

G. N. Goltsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
[CrossRef]

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, and A. Dzardanov, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Sobolewski, R.

G. N. Goltsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

G. N. Goltsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
[CrossRef]

Southern, J. F.

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4, 861-865 (1998).
[CrossRef] [PubMed]

Suter, M. J.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in-vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Swanson, E. A.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325-332 (1995).
[CrossRef] [PubMed]

Tearney, G. J.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in-vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, “Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,” Circulation 107, 113-119 (2003).
[CrossRef] [PubMed]

Teich, M. C.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154-1159 (2009).
[CrossRef]

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef] [PubMed]

N. Mohan, O. Minaeva, G. N. Goltsman, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Photon-counting optical coherence-domain reflectometry using superconducting single-photon detectors,” Opt. Express 16, 18118-18130 (2008).
[CrossRef] [PubMed]

M. B. Nasr, O. Minaeva, G. N. Goltsman, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Submicron axial resolution in an ultrabroadband two-photon interferometer using superconducting single-photon detectors,” Opt. Express 16, 15104-15108 (2008).
[CrossRef] [PubMed]

S. Carrasco, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Broadband light generation by noncollinear parametric downconversion,” Opt. Lett. 31, 253-255 (2006).
[CrossRef] [PubMed]

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007), Sections 11.2B, 21.2E, and 24.5.

Torner, L.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef] [PubMed]

S. Carrasco, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Broadband light generation by noncollinear parametric downconversion,” Opt. Lett. 31, 253-255 (2006).
[CrossRef] [PubMed]

Torres, J. P.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef] [PubMed]

S. Carrasco, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, J. P. Torres, and L. Torner, “Broadband light generation by noncollinear parametric downconversion,” Opt. Lett. 31, 253-255 (2006).
[CrossRef] [PubMed]

Unterhuber, A.

Vakoc, B. J.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in-vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Verevkin, A.

G. N. Goltsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

G. N. Goltsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
[CrossRef]

Vetterlein, M.

Voronov, B.

G. N. Goltsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

G. N. Goltsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
[CrossRef]

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, and A. Dzardanov, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Wadsworth, W. J.

Wang, Y.

Welzel, J.

J. Welzel, “Optical coherence tomography in dermatology: A review,” Skin Res. and Technol. 7, 1-9 (2001).
[CrossRef]

Wise, F. W.

Yabushita, H.

G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, “Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,” Circulation 107, 113-119 (2003).
[CrossRef] [PubMed]

Yang, L.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154-1159 (2009).
[CrossRef]

Yun, S. H.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in-vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

Zhang, J.

G. N. Goltsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

G. N. Goltsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, and A. Dzardanov, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Arch. Ophthalmol. (1)

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325-332 (1995).
[CrossRef] [PubMed]

Circulation (1)

G. J. Tearney, H. Yabushita, S. L. Houser, H. T. Aretz, I. K. Jang, K. Schlendorf, C. R. Kauffman, M. Shishkov, E. F. Halpern, and B. E. Bouma, “Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,” Circulation 107, 113-119 (2003).
[CrossRef] [PubMed]

IEEE Trans. Appl. Supercond. (1)

G. N. Goltsman, K. Smirnov, P. Kouminov, B. Voronov, N. Kaurova, V. Drakinsky, J. Zhang, A. Verevkin, and R. Sobolewski, “Fabrication of nanostructured superconducting single-photon detectors,” IEEE Trans. Appl. Supercond. 13, 192-195 (2003).
[CrossRef]

J Biomed. Opt. (1)

W. Drexler, “Ultra-high resolution optical coherence tomography,” J Biomed. Opt. 9, 47-74 (2004).
[CrossRef] [PubMed]

Nat. Med. (2)

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in-vivo,” Nat. Med. 12, 1429-1433 (2007).
[CrossRef]

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging,” Nat. Med. 4, 861-865 (1998).
[CrossRef] [PubMed]

Opt. Commun. (1)

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun. 282, 1154-1159 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. Lett. (2)

S. E. Harris, “Chirp and compress: toward single-cycle biphotons,” Phys. Rev. Lett. 98, 063602 (2007).
[CrossRef] [PubMed]

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef] [PubMed]

Phys. Status Solidi C (1)

G. N. Goltsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” Phys. Status Solidi C 2, 1480-1488 (2005).
[CrossRef]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Skin Res. and Technol. (1)

J. Welzel, “Optical coherence tomography in dermatology: A review,” Skin Res. and Technol. 7, 1-9 (2001).
[CrossRef]

Other (2)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007), Sections 11.2B, 21.2E, and 24.5.

M. E. Brezinski, Optical Coherence Tomography: Principles and Applications (Academic, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Brightness images, in which brightness is proportional to the calculated power spectral density of the emission, at various temperatures. The features of the structures are specified by the length of the first period b 1 and the chirp parameter ζ. (a) Unchirped structure with b 1 = 7.95 μm and ζ = 0 . (b) Medium-chirped structure with b 1 = 7.85 μm and ζ = 1.26 × 10 6 μm 1 . (c) Maximum-chirped structure with b 1 = 7.5 μm and ζ = 6.24 × 10 6 μm 1 . (d) Calculated normalized spectrum for the maximum-chirped structure at a temperature of 80 ° C . The parameters were chosen to match those of the structures used in the experiments described subsequently. The bandwidth increases substantially with the chirp parameter.

Fig. 2
Fig. 2

(a) The generic experimental arrangement makes use of a Michelson interferometer comprising a beam splitter (BS), reference mirror, and sample. The broadband light emanating from the source is coupled into a SM fiber and collimated by lens L3. The light within the interferometer is focused onto the reference mirror and the sample using lenses L4 and L5, respectively. The lenses, reference mirror, and sample are placed on nanopositioning stages to change their positions, as indicated by the arrows. Experiments were performed using both SSPDs and SPADs as detectors. (b) The downconversion source consists of light from a cw frequency-doubled Nd 3 + : YVO 4 laser (Coherent Verdi), operating at a wavelength of 532 nm and at a power of 2 W , that pumps a chirped-PPSLT device. The structure is aligned to obtain collinear SPDC. The downconverted light is collimated using lens L1 and coupled into a SM fiber via lens L2. The filter removes the pump light and allows only the downconverted light to be coupled into the fiber.

Fig. 3
Fig. 3

Brightness images, in which brightness is proportional to the measured power spectral density of the emission, at various temperatures, from (a) the unchirped structure, (b) the medium-chirped structure, and (c) the maximum-chirped structure. (d) Measured normalized spectrum for light from the maximum-chirped structure at a temperature of 80 ° C . The results bear considerable resemblance to the calculations displayed in Fig. 1.

Fig. 4
Fig. 4

Normalized interferograms and their envelopes versus reference-arm displacement for a mirror sample (A-scans). In all cases, the step size used in constructing the interferograms was 100 nm and the duration of the counting-time windows was 300 ms . (a) Downconversion/superconducting detector (SPDC/SSPD). The FWHM of the interferogram envelope was 1.6 μm . The highest resolution was achieved with this combination. (b) Downconversion/avalanche detector (SPDC/SPAD). The FWHM of the interferogram envelope was 2.8 μm . (c) Superluminescence/superconducting detector (SLD/SSPD). The FWHM of the interferogram envelope was 6.3 μm .

Fig. 5
Fig. 5

Normalized interferograms versus reference-arm displacement for a pellicle sample (A-scans). In all cases, the step size used in constructing the interferograms was 100 nm and the duration of the counting-time windows was 300 ms . (a) Downconversion/superconducting detector (SPDC/SSPD). This combination permitted reflections from the two surfaces to be resolved. (b) Downconversion/avalanche detector (SPDC/SPAD). The two surfaces were not resolved. (c) Superluminescence/superconducting detector (SLD/SSPD). The two surfaces were not resolved.

Fig. 6
Fig. 6

Two-dimensional ( x z ) B-scans of an onion-skin sample. (a) Scan collected using broadband downconversion light and a superconducting detector (SPDC/SSPD). (b) Scan collected from the same onion-skin sample using superluminescence light and the same superconducting detector (SLD/SSPD). Higher axial resolution is attained by using downconversion, by virtue of its broader bandwidth. These cross-sectional views of the tissue highlight the relatively large reflectances at cellular surfaces, which stem from refractive-index discontinuities.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S ( ω s ) | 0 L d ( z ) exp [ j Δ k ( ω s ) z ] d z | 2 ,
Δ k ( ω s ) = n ( ω p , T ) ω p c n ( ω s , T ) ω s c n ( ω p ω s , T ) ( ω p ω s ) c ,
d ( z ) = k = 1 N s ( z a k , b k ) ,
s ( z , b ) = { 1 , 0 < z b / 2 1 , b / 2 < z b 0 , otherwise .

Metrics