Abstract

We present a technique to measure the frequency chirp introduced by the laser pulse amplification process in the transmitter of the Colorado State University sodium lidar system. This chirp causes a systematic radial wind bias that must be removed from the reported wind measurements. An iodine absorption line located near the lidar operating wavelength of 589.16nm is used for real-time monitoring and measurement of the chirp for the correction of radial wind bias. This technique has been thoroughly characterized in the laboratory and validated by field testing, facilitating simultaneous measurements of temperature and horizontal wind in the mesopause region of the atmosphere (80105km).

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Arnold and C. Y. She, “Metal fluorescence lidar (light detection and ranging) and the middle atmosphere,” Contemp. Phys. 44, 35-49 (2003).
    [CrossRef]
  2. C. Y. She and J. R. Yu, “Doppler-free saturation fluorescence spectroscopy of Na atoms for atmospheric applications,” Appl. Opt. 34, 1063-1075 (1995).
    [CrossRef] [PubMed]
  3. A. E. Siegman, Lasers (University Science Books, 1986), pp. 332-333.
  4. I. Reinhard, M. Gabrysch, B. Fischer von Weikersthal, K. Jungmann, and G. zu Putlitz, “Measurement and compensation of frequency chirping in pulsed dye laser amplifiers,” Appl. Phys. B 63, 467-472 (1996).
  5. C. S. Gardner and W. Yang, “Measurements of the dynamical cooling rate associated with the vertical transport of heat by dissipating gravity waves in the mesopause region at Starfire Optical Range, New Mexico,” J. Geophys. Res. 103, 16909-16926 (1998).
    [CrossRef]
  6. R. T. White, Y. He, B. J. Orr, M. Kono, and K. G. H. Baldwin, “Control of frequency chirp in nanosecond-pulsed laser spectroscopy. 1. Optical-heterodyne chirp analysis techniques,“ J. Opt. Soc. Am. B 21, 1577-1585 (2004).
    [CrossRef]
  7. Z. Liu, D. Wu, J. Liu, K. Zhang, W. Chen, X. Song, J. W. Hair, and C. She, “Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter,” Appl. Opt. 41, 7079-7086 (2002).
    [CrossRef] [PubMed]
  8. J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280-5294 (2001).
    [CrossRef]
  9. M. A. White, “A frequency-agile Na lidar for the measurement of temperature and velocity in the mesopause region,” Ph.D. dissertation (Colorado State University, 1999).
  10. J. P. Sherman, “Mesopause region thermal and dynamical studies based on simultaneous temperature, zonal and meridional wind measurements with an upgraded sodium fluorescence lidar,” Ph.D. dissertation (Colorado State University, 2002).
  11. A. E. Siegman, Lasers (University Science Books, 1986), pp. 294-295.
  12. J. Taylor, Introduction to Error Analysis: the Study of Uncertainties in Physical Measurements, 2nd ed. (Magle-Vail Book Manufacturing, 1997), pp. 94-103.
  13. C. S. Gardner and A. Z. Liu, “Seasonal variations of the vertical fluxes of heat and horizontal momentum in the mesopause region at Starfire Optical Range, New Mexico,” J. Geophys. Res. 112, D09113 (2007).
    [CrossRef]
  14. D. C. Firtts and R. A. Vincent, “Mesospheric momentum flux studies at Adelaide, Australia: observations and a gravity wave/tidal interaction model,” J. Atmos. Sci. 44, 605-619(1987).
    [CrossRef]
  15. B. P. Williams, D. C. Fritts, C. Y. She, and R. A. Goldberg, “Gravity wave propagation through a large semidiurnal tide and instabilities in the mesosphere and lower thermosphere during the winter 2003 MaCWAVE rocket campaign,” Ann. Geophys. 24, 1199-1208 (2006).
    [CrossRef]
  16. R. A. Vincent and D. C. Fritts, “A morphology of gravity waves in the mesosphere and lower thermosphere over Adelaide, Australia,” J. Atmos. Sci. 44, 748-760 (1987).
    [CrossRef]

2007 (1)

C. S. Gardner and A. Z. Liu, “Seasonal variations of the vertical fluxes of heat and horizontal momentum in the mesopause region at Starfire Optical Range, New Mexico,” J. Geophys. Res. 112, D09113 (2007).
[CrossRef]

2006 (1)

B. P. Williams, D. C. Fritts, C. Y. She, and R. A. Goldberg, “Gravity wave propagation through a large semidiurnal tide and instabilities in the mesosphere and lower thermosphere during the winter 2003 MaCWAVE rocket campaign,” Ann. Geophys. 24, 1199-1208 (2006).
[CrossRef]

2004 (1)

2003 (1)

K. S. Arnold and C. Y. She, “Metal fluorescence lidar (light detection and ranging) and the middle atmosphere,” Contemp. Phys. 44, 35-49 (2003).
[CrossRef]

2002 (1)

2001 (1)

1998 (1)

C. S. Gardner and W. Yang, “Measurements of the dynamical cooling rate associated with the vertical transport of heat by dissipating gravity waves in the mesopause region at Starfire Optical Range, New Mexico,” J. Geophys. Res. 103, 16909-16926 (1998).
[CrossRef]

1996 (1)

I. Reinhard, M. Gabrysch, B. Fischer von Weikersthal, K. Jungmann, and G. zu Putlitz, “Measurement and compensation of frequency chirping in pulsed dye laser amplifiers,” Appl. Phys. B 63, 467-472 (1996).

1995 (1)

1987 (2)

R. A. Vincent and D. C. Fritts, “A morphology of gravity waves in the mesosphere and lower thermosphere over Adelaide, Australia,” J. Atmos. Sci. 44, 748-760 (1987).
[CrossRef]

D. C. Firtts and R. A. Vincent, “Mesospheric momentum flux studies at Adelaide, Australia: observations and a gravity wave/tidal interaction model,” J. Atmos. Sci. 44, 605-619(1987).
[CrossRef]

Arnold, K. S.

K. S. Arnold and C. Y. She, “Metal fluorescence lidar (light detection and ranging) and the middle atmosphere,” Contemp. Phys. 44, 35-49 (2003).
[CrossRef]

Baldwin, K. G. H.

Caldwell, L. M.

Chen, W.

Firtts, D. C.

D. C. Firtts and R. A. Vincent, “Mesospheric momentum flux studies at Adelaide, Australia: observations and a gravity wave/tidal interaction model,” J. Atmos. Sci. 44, 605-619(1987).
[CrossRef]

Fischer von Weikersthal, B.

I. Reinhard, M. Gabrysch, B. Fischer von Weikersthal, K. Jungmann, and G. zu Putlitz, “Measurement and compensation of frequency chirping in pulsed dye laser amplifiers,” Appl. Phys. B 63, 467-472 (1996).

Fritts, D. C.

B. P. Williams, D. C. Fritts, C. Y. She, and R. A. Goldberg, “Gravity wave propagation through a large semidiurnal tide and instabilities in the mesosphere and lower thermosphere during the winter 2003 MaCWAVE rocket campaign,” Ann. Geophys. 24, 1199-1208 (2006).
[CrossRef]

R. A. Vincent and D. C. Fritts, “A morphology of gravity waves in the mesosphere and lower thermosphere over Adelaide, Australia,” J. Atmos. Sci. 44, 748-760 (1987).
[CrossRef]

Gabrysch, M.

I. Reinhard, M. Gabrysch, B. Fischer von Weikersthal, K. Jungmann, and G. zu Putlitz, “Measurement and compensation of frequency chirping in pulsed dye laser amplifiers,” Appl. Phys. B 63, 467-472 (1996).

Gardner, C. S.

C. S. Gardner and A. Z. Liu, “Seasonal variations of the vertical fluxes of heat and horizontal momentum in the mesopause region at Starfire Optical Range, New Mexico,” J. Geophys. Res. 112, D09113 (2007).
[CrossRef]

C. S. Gardner and W. Yang, “Measurements of the dynamical cooling rate associated with the vertical transport of heat by dissipating gravity waves in the mesopause region at Starfire Optical Range, New Mexico,” J. Geophys. Res. 103, 16909-16926 (1998).
[CrossRef]

Goldberg, R. A.

B. P. Williams, D. C. Fritts, C. Y. She, and R. A. Goldberg, “Gravity wave propagation through a large semidiurnal tide and instabilities in the mesosphere and lower thermosphere during the winter 2003 MaCWAVE rocket campaign,” Ann. Geophys. 24, 1199-1208 (2006).
[CrossRef]

Hair, J. W.

He, Y.

Jungmann, K.

I. Reinhard, M. Gabrysch, B. Fischer von Weikersthal, K. Jungmann, and G. zu Putlitz, “Measurement and compensation of frequency chirping in pulsed dye laser amplifiers,” Appl. Phys. B 63, 467-472 (1996).

Kono, M.

Krueger, D. A.

Liu, A. Z.

C. S. Gardner and A. Z. Liu, “Seasonal variations of the vertical fluxes of heat and horizontal momentum in the mesopause region at Starfire Optical Range, New Mexico,” J. Geophys. Res. 112, D09113 (2007).
[CrossRef]

Liu, J.

Liu, Z.

Orr, B. J.

Reinhard, I.

I. Reinhard, M. Gabrysch, B. Fischer von Weikersthal, K. Jungmann, and G. zu Putlitz, “Measurement and compensation of frequency chirping in pulsed dye laser amplifiers,” Appl. Phys. B 63, 467-472 (1996).

She, C.

She, C. Y.

B. P. Williams, D. C. Fritts, C. Y. She, and R. A. Goldberg, “Gravity wave propagation through a large semidiurnal tide and instabilities in the mesosphere and lower thermosphere during the winter 2003 MaCWAVE rocket campaign,” Ann. Geophys. 24, 1199-1208 (2006).
[CrossRef]

K. S. Arnold and C. Y. She, “Metal fluorescence lidar (light detection and ranging) and the middle atmosphere,” Contemp. Phys. 44, 35-49 (2003).
[CrossRef]

J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280-5294 (2001).
[CrossRef]

C. Y. She and J. R. Yu, “Doppler-free saturation fluorescence spectroscopy of Na atoms for atmospheric applications,” Appl. Opt. 34, 1063-1075 (1995).
[CrossRef] [PubMed]

Sherman, J. P.

J. P. Sherman, “Mesopause region thermal and dynamical studies based on simultaneous temperature, zonal and meridional wind measurements with an upgraded sodium fluorescence lidar,” Ph.D. dissertation (Colorado State University, 2002).

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986), pp. 332-333.

A. E. Siegman, Lasers (University Science Books, 1986), pp. 294-295.

Song, X.

Taylor, J.

J. Taylor, Introduction to Error Analysis: the Study of Uncertainties in Physical Measurements, 2nd ed. (Magle-Vail Book Manufacturing, 1997), pp. 94-103.

Vincent, R. A.

D. C. Firtts and R. A. Vincent, “Mesospheric momentum flux studies at Adelaide, Australia: observations and a gravity wave/tidal interaction model,” J. Atmos. Sci. 44, 605-619(1987).
[CrossRef]

R. A. Vincent and D. C. Fritts, “A morphology of gravity waves in the mesosphere and lower thermosphere over Adelaide, Australia,” J. Atmos. Sci. 44, 748-760 (1987).
[CrossRef]

White, M. A.

M. A. White, “A frequency-agile Na lidar for the measurement of temperature and velocity in the mesopause region,” Ph.D. dissertation (Colorado State University, 1999).

White, R. T.

Williams, B. P.

B. P. Williams, D. C. Fritts, C. Y. She, and R. A. Goldberg, “Gravity wave propagation through a large semidiurnal tide and instabilities in the mesosphere and lower thermosphere during the winter 2003 MaCWAVE rocket campaign,” Ann. Geophys. 24, 1199-1208 (2006).
[CrossRef]

Wu, D.

Yang, W.

C. S. Gardner and W. Yang, “Measurements of the dynamical cooling rate associated with the vertical transport of heat by dissipating gravity waves in the mesopause region at Starfire Optical Range, New Mexico,” J. Geophys. Res. 103, 16909-16926 (1998).
[CrossRef]

Yu, J. R.

Zhang, K.

zu Putlitz, G.

I. Reinhard, M. Gabrysch, B. Fischer von Weikersthal, K. Jungmann, and G. zu Putlitz, “Measurement and compensation of frequency chirping in pulsed dye laser amplifiers,” Appl. Phys. B 63, 467-472 (1996).

Ann. Geophys. (1)

B. P. Williams, D. C. Fritts, C. Y. She, and R. A. Goldberg, “Gravity wave propagation through a large semidiurnal tide and instabilities in the mesosphere and lower thermosphere during the winter 2003 MaCWAVE rocket campaign,” Ann. Geophys. 24, 1199-1208 (2006).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

I. Reinhard, M. Gabrysch, B. Fischer von Weikersthal, K. Jungmann, and G. zu Putlitz, “Measurement and compensation of frequency chirping in pulsed dye laser amplifiers,” Appl. Phys. B 63, 467-472 (1996).

Contemp. Phys. (1)

K. S. Arnold and C. Y. She, “Metal fluorescence lidar (light detection and ranging) and the middle atmosphere,” Contemp. Phys. 44, 35-49 (2003).
[CrossRef]

J. Atmos. Sci. (2)

R. A. Vincent and D. C. Fritts, “A morphology of gravity waves in the mesosphere and lower thermosphere over Adelaide, Australia,” J. Atmos. Sci. 44, 748-760 (1987).
[CrossRef]

D. C. Firtts and R. A. Vincent, “Mesospheric momentum flux studies at Adelaide, Australia: observations and a gravity wave/tidal interaction model,” J. Atmos. Sci. 44, 605-619(1987).
[CrossRef]

J. Geophys. Res. (2)

C. S. Gardner and W. Yang, “Measurements of the dynamical cooling rate associated with the vertical transport of heat by dissipating gravity waves in the mesopause region at Starfire Optical Range, New Mexico,” J. Geophys. Res. 103, 16909-16926 (1998).
[CrossRef]

C. S. Gardner and A. Z. Liu, “Seasonal variations of the vertical fluxes of heat and horizontal momentum in the mesopause region at Starfire Optical Range, New Mexico,” J. Geophys. Res. 112, D09113 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Other (5)

A. E. Siegman, Lasers (University Science Books, 1986), pp. 332-333.

M. A. White, “A frequency-agile Na lidar for the measurement of temperature and velocity in the mesopause region,” Ph.D. dissertation (Colorado State University, 1999).

J. P. Sherman, “Mesopause region thermal and dynamical studies based on simultaneous temperature, zonal and meridional wind measurements with an upgraded sodium fluorescence lidar,” Ph.D. dissertation (Colorado State University, 2002).

A. E. Siegman, Lasers (University Science Books, 1986), pp. 294-295.

J. Taylor, Introduction to Error Analysis: the Study of Uncertainties in Physical Measurements, 2nd ed. (Magle-Vail Book Manufacturing, 1997), pp. 94-103.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Na lidar pulsed laser spectrum S L ( ν ) with its peak intensity normalized to unity. The zero point in the horizontal axis is the centroid frequency of the spectrum; its absolute frequency is not accurately known. (b) Normalized iodine transmission function: solid curve, the spectrum when probed by the cw seed laser; dashed curve, the spectrum when probed by the pulses from the PDA. The three narrow peaked spectra (dotted curves) represent the PDA pulsed spectrum in (a), with its centroid frequency shifted to coincide with the three cw seed marker frequencies ν , ν 0 , and ν + .

Fig. 2
Fig. 2

Calibration curve between the chirp ratio and the chirp frequency shift and its best third-order polynomial fit when the iodine cell is heated to 80 ° C .

Fig. 3
Fig. 3

Experimental setup of the wind-bias monitor to perform the chirp measurement: BS, beam splitter; PD, photodiode.

Fig. 4
Fig. 4

Observed chirp ratio versus time on 31 July 2008.

Fig. 5
Fig. 5

Averaged vertical wind profile without (dotted curve) and with (solid curve) chirp correction. The uncertainty of the former is due to photon noise; the latter is the quadrature sum of photon noise and chirp measurement uncertainties.

Fig. 6
Fig. 6

Average of eastward LOS wind and westward LOS wind observed on 31 July 2008 without (dotted curve) and with (solid curve) chirp correction. The respective uncertainties are as described in Fig. 5.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R = T pulse T pulse 0 T pulse + T pulse 0 .
Δ ν shift = c 0 + c 1 R + c 2 R 2 + c 3 R 3 .
δ V LOS = δ ( Δ V chirp ) = λ 0 × δ ( Δ shift ) ,     δ ( Δ shift ) = c 1 δ R + 2 c 2 R ( δ R ) + 3 c 3 R 2 ( δ R ) = ( c 1 + 2 c 2 R + 3 c 3 R 2 ) ( δ R ) .
V LOS W = U sin θ + Δ V chirp + W cos θ , V LOS E = U sin θ + Δ V chirp + W cos θ , Δ V chirp = V LOS W + V LOS E 2 W cos θ .

Metrics