Abstract

A dissolved oxygen sensor made of plastic optical fiber as the substrate and dichlorotris (1, 10-phenanthroline) ruthenium as a fluorescence indicator is studied. Oxygen quenching characteristics of both intensity and phase were measured; the obtained characteristics showed deviation from the linear relation described by the Stern–Volmer equation. A two-layer model is proposed to explain the deviation, and main parameters can be deduced with the model.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Bacon and J. N. Demas, “Determination of oxygen concentrations by luminescence quenching of a polymer-immobilized transition-metal complex,” Anal. Chem. 59, 2780-2785 (1987).
    [CrossRef]
  2. E. R. Carraway, J. N. Demas, B. A. DeGraff, and J. R. Bacon, “Photophysics and photochemistry of oxygen sensor based on oxygen luminescent transition-metal complex,” Anal. Chem. 63, 337-342 (1991).
    [CrossRef]
  3. C. McDonagh, C. Kolle, A. K. McEvoy, D. L. Dowling, A. A. Cafolla, S. J. Cullen, and B. D. MacCraith, “Phase fluorometric dissolved oxygen sensor,” Sens. Actuators B 74, 124-130(2001).
    [CrossRef]
  4. B. D. MacCraith and C. McDonagh, “Enhanced fluorescence sensing using sol-gel materials,” J. Fluoresc. 12, 333-342(2002).
    [CrossRef]
  5. D. P. O'Neal, M. A. Meledeo, J. R. Davis, B. L. Ibey, V. A. Gant, M. V. Pishko, and G. L. Coté, “Oxygen sensor based on the fluorescence quenching of a ruthenium complex immobilized in a biocompatible poly(ethylene glycol) hydrogel,” IEEE Sens. J. 4, 728-734 (2004).
    [CrossRef]
  6. V. I. Ogurtsov and D. B. Papkovsky, “Modeling of phase-fluorometric oxygen sensors: consideration of temperature effects and operational requirements,” Sens. Actuators B 113, 917-929 (2006).
    [CrossRef]
  7. X. Chen, Z. Zhong, Z. Li, Y. Jiang, X. Wang, and K. Wong, “Characterization of ormosil film for dissolved oxygen sensing,” Sens. Actuators B 87, 233-238 (2002).
    [CrossRef]
  8. I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Overview of optical biosensing techniques,” in The Handbook of Biosensing and Biochips, R. S. Marks, C. R. Lowe, D. C. Cullen, H. H. Weetall, and I. Karube, eds. (Wiley, 2007).
  9. S. McCulloch and D. Uttamchandani, “Fiber optic micro-optrode for dissolved oxygen measurements,” IEE Proc. Sci. Meas. Technol. 146, 123-127 (1999).
    [CrossRef]
  10. H. Hecht and M. Kolling, “A low-cost optode-array measuring system based on 1 mm plastic optical fibers--new technique for in situ detection and quantification of pyrite weathering processing,” Sens. Actuators B 81, 76-82 (2001).
    [CrossRef]
  11. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Academic, 1983).
  12. D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Am. 66, 311-320 (1976).
    [CrossRef]
  13. G. R. Atkins, R. M. Krolikowska, and A. Samo, “Optical properties of an ormosil system comprising methyl- and phenyl-substituted silica,” J. Non-Cryst. Solids 265, 210-220 (2000).
    [CrossRef]

2006

V. I. Ogurtsov and D. B. Papkovsky, “Modeling of phase-fluorometric oxygen sensors: consideration of temperature effects and operational requirements,” Sens. Actuators B 113, 917-929 (2006).
[CrossRef]

2004

D. P. O'Neal, M. A. Meledeo, J. R. Davis, B. L. Ibey, V. A. Gant, M. V. Pishko, and G. L. Coté, “Oxygen sensor based on the fluorescence quenching of a ruthenium complex immobilized in a biocompatible poly(ethylene glycol) hydrogel,” IEEE Sens. J. 4, 728-734 (2004).
[CrossRef]

2002

X. Chen, Z. Zhong, Z. Li, Y. Jiang, X. Wang, and K. Wong, “Characterization of ormosil film for dissolved oxygen sensing,” Sens. Actuators B 87, 233-238 (2002).
[CrossRef]

B. D. MacCraith and C. McDonagh, “Enhanced fluorescence sensing using sol-gel materials,” J. Fluoresc. 12, 333-342(2002).
[CrossRef]

2001

C. McDonagh, C. Kolle, A. K. McEvoy, D. L. Dowling, A. A. Cafolla, S. J. Cullen, and B. D. MacCraith, “Phase fluorometric dissolved oxygen sensor,” Sens. Actuators B 74, 124-130(2001).
[CrossRef]

H. Hecht and M. Kolling, “A low-cost optode-array measuring system based on 1 mm plastic optical fibers--new technique for in situ detection and quantification of pyrite weathering processing,” Sens. Actuators B 81, 76-82 (2001).
[CrossRef]

2000

G. R. Atkins, R. M. Krolikowska, and A. Samo, “Optical properties of an ormosil system comprising methyl- and phenyl-substituted silica,” J. Non-Cryst. Solids 265, 210-220 (2000).
[CrossRef]

1999

S. McCulloch and D. Uttamchandani, “Fiber optic micro-optrode for dissolved oxygen measurements,” IEE Proc. Sci. Meas. Technol. 146, 123-127 (1999).
[CrossRef]

1991

E. R. Carraway, J. N. Demas, B. A. DeGraff, and J. R. Bacon, “Photophysics and photochemistry of oxygen sensor based on oxygen luminescent transition-metal complex,” Anal. Chem. 63, 337-342 (1991).
[CrossRef]

1987

J. R. Bacon and J. N. Demas, “Determination of oxygen concentrations by luminescence quenching of a polymer-immobilized transition-metal complex,” Anal. Chem. 59, 2780-2785 (1987).
[CrossRef]

1976

Abdulhalim, I.

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Overview of optical biosensing techniques,” in The Handbook of Biosensing and Biochips, R. S. Marks, C. R. Lowe, D. C. Cullen, H. H. Weetall, and I. Karube, eds. (Wiley, 2007).

Atkins, G. R.

G. R. Atkins, R. M. Krolikowska, and A. Samo, “Optical properties of an ormosil system comprising methyl- and phenyl-substituted silica,” J. Non-Cryst. Solids 265, 210-220 (2000).
[CrossRef]

Bacon, J. R.

E. R. Carraway, J. N. Demas, B. A. DeGraff, and J. R. Bacon, “Photophysics and photochemistry of oxygen sensor based on oxygen luminescent transition-metal complex,” Anal. Chem. 63, 337-342 (1991).
[CrossRef]

J. R. Bacon and J. N. Demas, “Determination of oxygen concentrations by luminescence quenching of a polymer-immobilized transition-metal complex,” Anal. Chem. 59, 2780-2785 (1987).
[CrossRef]

Cafolla, A. A.

C. McDonagh, C. Kolle, A. K. McEvoy, D. L. Dowling, A. A. Cafolla, S. J. Cullen, and B. D. MacCraith, “Phase fluorometric dissolved oxygen sensor,” Sens. Actuators B 74, 124-130(2001).
[CrossRef]

Carraway, E. R.

E. R. Carraway, J. N. Demas, B. A. DeGraff, and J. R. Bacon, “Photophysics and photochemistry of oxygen sensor based on oxygen luminescent transition-metal complex,” Anal. Chem. 63, 337-342 (1991).
[CrossRef]

Chen, X.

X. Chen, Z. Zhong, Z. Li, Y. Jiang, X. Wang, and K. Wong, “Characterization of ormosil film for dissolved oxygen sensing,” Sens. Actuators B 87, 233-238 (2002).
[CrossRef]

Coté, G. L.

D. P. O'Neal, M. A. Meledeo, J. R. Davis, B. L. Ibey, V. A. Gant, M. V. Pishko, and G. L. Coté, “Oxygen sensor based on the fluorescence quenching of a ruthenium complex immobilized in a biocompatible poly(ethylene glycol) hydrogel,” IEEE Sens. J. 4, 728-734 (2004).
[CrossRef]

Cullen, S. J.

C. McDonagh, C. Kolle, A. K. McEvoy, D. L. Dowling, A. A. Cafolla, S. J. Cullen, and B. D. MacCraith, “Phase fluorometric dissolved oxygen sensor,” Sens. Actuators B 74, 124-130(2001).
[CrossRef]

Davis, J. R.

D. P. O'Neal, M. A. Meledeo, J. R. Davis, B. L. Ibey, V. A. Gant, M. V. Pishko, and G. L. Coté, “Oxygen sensor based on the fluorescence quenching of a ruthenium complex immobilized in a biocompatible poly(ethylene glycol) hydrogel,” IEEE Sens. J. 4, 728-734 (2004).
[CrossRef]

DeGraff, B. A.

E. R. Carraway, J. N. Demas, B. A. DeGraff, and J. R. Bacon, “Photophysics and photochemistry of oxygen sensor based on oxygen luminescent transition-metal complex,” Anal. Chem. 63, 337-342 (1991).
[CrossRef]

Demas, J. N.

E. R. Carraway, J. N. Demas, B. A. DeGraff, and J. R. Bacon, “Photophysics and photochemistry of oxygen sensor based on oxygen luminescent transition-metal complex,” Anal. Chem. 63, 337-342 (1991).
[CrossRef]

J. R. Bacon and J. N. Demas, “Determination of oxygen concentrations by luminescence quenching of a polymer-immobilized transition-metal complex,” Anal. Chem. 59, 2780-2785 (1987).
[CrossRef]

Dowling, D. L.

C. McDonagh, C. Kolle, A. K. McEvoy, D. L. Dowling, A. A. Cafolla, S. J. Cullen, and B. D. MacCraith, “Phase fluorometric dissolved oxygen sensor,” Sens. Actuators B 74, 124-130(2001).
[CrossRef]

Gant, V. A.

D. P. O'Neal, M. A. Meledeo, J. R. Davis, B. L. Ibey, V. A. Gant, M. V. Pishko, and G. L. Coté, “Oxygen sensor based on the fluorescence quenching of a ruthenium complex immobilized in a biocompatible poly(ethylene glycol) hydrogel,” IEEE Sens. J. 4, 728-734 (2004).
[CrossRef]

Hecht, H.

H. Hecht and M. Kolling, “A low-cost optode-array measuring system based on 1 mm plastic optical fibers--new technique for in situ detection and quantification of pyrite weathering processing,” Sens. Actuators B 81, 76-82 (2001).
[CrossRef]

Ibey, B. L.

D. P. O'Neal, M. A. Meledeo, J. R. Davis, B. L. Ibey, V. A. Gant, M. V. Pishko, and G. L. Coté, “Oxygen sensor based on the fluorescence quenching of a ruthenium complex immobilized in a biocompatible poly(ethylene glycol) hydrogel,” IEEE Sens. J. 4, 728-734 (2004).
[CrossRef]

Jiang, Y.

X. Chen, Z. Zhong, Z. Li, Y. Jiang, X. Wang, and K. Wong, “Characterization of ormosil film for dissolved oxygen sensing,” Sens. Actuators B 87, 233-238 (2002).
[CrossRef]

Kolle, C.

C. McDonagh, C. Kolle, A. K. McEvoy, D. L. Dowling, A. A. Cafolla, S. J. Cullen, and B. D. MacCraith, “Phase fluorometric dissolved oxygen sensor,” Sens. Actuators B 74, 124-130(2001).
[CrossRef]

Kolling, M.

H. Hecht and M. Kolling, “A low-cost optode-array measuring system based on 1 mm plastic optical fibers--new technique for in situ detection and quantification of pyrite weathering processing,” Sens. Actuators B 81, 76-82 (2001).
[CrossRef]

Krolikowska, R. M.

G. R. Atkins, R. M. Krolikowska, and A. Samo, “Optical properties of an ormosil system comprising methyl- and phenyl-substituted silica,” J. Non-Cryst. Solids 265, 210-220 (2000).
[CrossRef]

Lakhtakia, A.

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Overview of optical biosensing techniques,” in The Handbook of Biosensing and Biochips, R. S. Marks, C. R. Lowe, D. C. Cullen, H. H. Weetall, and I. Karube, eds. (Wiley, 2007).

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Academic, 1983).

Li, Z.

X. Chen, Z. Zhong, Z. Li, Y. Jiang, X. Wang, and K. Wong, “Characterization of ormosil film for dissolved oxygen sensing,” Sens. Actuators B 87, 233-238 (2002).
[CrossRef]

MacCraith, B. D.

B. D. MacCraith and C. McDonagh, “Enhanced fluorescence sensing using sol-gel materials,” J. Fluoresc. 12, 333-342(2002).
[CrossRef]

C. McDonagh, C. Kolle, A. K. McEvoy, D. L. Dowling, A. A. Cafolla, S. J. Cullen, and B. D. MacCraith, “Phase fluorometric dissolved oxygen sensor,” Sens. Actuators B 74, 124-130(2001).
[CrossRef]

Marcuse, D.

McCulloch, S.

S. McCulloch and D. Uttamchandani, “Fiber optic micro-optrode for dissolved oxygen measurements,” IEE Proc. Sci. Meas. Technol. 146, 123-127 (1999).
[CrossRef]

McDonagh, C.

B. D. MacCraith and C. McDonagh, “Enhanced fluorescence sensing using sol-gel materials,” J. Fluoresc. 12, 333-342(2002).
[CrossRef]

C. McDonagh, C. Kolle, A. K. McEvoy, D. L. Dowling, A. A. Cafolla, S. J. Cullen, and B. D. MacCraith, “Phase fluorometric dissolved oxygen sensor,” Sens. Actuators B 74, 124-130(2001).
[CrossRef]

McEvoy, A. K.

C. McDonagh, C. Kolle, A. K. McEvoy, D. L. Dowling, A. A. Cafolla, S. J. Cullen, and B. D. MacCraith, “Phase fluorometric dissolved oxygen sensor,” Sens. Actuators B 74, 124-130(2001).
[CrossRef]

Meledeo, M. A.

D. P. O'Neal, M. A. Meledeo, J. R. Davis, B. L. Ibey, V. A. Gant, M. V. Pishko, and G. L. Coté, “Oxygen sensor based on the fluorescence quenching of a ruthenium complex immobilized in a biocompatible poly(ethylene glycol) hydrogel,” IEEE Sens. J. 4, 728-734 (2004).
[CrossRef]

Ogurtsov, V. I.

V. I. Ogurtsov and D. B. Papkovsky, “Modeling of phase-fluorometric oxygen sensors: consideration of temperature effects and operational requirements,” Sens. Actuators B 113, 917-929 (2006).
[CrossRef]

O'Neal, D. P.

D. P. O'Neal, M. A. Meledeo, J. R. Davis, B. L. Ibey, V. A. Gant, M. V. Pishko, and G. L. Coté, “Oxygen sensor based on the fluorescence quenching of a ruthenium complex immobilized in a biocompatible poly(ethylene glycol) hydrogel,” IEEE Sens. J. 4, 728-734 (2004).
[CrossRef]

Papkovsky, D. B.

V. I. Ogurtsov and D. B. Papkovsky, “Modeling of phase-fluorometric oxygen sensors: consideration of temperature effects and operational requirements,” Sens. Actuators B 113, 917-929 (2006).
[CrossRef]

Pishko, M. V.

D. P. O'Neal, M. A. Meledeo, J. R. Davis, B. L. Ibey, V. A. Gant, M. V. Pishko, and G. L. Coté, “Oxygen sensor based on the fluorescence quenching of a ruthenium complex immobilized in a biocompatible poly(ethylene glycol) hydrogel,” IEEE Sens. J. 4, 728-734 (2004).
[CrossRef]

Samo, A.

G. R. Atkins, R. M. Krolikowska, and A. Samo, “Optical properties of an ormosil system comprising methyl- and phenyl-substituted silica,” J. Non-Cryst. Solids 265, 210-220 (2000).
[CrossRef]

Uttamchandani, D.

S. McCulloch and D. Uttamchandani, “Fiber optic micro-optrode for dissolved oxygen measurements,” IEE Proc. Sci. Meas. Technol. 146, 123-127 (1999).
[CrossRef]

Wang, X.

X. Chen, Z. Zhong, Z. Li, Y. Jiang, X. Wang, and K. Wong, “Characterization of ormosil film for dissolved oxygen sensing,” Sens. Actuators B 87, 233-238 (2002).
[CrossRef]

Wong, K.

X. Chen, Z. Zhong, Z. Li, Y. Jiang, X. Wang, and K. Wong, “Characterization of ormosil film for dissolved oxygen sensing,” Sens. Actuators B 87, 233-238 (2002).
[CrossRef]

Zhong, Z.

X. Chen, Z. Zhong, Z. Li, Y. Jiang, X. Wang, and K. Wong, “Characterization of ormosil film for dissolved oxygen sensing,” Sens. Actuators B 87, 233-238 (2002).
[CrossRef]

Zourob, M.

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Overview of optical biosensing techniques,” in The Handbook of Biosensing and Biochips, R. S. Marks, C. R. Lowe, D. C. Cullen, H. H. Weetall, and I. Karube, eds. (Wiley, 2007).

Anal. Chem.

J. R. Bacon and J. N. Demas, “Determination of oxygen concentrations by luminescence quenching of a polymer-immobilized transition-metal complex,” Anal. Chem. 59, 2780-2785 (1987).
[CrossRef]

E. R. Carraway, J. N. Demas, B. A. DeGraff, and J. R. Bacon, “Photophysics and photochemistry of oxygen sensor based on oxygen luminescent transition-metal complex,” Anal. Chem. 63, 337-342 (1991).
[CrossRef]

IEE Proc. Sci. Meas. Technol.

S. McCulloch and D. Uttamchandani, “Fiber optic micro-optrode for dissolved oxygen measurements,” IEE Proc. Sci. Meas. Technol. 146, 123-127 (1999).
[CrossRef]

IEEE Sens. J.

D. P. O'Neal, M. A. Meledeo, J. R. Davis, B. L. Ibey, V. A. Gant, M. V. Pishko, and G. L. Coté, “Oxygen sensor based on the fluorescence quenching of a ruthenium complex immobilized in a biocompatible poly(ethylene glycol) hydrogel,” IEEE Sens. J. 4, 728-734 (2004).
[CrossRef]

J. Fluoresc.

B. D. MacCraith and C. McDonagh, “Enhanced fluorescence sensing using sol-gel materials,” J. Fluoresc. 12, 333-342(2002).
[CrossRef]

J. Non-Cryst. Solids

G. R. Atkins, R. M. Krolikowska, and A. Samo, “Optical properties of an ormosil system comprising methyl- and phenyl-substituted silica,” J. Non-Cryst. Solids 265, 210-220 (2000).
[CrossRef]

J. Opt. Soc. Am.

Sens. Actuators B

V. I. Ogurtsov and D. B. Papkovsky, “Modeling of phase-fluorometric oxygen sensors: consideration of temperature effects and operational requirements,” Sens. Actuators B 113, 917-929 (2006).
[CrossRef]

X. Chen, Z. Zhong, Z. Li, Y. Jiang, X. Wang, and K. Wong, “Characterization of ormosil film for dissolved oxygen sensing,” Sens. Actuators B 87, 233-238 (2002).
[CrossRef]

H. Hecht and M. Kolling, “A low-cost optode-array measuring system based on 1 mm plastic optical fibers--new technique for in situ detection and quantification of pyrite weathering processing,” Sens. Actuators B 81, 76-82 (2001).
[CrossRef]

C. McDonagh, C. Kolle, A. K. McEvoy, D. L. Dowling, A. A. Cafolla, S. J. Cullen, and B. D. MacCraith, “Phase fluorometric dissolved oxygen sensor,” Sens. Actuators B 74, 124-130(2001).
[CrossRef]

Other

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Academic, 1983).

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Overview of optical biosensing techniques,” in The Handbook of Biosensing and Biochips, R. S. Marks, C. R. Lowe, D. C. Cullen, H. H. Weetall, and I. Karube, eds. (Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Photograph of sensor head.

Fig. 2
Fig. 2

Schematic diagram of experiment setup.

Fig. 3
Fig. 3

(a) Spectrum of exciting light; (b) spectrum of fluorescence.

Fig. 4
Fig. 4

Measured phase difference with oxygen concentration change from 0 to 100% over two runs.

Fig. 5
Fig. 5

Ratio of (a) fluorescence lifetimes and (b) intensities varied with DO concentration.

Fig. 6
Fig. 6

Two-layer model to explain sublinear quenching behavior.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I 0 / I = τ 0 / τ = 1 + K sv [ O ] ,
tan ϕ = 2 π F τ ,
tan ϕ 0 / tan ϕ = 1 + K SV [ O ] .
I 0 / I = 1 + a I [ O ] b I [ O ] 2 ,
τ 0 / τ = 1 + a τ [ O ] b τ [ O ] 2 .
I 0 I = τ 0 τ = [ 1 f + f 1 + K SV [ O ] ] 1 = 1 + f K SV [ O ] 1 + ( 1 f ) K SV [ O ] 1 + f K SV [ O ] f ( 1 f ) K SV 2 [ O ] 2 .
τ 0 / τ = 1 + K sv [ O ] , I 0 / I = 1 + ( K SV + K eq ) [ O ] + K eq K SV [ O ] 2 ,
I 0 / I 1 + f ( K SV + K eq ) [ O ] f [ ( 1 f ) ( K SV + K eq ) 2 K SV K eq ] [ O ] 2 ,
τ 0 / τ 1 + f K SV [ O ] f ( 1 f ) K SV 2 [ O ] 2 .

Metrics