Abstract

We examined the effect of an antireflection (AR) coating to enhance the TM transmittance of the wire-grid polarizer. The polarization transmission spectra were calculated using the rigorous coupled-wave analysis. As a result, we verified that an AR film should be inserted between a wire-grid and a Si substrate as regards the TM transmittance and the polarization function. Based on the simulation results, we fabricated a tungsten silicide (WSi) wire-grid polarizer with SiO films on both sides of the Si substrate. The transmittance exceeded 80% at a 45μm wavelength range, although the theoretical transmittance of Si substrate is 54% and the ratio of the TM and TE transmittances reached 24dB at a 3μm wavelength when the WSi grating has a 300nm thickness, a 400nm period, and a fill factor of 0.6. Wire-grid polarizers with higher transmittance and larger extinction ratio can be obtained by adjusting the AR film thickness, the fill factor, and the thickness of the WSi grating.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Bremer, O. Hunderi, K. Fanping, T. Skauli, and E. Wold, “Infrared ellipsometer for the study of surfaces, thin films, and superlattices,” Appl. Opt. 31, 471-478 (1992).
    [CrossRef] [PubMed]
  2. G. P. Nordin, J. T. Meier, P. C. Degzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168-1174 (1999).
    [CrossRef]
  3. G. R. Bird and M. Parrish, “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. 50, 886-891 (1960).
    [CrossRef]
  4. J. B. Young, H. A. Graham, and E. W. Peterson, “Wire grid infrared polarizer,” Appl. Opt. 4, 1023-1026 (1965).
    [CrossRef]
  5. M. Saito and M. Miyagi, “Micropolarizer using anodized alumina with implanted metallic columns: theoretical analysis,” Appl. Opt. 28, 3529-3533 (1989).
    [CrossRef] [PubMed]
  6. I. Yamada, J. Nishii, and M. Saito, “Grooved infrared polarizers with a reduced reflectance,” Proc. SPIE 6414, 64141V(2006).
    [CrossRef]
  7. I. Yamada, K. Kintaka, J. Nishii, S. Akioka, Y. Yamagishi, and M. Saito, “Mid-infrared wire-grid polarizer with silicides,” Opt. Lett. 33, 258-260 (2008).
    [CrossRef] [PubMed]
  8. M. G. Moharam and T. K. Gaylord, “Rigorous couple-wave analysis of grating diffraction-E-mode polarization and losses,” J. Opt. Soc. Am. 73, 451-455 (1983).
    [CrossRef]
  9. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780-1787 (1986).
    [CrossRef]
  10. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  11. E. Hecht, Optics (Addison-Wesley, 1990).
  12. I. Yamada, J. Nishii, and M. Saito, “Modeling, fabrication, and characterization of WSi wire-grid polarizer in infrared region,” Appl. Opt. 47, 4735-4738 (2008).
    [PubMed]
  13. A. Hjortsberg and C. G. Granqvist, “Infrared optical properties of silicon monoxide films,” Appl. Opt. 19, 1694-1696 (1980).
    [CrossRef] [PubMed]
  14. J. A. Aguilera, J. Aguilera, P. Baumeister, A. Bloom, D. Coursen, J. A. Dobrowolski, F. T. Goldstein, D. E. Gustafson, and R. A. Kemp, “Antireflection coatings for germanium IR optics: a comparison of numerical design methods,” Appl. Opt. 27, 2832-2840 (1988).
    [CrossRef] [PubMed]
  15. Y. Ono, Y. Kimura, Y. Ohta, and N. Nishida, “Antireflection effect in ultrahigh spatial-frequency holographic relief gratings,” Appl. Opt. 26, 1142-1146 (1987).
    [CrossRef] [PubMed]
  16. O. Wiener, “Die theorie des mischkörpers für das feld der stationären strömung: erste abhandlung die mittelwertsätze für kraft, polarisation und energie,” Abh. Math. Phys. Kl. Sächs. Akad. Wiss. 32, 507-604 (1912).
  17. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen: I. Dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen,” Ann. Phys. 24, 636-679 (1935).
    [CrossRef]

2008

2006

I. Yamada, J. Nishii, and M. Saito, “Grooved infrared polarizers with a reduced reflectance,” Proc. SPIE 6414, 64141V(2006).
[CrossRef]

1999

1992

1989

1988

1987

1986

1983

1980

1965

1960

1935

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen: I. Dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen,” Ann. Phys. 24, 636-679 (1935).
[CrossRef]

1912

O. Wiener, “Die theorie des mischkörpers für das feld der stationären strömung: erste abhandlung die mittelwertsätze für kraft, polarisation und energie,” Abh. Math. Phys. Kl. Sächs. Akad. Wiss. 32, 507-604 (1912).

Aguilera, J.

Aguilera, J. A.

Akioka, S.

Baumeister, P.

Bird, G. R.

Bloom, A.

Bremer, J.

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen: I. Dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen,” Ann. Phys. 24, 636-679 (1935).
[CrossRef]

Coursen, D.

Degzman, P. C.

Dobrowolski, J. A.

Fanping, K.

Gaylord, T. K.

Goldstein, F. T.

Graham, H. A.

Granqvist, C. G.

Gustafson, D. E.

Hecht, E.

E. Hecht, Optics (Addison-Wesley, 1990).

Hjortsberg, A.

Hunderi, O.

Jones, M. W.

Kemp, R. A.

Kimura, Y.

Kintaka, K.

Meier, J. T.

Miyagi, M.

Moharam, M. G.

Nishida, N.

Nishii, J.

Nordin, G. P.

Ohta, Y.

Ono, Y.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Parrish, M.

Peterson, E. W.

Saito, M.

Skauli, T.

Wiener, O.

O. Wiener, “Die theorie des mischkörpers für das feld der stationären strömung: erste abhandlung die mittelwertsätze für kraft, polarisation und energie,” Abh. Math. Phys. Kl. Sächs. Akad. Wiss. 32, 507-604 (1912).

Wold, E.

Yamada, I.

Yamagishi, Y.

Young, J. B.

Abh. Math. Phys. Kl. Sächs. Akad. Wiss.

O. Wiener, “Die theorie des mischkörpers für das feld der stationären strömung: erste abhandlung die mittelwertsätze für kraft, polarisation und energie,” Abh. Math. Phys. Kl. Sächs. Akad. Wiss. 32, 507-604 (1912).

Ann. Phys.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen: I. Dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen,” Ann. Phys. 24, 636-679 (1935).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Lett.

Proc. SPIE

I. Yamada, J. Nishii, and M. Saito, “Grooved infrared polarizers with a reduced reflectance,” Proc. SPIE 6414, 64141V(2006).
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

E. Hecht, Optics (Addison-Wesley, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Models of the WSi wire-grid polarizer with an AR film. (a) The WSi wire-grid polarizer is covered with an AR film (AR/WSi-AR/Si). (b) An AR film is inserted between a WSi grating and a Si substrate (WSi/AR/Si).

Fig. 2
Fig. 2

Simulation results for transmission spectra of (a) AR/WSi-AR/Si and (b) WSi/AR/Si shown in Fig. 1 when the AR film thickness d U is changed from 0 to 500 nm . The WSi grating thickness and the fill factor are assumed as 300 nm and 0.5. The numerals next to the curves denote the AR film thickness.

Fig. 3
Fig. 3

Simulation results for the TE and the TM transmittances of WSi/AR/Si as a function of wavelength by RCWA when (a) the fill factor ( d w = 300 nm ) or (b) the WSi grating thickness ( f = 0.5 ) is changed. The numerals next to the curves denote (a) the fill factor or (b) the WSi grating thickness.

Fig. 4
Fig. 4

Fabrication process of the wire-grid polarizer.

Fig. 5
Fig. 5

Scanning electron micrograph of the WSi grating. (a)  f 0.4 , d w = 200 nm (element A) and (b)  f 0.6 , d w = 300 nm (element B). The period of both elements is 400 nm .

Fig. 6
Fig. 6

Transmission spectra of the elements with and without the WSi grating. TE and TM indicate the polarization directions. Curves A and B correspond to the spectra of elements A and B, respectively.

Fig. 7
Fig. 7

Simulation results of transmission spectra for the ZnS-coated substrate and the WSi wire-grid polarizer (TE and TM polarizations). The thicknesses of the ZnS films are 1000 and 1200 nm , respectively, and the WSi grating with Λ = 400 nm , f = 0.5 , and d w = 300 nm is located on the ZnS film with a 1000 nm thickness.

Fig. 8
Fig. 8

WSi wire-grid polarizer with the grooved structure of the Si substrate.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n 1 = n 0 n s ,

Metrics