Abstract

The perceptual contrast threshold (PCT) surface is proposed for characterizing the systematic performance of integral imaging (InI) systems. The method to determine the PCT surface of InI systems is presented first. The theoretical model of the PCT surface is then derived by considering the integral contribution of an InI system as well as the human visual system. Preliminary simulated results show that the PCT can correctly describe the InI properties related to the lateral resolution, contrast, depth distance, and their trade-off relationships, which can be used to compare the systematic performance of InI systems with different design parameters. To the best of our knowledge, this is the first study of the relationship of the resolvable InI contrast with the lateral resolution and the object depth.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059-2065 (1998).
    [CrossRef]
  2. J.-S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields,” Opt. Lett. 28, 1421-1423 (2003).
    [CrossRef] [PubMed]
  3. J.-S. Jang and B. Javidi, “Three-dimensional integral imaging with improved resolution, view angle, and depth of focus using lenslets with non-uniform focal lengths and aperture sizes,” Proc. SPIE 5202, 12-20 (2003).
    [CrossRef]
  4. R. H. Vollmerhausen, E. L. Jacobs, and R. G. Driggers, “New metric for predicting target acquisition performance,” Opt. Eng. 43, 2806-2818 (2004).
    [CrossRef]
  5. P. Bijl, M. A. Hogervorst, and J. M. Valeton, “TOD, NVTherm and TRM3 model calculations: a comparison,” Proc. SPIE 4719, 51-62 (2002).
    [CrossRef]
  6. R. G. Driggers, E. L. Jacobs, R. H. Vollmerhausen, B. O'Kane, M. Self, and S. Moyer, “Current infrared target acquisition approach for military sensor design and wargaming,” Proc. SPIE 6207, 620709 (2006).
    [CrossRef]
  7. B. Lee, S.-W. Min, and B. Javidi, “Theoretical analysis for three-dimensional integral imaging systems with double devices,” Appl. Opt. 41, 4856-4864 (2002).
    [CrossRef] [PubMed]
  8. G. C. Holst, Electro-Optical Imaging System Performance, 3rd ed. (SPIE, 2003), pp 90-98.
  9. O. Hadar and G. D. Boreman, “Over-sampling requirements for pixilated-imager systems,” Opt. Eng. 38, 782-785(1999).
    [CrossRef]
  10. F. Okano, J. Arai, and M. Kawakita, “Wave optical analysis of integral method for three-dimensional images,” Opt. Lett. 32, 364-366 (2007).
    [CrossRef] [PubMed]
  11. E. Peli, L. Arend, and A. T. Labianca, “Contrast perception across changes in luminance and spatial frequency,” J. Opt. Soc. Am. A 13, 1953-1959 (1996).
    [CrossRef]
  12. E. Peli, “Contrast sensitivity function and image discrimination,” J. Opt. Soc. Am. A 18, 283-293 (2001).
    [CrossRef]
  13. P. Barten, “The SQRI as a measure for VDU image quality,” SID Int. Symp. Digest Tech. Papers 23, 867-870 (1992).
  14. G. C. Holst, Electro-Optical Imaging System Performance, 3rd ed. (SPIE, 2003), pp 117-118.
  15. A. Stern and B. Javidi, “Information capability gain by time-division multiplexing in three-dimensional integral imaging,” Opt. Lett. 30, 1135-1137 (2005).
    [CrossRef] [PubMed]
  16. X. Wang and H. Hua, “Theoretical analysis for integral imaging performance based on micro-scanning of a micro-lens array,” Opt. Lett. 33, 449-451 (2008).
    [CrossRef] [PubMed]
  17. J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt. 45, 9066-9078 (2006).
    [CrossRef] [PubMed]

2008 (1)

2007 (1)

2006 (2)

R. G. Driggers, E. L. Jacobs, R. H. Vollmerhausen, B. O'Kane, M. Self, and S. Moyer, “Current infrared target acquisition approach for military sensor design and wargaming,” Proc. SPIE 6207, 620709 (2006).
[CrossRef]

J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt. 45, 9066-9078 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

R. H. Vollmerhausen, E. L. Jacobs, and R. G. Driggers, “New metric for predicting target acquisition performance,” Opt. Eng. 43, 2806-2818 (2004).
[CrossRef]

2003 (2)

J.-S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields,” Opt. Lett. 28, 1421-1423 (2003).
[CrossRef] [PubMed]

J.-S. Jang and B. Javidi, “Three-dimensional integral imaging with improved resolution, view angle, and depth of focus using lenslets with non-uniform focal lengths and aperture sizes,” Proc. SPIE 5202, 12-20 (2003).
[CrossRef]

2002 (2)

P. Bijl, M. A. Hogervorst, and J. M. Valeton, “TOD, NVTherm and TRM3 model calculations: a comparison,” Proc. SPIE 4719, 51-62 (2002).
[CrossRef]

B. Lee, S.-W. Min, and B. Javidi, “Theoretical analysis for three-dimensional integral imaging systems with double devices,” Appl. Opt. 41, 4856-4864 (2002).
[CrossRef] [PubMed]

2001 (1)

1999 (1)

O. Hadar and G. D. Boreman, “Over-sampling requirements for pixilated-imager systems,” Opt. Eng. 38, 782-785(1999).
[CrossRef]

1998 (1)

1996 (1)

1992 (1)

P. Barten, “The SQRI as a measure for VDU image quality,” SID Int. Symp. Digest Tech. Papers 23, 867-870 (1992).

Arai, J.

Arend, L.

Barten, P.

P. Barten, “The SQRI as a measure for VDU image quality,” SID Int. Symp. Digest Tech. Papers 23, 867-870 (1992).

Bijl, P.

P. Bijl, M. A. Hogervorst, and J. M. Valeton, “TOD, NVTherm and TRM3 model calculations: a comparison,” Proc. SPIE 4719, 51-62 (2002).
[CrossRef]

Boreman, G. D.

O. Hadar and G. D. Boreman, “Over-sampling requirements for pixilated-imager systems,” Opt. Eng. 38, 782-785(1999).
[CrossRef]

Driggers, R. G.

R. G. Driggers, E. L. Jacobs, R. H. Vollmerhausen, B. O'Kane, M. Self, and S. Moyer, “Current infrared target acquisition approach for military sensor design and wargaming,” Proc. SPIE 6207, 620709 (2006).
[CrossRef]

R. H. Vollmerhausen, E. L. Jacobs, and R. G. Driggers, “New metric for predicting target acquisition performance,” Opt. Eng. 43, 2806-2818 (2004).
[CrossRef]

Hadar, O.

O. Hadar and G. D. Boreman, “Over-sampling requirements for pixilated-imager systems,” Opt. Eng. 38, 782-785(1999).
[CrossRef]

Hogervorst, M. A.

P. Bijl, M. A. Hogervorst, and J. M. Valeton, “TOD, NVTherm and TRM3 model calculations: a comparison,” Proc. SPIE 4719, 51-62 (2002).
[CrossRef]

Holst, G. C.

G. C. Holst, Electro-Optical Imaging System Performance, 3rd ed. (SPIE, 2003), pp 90-98.

G. C. Holst, Electro-Optical Imaging System Performance, 3rd ed. (SPIE, 2003), pp 117-118.

Hoshino, H.

Hua, H.

Isono, H.

Jacobs, E. L.

R. G. Driggers, E. L. Jacobs, R. H. Vollmerhausen, B. O'Kane, M. Self, and S. Moyer, “Current infrared target acquisition approach for military sensor design and wargaming,” Proc. SPIE 6207, 620709 (2006).
[CrossRef]

R. H. Vollmerhausen, E. L. Jacobs, and R. G. Driggers, “New metric for predicting target acquisition performance,” Opt. Eng. 43, 2806-2818 (2004).
[CrossRef]

Jang, J.-S.

J.-S. Jang and B. Javidi, “Three-dimensional integral imaging with improved resolution, view angle, and depth of focus using lenslets with non-uniform focal lengths and aperture sizes,” Proc. SPIE 5202, 12-20 (2003).
[CrossRef]

J.-S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields,” Opt. Lett. 28, 1421-1423 (2003).
[CrossRef] [PubMed]

Javidi, B.

Jin, F.

Kawai, H.

Kawakita, M.

Labianca, A. T.

Lee, B.

Min, S.-W.

Moyer, S.

R. G. Driggers, E. L. Jacobs, R. H. Vollmerhausen, B. O'Kane, M. Self, and S. Moyer, “Current infrared target acquisition approach for military sensor design and wargaming,” Proc. SPIE 6207, 620709 (2006).
[CrossRef]

O'Kane, B.

R. G. Driggers, E. L. Jacobs, R. H. Vollmerhausen, B. O'Kane, M. Self, and S. Moyer, “Current infrared target acquisition approach for military sensor design and wargaming,” Proc. SPIE 6207, 620709 (2006).
[CrossRef]

Okano, F.

Peli, E.

Self, M.

R. G. Driggers, E. L. Jacobs, R. H. Vollmerhausen, B. O'Kane, M. Self, and S. Moyer, “Current infrared target acquisition approach for military sensor design and wargaming,” Proc. SPIE 6207, 620709 (2006).
[CrossRef]

Stern, A.

Valeton, J. M.

P. Bijl, M. A. Hogervorst, and J. M. Valeton, “TOD, NVTherm and TRM3 model calculations: a comparison,” Proc. SPIE 4719, 51-62 (2002).
[CrossRef]

Vollmerhausen, R. H.

R. G. Driggers, E. L. Jacobs, R. H. Vollmerhausen, B. O'Kane, M. Self, and S. Moyer, “Current infrared target acquisition approach for military sensor design and wargaming,” Proc. SPIE 6207, 620709 (2006).
[CrossRef]

R. H. Vollmerhausen, E. L. Jacobs, and R. G. Driggers, “New metric for predicting target acquisition performance,” Opt. Eng. 43, 2806-2818 (2004).
[CrossRef]

Wang, X.

Yuyama, I.

Appl. Opt. (2)

J. Opt. Soc. Am. A (3)

Opt. Eng. (2)

O. Hadar and G. D. Boreman, “Over-sampling requirements for pixilated-imager systems,” Opt. Eng. 38, 782-785(1999).
[CrossRef]

R. H. Vollmerhausen, E. L. Jacobs, and R. G. Driggers, “New metric for predicting target acquisition performance,” Opt. Eng. 43, 2806-2818 (2004).
[CrossRef]

Opt. Lett. (4)

Proc. SPIE (3)

J.-S. Jang and B. Javidi, “Three-dimensional integral imaging with improved resolution, view angle, and depth of focus using lenslets with non-uniform focal lengths and aperture sizes,” Proc. SPIE 5202, 12-20 (2003).
[CrossRef]

P. Bijl, M. A. Hogervorst, and J. M. Valeton, “TOD, NVTherm and TRM3 model calculations: a comparison,” Proc. SPIE 4719, 51-62 (2002).
[CrossRef]

R. G. Driggers, E. L. Jacobs, R. H. Vollmerhausen, B. O'Kane, M. Self, and S. Moyer, “Current infrared target acquisition approach for military sensor design and wargaming,” Proc. SPIE 6207, 620709 (2006).
[CrossRef]

SID Int. Symp. Digest Tech. Papers (1)

P. Barten, “The SQRI as a measure for VDU image quality,” SID Int. Symp. Digest Tech. Papers 23, 867-870 (1992).

Other (2)

G. C. Holst, Electro-Optical Imaging System Performance, 3rd ed. (SPIE, 2003), pp 117-118.

G. C. Holst, Electro-Optical Imaging System Performance, 3rd ed. (SPIE, 2003), pp 90-98.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of an InI system.

Fig. 2
Fig. 2

Block diagram of experimental setup for the PCT measurement.

Fig. 3
Fig. 3

PCT surface for InI System I.

Fig. 4
Fig. 4

PCT surface for InI System II.

Tables (1)

Tables Icon

Table 1 Parameters of Two Typical Systems Used for Simulations of the Perceptual Contrast Threshold

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

O ( f , z ) = 4 π C ( f , z ) ,
σ blur = 1.17 [ λ 2 L cip 2 ( L cip z ) 2 + z 2 d 4 ] 1 / 2 d · L cip ,
σ blur = 1.17 [ λ 2 L cip 2 ( L cip z ) 2 + z 2 d 4 ] 1 / 2 d L cip L observer .
MTF blur ( f , z ) = exp ( 2 ( π σ blur f ) 2 ) .
MTF detector ( f ) = sinc ( β · f ) sinc ( α · f ) ,
MTF display ( f ) = sinc ( ω · f ) ,
C 3-D-image ( f , z ) = O ( f , z ) · MTF blur ( f , z ) · MTF detector ( f ) · MTF display ( f ) .
CTF eye ( f eye ) = a b f eye e c f eye 1 + 0.06 e c f eye ,
f eye = 17.45 f M sys ,
PCT ( f eye , z ) = ( π / 4 ) CTF eye ( f eye ) MTF blur ( M sys f eye / 17.45 , z ) · MTF detector ( M sys f eye / 17.45 ) · MTF display ( M sys f eye / 17.45 ) .

Metrics