Abstract

The location of a flame front is often taken as the point of maximum OH gradient. Planar laser-induced fluorescence of OH can be used to obtain the flame front by extracting the points of maximum gradient. This operation is typically performed using an edge detection algorithm. The choice of operating parameters a priori poses significant problems of robustness when handling images with a range of signal-to-noise ratios. A statistical method of parameter selection originating in the image processing literature is detailed, and its merit for this application is demonstrated. A reduced search space method is proposed to decrease computational cost and render the technique viable for large data sets. This gives nearly identical output to the full method. These methods demonstrate substantial decreases in data rejection compared to the use of a priori parameters. These methods are viable for any application where maximum gradient contours must be accurately extracted from images of species or temperature, even at very low signal-to-noise ratios.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription