Abstract

We analyze a mechanism of direct laser writing of microlenses. We find that thermal effects and photochemical reactions are responsible for microlens formation on a sensitized gelatin layer. An infrared camera was used to assess the temperature distribution during the microlens formation, while the diffraction pattern produced by the microlens itself was used to estimate optical properties. The study of thermal processes enabled us to establish the correlation between thermal and optical parameters.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Nakano, “Spinning-disk confocal microscopy--a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27, 349-355 (2002).
    [CrossRef]
  2. L. Seifert, H. J. Tiziani, and W. Osten, “Wavefront reconstruction with the adaptive Shack-Hartmann sensor,” Opt. Commun. 245, 255-269 (2005).
    [CrossRef]
  3. R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
    [CrossRef]
  4. H. Ren, Y.-H. Lin, and S.-T. Wu, “Flat polymeric microlens array,” Opt. Commun. 261, 296-299 (2006).
    [CrossRef]
  5. P. Savander and H.-J. Haumann, “Microlens array used for collimation of linear laser-diode array,” Meas. Sci. Technol. 4, 541-543 (1993).
    [CrossRef]
  6. S. Moller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91, 3324-3327 (2002).
    [CrossRef]
  7. M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A Pure Appl. Opt. 10, 055302 (2008).
    [CrossRef]
  8. D. Daly, R. F. Stevens, M. C. Hutley, and N. Davieset, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759-766 (1990).
    [CrossRef]
  9. K. Naessens, H. Ottevaere, R. Baets, P. Van Daele, and H. Thienpont, “Direct writing of microlenses in polycarbonate with excimer laser ablation,” Appl. Opt. 42, 6349-6359(2003).
    [CrossRef]
  10. M-.H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18, 9312-9318 (2002).
    [CrossRef]
  11. B.-K. Lee, D. S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10, 531-535(2004).
    [CrossRef]
  12. N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60, 365-379 (2002).
    [CrossRef]
  13. R. Pericet-Camera, A. Best, S. K. Nett, J. S. Gutmann, and E. Bonaccurso, “Arrays of microlenses with variable focal lengths fabricated by restructuring polymer surfaces with an ink-jet device,” Opt. Express 15, 9877-9882 (2007).
    [CrossRef]
  14. N. F. Borrelli, D. L. Morse, R. H. Bellman, and W. L. Morgan, “Photolytic technique for producing microlenses in photosensitive glass,” Appl. Opt. 24, 2520-2525 (1985).
    [CrossRef]
  15. C. D. Jones, M. J. Serpe, L. Shroeder, and L. A. Lyon, “Microlens formation in microgel/gold colloid composite materials via photothermal patterning,” J. Am. Chem. Soc. 125, 5292-5293 (2003).
    [CrossRef]
  16. S. Calixto and M. S. Scholl, “Relief optical microelements fabricated with dichromated gelatin,” Appl. Opt. 36, 2101-2106 (1997).
    [CrossRef]
  17. R. A. Duarte-Quiroga and S. Calixto, “Dynamical optical microelements on dye-sensitized gels,” Appl. Opt. 39, 3948-3954 (2000).
    [CrossRef]
  18. G. Da Costa and J. Calatroni, “Self-holograms of laser-induced surface depressions in heavy hydrocarbons (ET),” Appl. Opt. 17, 2381-2385 (1978).
    [CrossRef]
  19. G. Da Costa and J. Calatroni, “Transient deformation of liquid surfaces by laser-induced thermocapillarity,” Appl. Opt. 18, 233-235 (1979).
    [CrossRef]
  20. T. Chia, L. L. Hench, C. Qin, and C. K. Hsieh, “Thermal modeling of laser-densified microlenses,” Appl. Opt. 33, 3486-3492 (1994).
    [CrossRef]
  21. Y. Kaganovskii, I. Antonov, F. Bass, and M. Rosenbluh, “Mechanism of microlens formation in quantum dot glasses under continuous-wave laser irradiation,”J. Appl. Phys. 89, 8273-8278 (2001).
    [CrossRef]
  22. Antonov, F. Bass, Y. Kaganovskii, and M. Rosenbluh, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys. 93, 2343-2348 (2003).
    [CrossRef]
  23. B. D. Murić, D. V. Pantelić, D. M. Vasiljević, and B. M. Panić, “Properties of microlenses produced on a layer of tot'hema and eosin sensitized gelatin,” Appl. Opt. 46, 8527-8532 (2007).
    [CrossRef]
  24. Murić, D. Pantelić, D. Vasiljević, and B. Panić, “Microlens fabrication on tot'hema sensitized gelatin,” Opt. Mater. 30, 1217-1220 (2008).
    [CrossRef]
  25. D. Vasiljević, B. Murić, D. Pantelić, and B. Panić, “Imaging properties of laser-produced parabolic profile microlenses,” Acta Phys. Pol. A 112, 993-999 (2007).
  26. D. Vasiljević, D. Pantelić, and B. Murić, “Imaging properties of laser-produced Gaussian profile microlenses,” Proc. SPIE 6604, 66040Q (2007).
    [CrossRef]
  27. G. Martínez-Ponce and C. Solano, “Photocrosslinking using linear polyols in xanthene dye-doped polyvinyl alcohol plates,” Opt. Express 14, 3776-3784 (2006).
    [CrossRef]
  28. http://www.vidal.fr/Medicament/tot_hema-16626.htm.
  29. http://omlc.ogi.edu/spectra/PhotochemCAD/html/EosinY-JZL.html.
  30. A. Shai and H. I. Maibach, Wound Healing and Ulcers of the Skin: Diagnosis and Therapy--the Practical Approach (Springer, 2005).
  31. http://www.flirthermography.com
  32. C. Kittel and H. Kroemer, Thermal Physics (Freeman, 1980).
  33. L. Stroebel, J. Compton, I. Current, and R. Zaria, Photographic Materials and Processes (Focal Press, 1985).
  34. G. Jehuda, W. Yongcai, and V. W. Gary, “Emulsion composition to control film core-set,” U.S. patent 6,485,896 (26 November 2002).
  35. S. Fakirov, Z. Sarac, T. Anbar, B. Boz, I. Bahar, M. Evstatiev, A. A. Apostolov, J. E. Mark, and A. Kloczkowski, “Mechanical properties and transition temperatures of crosslinked-oriented gelatin,” Colloid Polym. Sci. 275, 307-314 (1997).
    [CrossRef]

2008 (2)

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

Murić, D. Pantelić, D. Vasiljević, and B. Panić, “Microlens fabrication on tot'hema sensitized gelatin,” Opt. Mater. 30, 1217-1220 (2008).
[CrossRef]

2007 (4)

D. Vasiljević, B. Murić, D. Pantelić, and B. Panić, “Imaging properties of laser-produced parabolic profile microlenses,” Acta Phys. Pol. A 112, 993-999 (2007).

D. Vasiljević, D. Pantelić, and B. Murić, “Imaging properties of laser-produced Gaussian profile microlenses,” Proc. SPIE 6604, 66040Q (2007).
[CrossRef]

R. Pericet-Camera, A. Best, S. K. Nett, J. S. Gutmann, and E. Bonaccurso, “Arrays of microlenses with variable focal lengths fabricated by restructuring polymer surfaces with an ink-jet device,” Opt. Express 15, 9877-9882 (2007).
[CrossRef]

B. D. Murić, D. V. Pantelić, D. M. Vasiljević, and B. M. Panić, “Properties of microlenses produced on a layer of tot'hema and eosin sensitized gelatin,” Appl. Opt. 46, 8527-8532 (2007).
[CrossRef]

2006 (2)

2005 (1)

L. Seifert, H. J. Tiziani, and W. Osten, “Wavefront reconstruction with the adaptive Shack-Hartmann sensor,” Opt. Commun. 245, 255-269 (2005).
[CrossRef]

2004 (1)

B.-K. Lee, D. S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10, 531-535(2004).
[CrossRef]

2003 (3)

C. D. Jones, M. J. Serpe, L. Shroeder, and L. A. Lyon, “Microlens formation in microgel/gold colloid composite materials via photothermal patterning,” J. Am. Chem. Soc. 125, 5292-5293 (2003).
[CrossRef]

Antonov, F. Bass, Y. Kaganovskii, and M. Rosenbluh, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys. 93, 2343-2348 (2003).
[CrossRef]

K. Naessens, H. Ottevaere, R. Baets, P. Van Daele, and H. Thienpont, “Direct writing of microlenses in polycarbonate with excimer laser ablation,” Appl. Opt. 42, 6349-6359(2003).
[CrossRef]

2002 (5)

M-.H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18, 9312-9318 (2002).
[CrossRef]

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60, 365-379 (2002).
[CrossRef]

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef]

A. Nakano, “Spinning-disk confocal microscopy--a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27, 349-355 (2002).
[CrossRef]

S. Moller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91, 3324-3327 (2002).
[CrossRef]

2001 (1)

Y. Kaganovskii, I. Antonov, F. Bass, and M. Rosenbluh, “Mechanism of microlens formation in quantum dot glasses under continuous-wave laser irradiation,”J. Appl. Phys. 89, 8273-8278 (2001).
[CrossRef]

2000 (1)

1997 (2)

S. Calixto and M. S. Scholl, “Relief optical microelements fabricated with dichromated gelatin,” Appl. Opt. 36, 2101-2106 (1997).
[CrossRef]

S. Fakirov, Z. Sarac, T. Anbar, B. Boz, I. Bahar, M. Evstatiev, A. A. Apostolov, J. E. Mark, and A. Kloczkowski, “Mechanical properties and transition temperatures of crosslinked-oriented gelatin,” Colloid Polym. Sci. 275, 307-314 (1997).
[CrossRef]

1994 (1)

1993 (1)

P. Savander and H.-J. Haumann, “Microlens array used for collimation of linear laser-diode array,” Meas. Sci. Technol. 4, 541-543 (1993).
[CrossRef]

1990 (1)

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davieset, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759-766 (1990).
[CrossRef]

1985 (1)

1979 (1)

1978 (1)

Anbar, T.

S. Fakirov, Z. Sarac, T. Anbar, B. Boz, I. Bahar, M. Evstatiev, A. A. Apostolov, J. E. Mark, and A. Kloczkowski, “Mechanical properties and transition temperatures of crosslinked-oriented gelatin,” Colloid Polym. Sci. 275, 307-314 (1997).
[CrossRef]

Antonov,

Antonov, F. Bass, Y. Kaganovskii, and M. Rosenbluh, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys. 93, 2343-2348 (2003).
[CrossRef]

Antonov, I.

Y. Kaganovskii, I. Antonov, F. Bass, and M. Rosenbluh, “Mechanism of microlens formation in quantum dot glasses under continuous-wave laser irradiation,”J. Appl. Phys. 89, 8273-8278 (2001).
[CrossRef]

Apostolov, A. A.

S. Fakirov, Z. Sarac, T. Anbar, B. Boz, I. Bahar, M. Evstatiev, A. A. Apostolov, J. E. Mark, and A. Kloczkowski, “Mechanical properties and transition temperatures of crosslinked-oriented gelatin,” Colloid Polym. Sci. 275, 307-314 (1997).
[CrossRef]

Baets, R.

Bahar, I.

S. Fakirov, Z. Sarac, T. Anbar, B. Boz, I. Bahar, M. Evstatiev, A. A. Apostolov, J. E. Mark, and A. Kloczkowski, “Mechanical properties and transition temperatures of crosslinked-oriented gelatin,” Colloid Polym. Sci. 275, 307-314 (1997).
[CrossRef]

Bass, F.

Antonov, F. Bass, Y. Kaganovskii, and M. Rosenbluh, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys. 93, 2343-2348 (2003).
[CrossRef]

Y. Kaganovskii, I. Antonov, F. Bass, and M. Rosenbluh, “Mechanism of microlens formation in quantum dot glasses under continuous-wave laser irradiation,”J. Appl. Phys. 89, 8273-8278 (2001).
[CrossRef]

Bellman, R. H.

Best, A.

Birkl, G.

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef]

Bonaccurso, E.

Borrelli, N. F.

Boz, B.

S. Fakirov, Z. Sarac, T. Anbar, B. Boz, I. Bahar, M. Evstatiev, A. A. Apostolov, J. E. Mark, and A. Kloczkowski, “Mechanical properties and transition temperatures of crosslinked-oriented gelatin,” Colloid Polym. Sci. 275, 307-314 (1997).
[CrossRef]

Buchkremer, F. B. J.

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef]

Calatroni, J.

Calixto, S.

Chen, K.-Y.

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

Chia, T.

Compton, J.

L. Stroebel, J. Compton, I. Current, and R. Zaria, Photographic Materials and Processes (Focal Press, 1985).

Current, I.

L. Stroebel, J. Compton, I. Current, and R. Zaria, Photographic Materials and Processes (Focal Press, 1985).

Da Costa, G.

Daly, D.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davieset, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759-766 (1990).
[CrossRef]

Davieset, N.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davieset, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759-766 (1990).
[CrossRef]

Duarte-Quiroga, R. A.

Dumke, R.

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef]

Ertmer, W.

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef]

Evstatiev, M.

S. Fakirov, Z. Sarac, T. Anbar, B. Boz, I. Bahar, M. Evstatiev, A. A. Apostolov, J. E. Mark, and A. Kloczkowski, “Mechanical properties and transition temperatures of crosslinked-oriented gelatin,” Colloid Polym. Sci. 275, 307-314 (1997).
[CrossRef]

Fakirov, S.

S. Fakirov, Z. Sarac, T. Anbar, B. Boz, I. Bahar, M. Evstatiev, A. A. Apostolov, J. E. Mark, and A. Kloczkowski, “Mechanical properties and transition temperatures of crosslinked-oriented gelatin,” Colloid Polym. Sci. 275, 307-314 (1997).
[CrossRef]

Forrest, S. R.

S. Moller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91, 3324-3327 (2002).
[CrossRef]

Fu, Y. Q.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60, 365-379 (2002).
[CrossRef]

Gary, V. W.

G. Jehuda, W. Yongcai, and V. W. Gary, “Emulsion composition to control film core-set,” U.S. patent 6,485,896 (26 November 2002).

Gutmann, J. S.

Haumann, H.-J.

P. Savander and H.-J. Haumann, “Microlens array used for collimation of linear laser-diode array,” Meas. Sci. Technol. 4, 541-543 (1993).
[CrossRef]

Hench, L. L.

Ho, Y.-H.

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

Hsieh, C. K.

Hutley, M. C.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davieset, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759-766 (1990).
[CrossRef]

Jehuda, G.

G. Jehuda, W. Yongcai, and V. W. Gary, “Emulsion composition to control film core-set,” U.S. patent 6,485,896 (26 November 2002).

Jones, C. D.

C. D. Jones, M. J. Serpe, L. Shroeder, and L. A. Lyon, “Microlens formation in microgel/gold colloid composite materials via photothermal patterning,” J. Am. Chem. Soc. 125, 5292-5293 (2003).
[CrossRef]

Kaganovskii, Y.

Antonov, F. Bass, Y. Kaganovskii, and M. Rosenbluh, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys. 93, 2343-2348 (2003).
[CrossRef]

Y. Kaganovskii, I. Antonov, F. Bass, and M. Rosenbluh, “Mechanism of microlens formation in quantum dot glasses under continuous-wave laser irradiation,”J. Appl. Phys. 89, 8273-8278 (2001).
[CrossRef]

Kim, D. S.

B.-K. Lee, D. S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10, 531-535(2004).
[CrossRef]

Kittel, C.

C. Kittel and H. Kroemer, Thermal Physics (Freeman, 1980).

Kloczkowski, A.

S. Fakirov, Z. Sarac, T. Anbar, B. Boz, I. Bahar, M. Evstatiev, A. A. Apostolov, J. E. Mark, and A. Kloczkowski, “Mechanical properties and transition temperatures of crosslinked-oriented gelatin,” Colloid Polym. Sci. 275, 307-314 (1997).
[CrossRef]

Koh, Y. H.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60, 365-379 (2002).
[CrossRef]

Kroemer, H.

C. Kittel and H. Kroemer, Thermal Physics (Freeman, 1980).

Kwon, T. H.

B.-K. Lee, D. S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10, 531-535(2004).
[CrossRef]

Lee, B.-K.

B.-K. Lee, D. S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10, 531-535(2004).
[CrossRef]

Lee, J.-H.

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

Lin, C.-C.

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

Lin, H.-Y.

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

Lin, Y.-H.

H. Ren, Y.-H. Lin, and S.-T. Wu, “Flat polymeric microlens array,” Opt. Commun. 261, 296-299 (2006).
[CrossRef]

Lyon, L. A.

C. D. Jones, M. J. Serpe, L. Shroeder, and L. A. Lyon, “Microlens formation in microgel/gold colloid composite materials via photothermal patterning,” J. Am. Chem. Soc. 125, 5292-5293 (2003).
[CrossRef]

Maibach, H. I.

A. Shai and H. I. Maibach, Wound Healing and Ulcers of the Skin: Diagnosis and Therapy--the Practical Approach (Springer, 2005).

Mark, J. E.

S. Fakirov, Z. Sarac, T. Anbar, B. Boz, I. Bahar, M. Evstatiev, A. A. Apostolov, J. E. Mark, and A. Kloczkowski, “Mechanical properties and transition temperatures of crosslinked-oriented gelatin,” Colloid Polym. Sci. 275, 307-314 (1997).
[CrossRef]

Martínez-Ponce, G.

Moller, S.

S. Moller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91, 3324-3327 (2002).
[CrossRef]

Morgan, W. L.

Morse, D. L.

Muric,

Murić, D. Pantelić, D. Vasiljević, and B. Panić, “Microlens fabrication on tot'hema sensitized gelatin,” Opt. Mater. 30, 1217-1220 (2008).
[CrossRef]

Muric, B.

D. Vasiljević, D. Pantelić, and B. Murić, “Imaging properties of laser-produced Gaussian profile microlenses,” Proc. SPIE 6604, 66040Q (2007).
[CrossRef]

D. Vasiljević, B. Murić, D. Pantelić, and B. Panić, “Imaging properties of laser-produced parabolic profile microlenses,” Acta Phys. Pol. A 112, 993-999 (2007).

Muric, B. D.

Müther, T.

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef]

Naessens, K.

Nakano, A.

A. Nakano, “Spinning-disk confocal microscopy--a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27, 349-355 (2002).
[CrossRef]

Nett, S. K.

Ong, N. S.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60, 365-379 (2002).
[CrossRef]

Osten, W.

L. Seifert, H. J. Tiziani, and W. Osten, “Wavefront reconstruction with the adaptive Shack-Hartmann sensor,” Opt. Commun. 245, 255-269 (2005).
[CrossRef]

Ottevaere, H.

Panic, B.

Murić, D. Pantelić, D. Vasiljević, and B. Panić, “Microlens fabrication on tot'hema sensitized gelatin,” Opt. Mater. 30, 1217-1220 (2008).
[CrossRef]

D. Vasiljević, B. Murić, D. Pantelić, and B. Panić, “Imaging properties of laser-produced parabolic profile microlenses,” Acta Phys. Pol. A 112, 993-999 (2007).

Panic, B. M.

Pantelic, D.

Murić, D. Pantelić, D. Vasiljević, and B. Panić, “Microlens fabrication on tot'hema sensitized gelatin,” Opt. Mater. 30, 1217-1220 (2008).
[CrossRef]

D. Vasiljević, D. Pantelić, and B. Murić, “Imaging properties of laser-produced Gaussian profile microlenses,” Proc. SPIE 6604, 66040Q (2007).
[CrossRef]

D. Vasiljević, B. Murić, D. Pantelić, and B. Panić, “Imaging properties of laser-produced parabolic profile microlenses,” Acta Phys. Pol. A 112, 993-999 (2007).

Pantelic, D. V.

Park, C.

M-.H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18, 9312-9318 (2002).
[CrossRef]

Pericet-Camera, R.

Qin, C.

Ren, H.

H. Ren, Y.-H. Lin, and S.-T. Wu, “Flat polymeric microlens array,” Opt. Commun. 261, 296-299 (2006).
[CrossRef]

Rosenbluh, M.

Antonov, F. Bass, Y. Kaganovskii, and M. Rosenbluh, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys. 93, 2343-2348 (2003).
[CrossRef]

Y. Kaganovskii, I. Antonov, F. Bass, and M. Rosenbluh, “Mechanism of microlens formation in quantum dot glasses under continuous-wave laser irradiation,”J. Appl. Phys. 89, 8273-8278 (2001).
[CrossRef]

Sarac, Z.

S. Fakirov, Z. Sarac, T. Anbar, B. Boz, I. Bahar, M. Evstatiev, A. A. Apostolov, J. E. Mark, and A. Kloczkowski, “Mechanical properties and transition temperatures of crosslinked-oriented gelatin,” Colloid Polym. Sci. 275, 307-314 (1997).
[CrossRef]

Savander, P.

P. Savander and H.-J. Haumann, “Microlens array used for collimation of linear laser-diode array,” Meas. Sci. Technol. 4, 541-543 (1993).
[CrossRef]

Scholl, M. S.

Seifert, L.

L. Seifert, H. J. Tiziani, and W. Osten, “Wavefront reconstruction with the adaptive Shack-Hartmann sensor,” Opt. Commun. 245, 255-269 (2005).
[CrossRef]

Serpe, M. J.

C. D. Jones, M. J. Serpe, L. Shroeder, and L. A. Lyon, “Microlens formation in microgel/gold colloid composite materials via photothermal patterning,” J. Am. Chem. Soc. 125, 5292-5293 (2003).
[CrossRef]

Shai, A.

A. Shai and H. I. Maibach, Wound Healing and Ulcers of the Skin: Diagnosis and Therapy--the Practical Approach (Springer, 2005).

Shroeder, L.

C. D. Jones, M. J. Serpe, L. Shroeder, and L. A. Lyon, “Microlens formation in microgel/gold colloid composite materials via photothermal patterning,” J. Am. Chem. Soc. 125, 5292-5293 (2003).
[CrossRef]

Solano, C.

Stevens, R. F.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davieset, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759-766 (1990).
[CrossRef]

Stroebel, L.

L. Stroebel, J. Compton, I. Current, and R. Zaria, Photographic Materials and Processes (Focal Press, 1985).

Thienpont, H.

Tiziani, H. J.

L. Seifert, H. J. Tiziani, and W. Osten, “Wavefront reconstruction with the adaptive Shack-Hartmann sensor,” Opt. Commun. 245, 255-269 (2005).
[CrossRef]

Tsai, J.-H.

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

Van Daele, P.

Vasiljevic, D.

Murić, D. Pantelić, D. Vasiljević, and B. Panić, “Microlens fabrication on tot'hema sensitized gelatin,” Opt. Mater. 30, 1217-1220 (2008).
[CrossRef]

D. Vasiljević, D. Pantelić, and B. Murić, “Imaging properties of laser-produced Gaussian profile microlenses,” Proc. SPIE 6604, 66040Q (2007).
[CrossRef]

D. Vasiljević, B. Murić, D. Pantelić, and B. Panić, “Imaging properties of laser-produced parabolic profile microlenses,” Acta Phys. Pol. A 112, 993-999 (2007).

Vasiljevic, D. M.

Volk, M.

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef]

Wei, M.-K.

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

Whitesides, G. M.

M-.H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18, 9312-9318 (2002).
[CrossRef]

Wu, C.-F.

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

Wu, M-.H.

M-.H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18, 9312-9318 (2002).
[CrossRef]

Wu, S.-T.

H. Ren, Y.-H. Lin, and S.-T. Wu, “Flat polymeric microlens array,” Opt. Commun. 261, 296-299 (2006).
[CrossRef]

Wu, T.-C.

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

Yongcai, W.

G. Jehuda, W. Yongcai, and V. W. Gary, “Emulsion composition to control film core-set,” U.S. patent 6,485,896 (26 November 2002).

Zaria, R.

L. Stroebel, J. Compton, I. Current, and R. Zaria, Photographic Materials and Processes (Focal Press, 1985).

Acta Phys. Pol. A (1)

D. Vasiljević, B. Murić, D. Pantelić, and B. Panić, “Imaging properties of laser-produced parabolic profile microlenses,” Acta Phys. Pol. A 112, 993-999 (2007).

Appl. Opt. (8)

Cell Struct. Funct. (1)

A. Nakano, “Spinning-disk confocal microscopy--a cutting-edge tool for imaging of membrane traffic,” Cell Struct. Funct. 27, 349-355 (2002).
[CrossRef]

Colloid Polym. Sci. (1)

S. Fakirov, Z. Sarac, T. Anbar, B. Boz, I. Bahar, M. Evstatiev, A. A. Apostolov, J. E. Mark, and A. Kloczkowski, “Mechanical properties and transition temperatures of crosslinked-oriented gelatin,” Colloid Polym. Sci. 275, 307-314 (1997).
[CrossRef]

J. Am. Chem. Soc. (1)

C. D. Jones, M. J. Serpe, L. Shroeder, and L. A. Lyon, “Microlens formation in microgel/gold colloid composite materials via photothermal patterning,” J. Am. Chem. Soc. 125, 5292-5293 (2003).
[CrossRef]

J. Appl. Phys. (3)

S. Moller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91, 3324-3327 (2002).
[CrossRef]

Y. Kaganovskii, I. Antonov, F. Bass, and M. Rosenbluh, “Mechanism of microlens formation in quantum dot glasses under continuous-wave laser irradiation,”J. Appl. Phys. 89, 8273-8278 (2001).
[CrossRef]

Antonov, F. Bass, Y. Kaganovskii, and M. Rosenbluh, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys. 93, 2343-2348 (2003).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

Langmuir (1)

M-.H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18, 9312-9318 (2002).
[CrossRef]

Meas. Sci. Technol. (2)

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davieset, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759-766 (1990).
[CrossRef]

P. Savander and H.-J. Haumann, “Microlens array used for collimation of linear laser-diode array,” Meas. Sci. Technol. 4, 541-543 (1993).
[CrossRef]

Microelectron. Eng. (1)

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60, 365-379 (2002).
[CrossRef]

Microsyst. Technol. (1)

B.-K. Lee, D. S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10, 531-535(2004).
[CrossRef]

Opt. Commun. (2)

H. Ren, Y.-H. Lin, and S.-T. Wu, “Flat polymeric microlens array,” Opt. Commun. 261, 296-299 (2006).
[CrossRef]

L. Seifert, H. J. Tiziani, and W. Osten, “Wavefront reconstruction with the adaptive Shack-Hartmann sensor,” Opt. Commun. 245, 255-269 (2005).
[CrossRef]

Opt. Express (2)

Opt. Mater. (1)

Murić, D. Pantelić, D. Vasiljević, and B. Panić, “Microlens fabrication on tot'hema sensitized gelatin,” Opt. Mater. 30, 1217-1220 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

R. Dumke, M. Volk, T. Müther, F. B. J. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89, 097903 (2002).
[CrossRef]

Proc. SPIE (1)

D. Vasiljević, D. Pantelić, and B. Murić, “Imaging properties of laser-produced Gaussian profile microlenses,” Proc. SPIE 6604, 66040Q (2007).
[CrossRef]

Other (7)

http://www.vidal.fr/Medicament/tot_hema-16626.htm.

http://omlc.ogi.edu/spectra/PhotochemCAD/html/EosinY-JZL.html.

A. Shai and H. I. Maibach, Wound Healing and Ulcers of the Skin: Diagnosis and Therapy--the Practical Approach (Springer, 2005).

http://www.flirthermography.com

C. Kittel and H. Kroemer, Thermal Physics (Freeman, 1980).

L. Stroebel, J. Compton, I. Current, and R. Zaria, Photographic Materials and Processes (Focal Press, 1985).

G. Jehuda, W. Yongcai, and V. W. Gary, “Emulsion composition to control film core-set,” U.S. patent 6,485,896 (26 November 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics