Abstract

An electrically switchable computer-generated hologram (CGH) was fabricated using a liquid crystal (LC) cell. A polymethylmethacrylate (PMMA) film, which was spin-coated on one glass substrate of the LC cell, was patterned by a focused 2 MeV proton beam with a CGH phase pattern (2 μm resolution). With an applied voltage on the LC cell CGH sample, an index modulation was produced between the regions with and without PMMA because of the reorientation of LC molecules under the external electric field. The maximum diffraction efficiency measured was about 28.7%. The operating voltage was below 15 Vrms.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Lee, “Computer generated holograms: techniques and applications,” in Progress in Optics, E. Wolf, ed. (Elsevier Science, 1978), Vol XVI, pp. 119-232
  2. A. J. MacGovern and J. C. Wyant, “Computer generated holograms for testing optical element,” Appl. Opt. 10, 619-624(1971).
    [CrossRef]
  3. A. W. Lohman and J. C. Wyant, “Binary Fraunhofer holograms generated by computer,” Appl. Opt. 6, 1739-1748 (1967).
    [CrossRef]
  4. D. Casasent and C. Szczutkowski, “Optical Mellin transforms using computer generated holograms,” Opt. Commun. 19, 217-222 (1976).
    [CrossRef]
  5. W. J. Dallas, “Computer-generated holograms,” in The Computer in Optical Research: Methods and Applications, B. R. Frieden, ed, Vol. 41 of Topics in Applied Physics (Springer-Verlag, 1980), pp. 291-366.
  6. L. Pugliese and G. M. Morris, “Computer-generated holography in photorefractive materials,” Opt. Lett. 15, 338-340(1990).
    [CrossRef]
  7. K. Nakagawa, S. Iguchi, and T. Minemoto, “Computer-generated holograms in photorefractive LiNbO3 crystal,” Proc. SPIE 3470, 77-83 (1998).
    [CrossRef]
  8. F. Guessous, T. Juchem, and N. Hampp, “Computer generated holograms recorded in bacteriorhodopsin,” Proc. SPIE 5310, 369-376 (2004).
    [CrossRef]
  9. F. Mok, J. Diep, H. K. Liu, and D. Psaltis, “Real-time computer-generated hologram by means of liquid-crystal television spatial light modulator,” Opt. Lett. 11, 748-750 (1986).
    [CrossRef]
  10. C. S. Guo, Z. Y. Rong, H. T. Wang, Y. R. Wang, and L. Z. Cai, “Phase-shifting with computer-generated holograms written on a spatial light modulator,” Appl. Opt. 42, 6975-6979 (2003).
    [CrossRef]
  11. V. Arrizon, L. A. Gonzalez, R. Ponce, and A. Serrano-Heredia, “Computer-generated holograms with optimum bandwidths obtained with twisted-nematic liquid-crystal displays,” Appl. Opt. 44, 1625-1634 (2005).
    [CrossRef]
  12. S. Chavali, P. M. Birch, R. Young, and C. Chatwin, “Synthesis and reconstruction of computer generated holograms by a double pass technique on a twisted nematic-based liquid crystal spatial light modulator,” Opt. Lasers Eng. 45, 413-418 (2007).
    [CrossRef]
  13. G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, “Two-dimensional photonic quasicrystals by single beam computer-generated holography,” Opt. Express 16, 5164-5170 (2008).
    [CrossRef]
  14. Y. J. Liu and X. W. Sun, “Electrically switchable computer-generated hologram recorded in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 90, 191118 (2007).
    [CrossRef]
  15. Y. J. Liu, X. W. Sun, Q. Wang, and D. Luo, “Electrically switchable optical vortex generated by a computer-generated hologram recorded in polymer-dispersed liquid crystals,” Opt. Express 15, 16645-16650 (2007).
    [CrossRef]
  16. Y. J. Liu, X. W. Sun, D. Luo, and Z. Raszewski, “Generating electrically tunable optical vortices by a liquid crystal cell with patterned electrode,” Appl. Phys. Lett. 92, 101114 (2008).
    [CrossRef]
  17. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).
  18. M. B. H. Breese, G. W. Grime, and F. Watt, “MeV ion beam lithography of PMMA,” Nucl. Instrum. Methods Phys. Res. B 77, 169-174 (1993).
    [CrossRef]
  19. F. Watt, J. A. van Kan, I. Rajta, A. A. Bettiol, T. F. Choo, M. B. H. Breese, and T. Osipowicz, “The National University of Singapore high energy ion nano-probe facility: performance tests,” Nucl. Instrum. Methods Phys. Res. B 210, 14-20 (2003).
    [CrossRef]
  20. Z. Z. Zhong, D. E. Schuele, W. L. Gordon, K. J. Adamic, and R. B. Akins, “Dieletric properties of a PMMA/E7 polymer-dispersed liquid crystal,” J. Polym. Sci. Polym. Phys. 30, 1443-1449 (1992).
    [CrossRef]
  21. J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, and J. Bergstrom, “Diffraction efficiency of binary optical elements,” Proc. SPIE 1211, 116-124 (1990).
    [CrossRef]

2008

Y. J. Liu, X. W. Sun, D. Luo, and Z. Raszewski, “Generating electrically tunable optical vortices by a liquid crystal cell with patterned electrode,” Appl. Phys. Lett. 92, 101114 (2008).
[CrossRef]

G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, “Two-dimensional photonic quasicrystals by single beam computer-generated holography,” Opt. Express 16, 5164-5170 (2008).
[CrossRef]

2007

Y. J. Liu, X. W. Sun, Q. Wang, and D. Luo, “Electrically switchable optical vortex generated by a computer-generated hologram recorded in polymer-dispersed liquid crystals,” Opt. Express 15, 16645-16650 (2007).
[CrossRef]

S. Chavali, P. M. Birch, R. Young, and C. Chatwin, “Synthesis and reconstruction of computer generated holograms by a double pass technique on a twisted nematic-based liquid crystal spatial light modulator,” Opt. Lasers Eng. 45, 413-418 (2007).
[CrossRef]

Y. J. Liu and X. W. Sun, “Electrically switchable computer-generated hologram recorded in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 90, 191118 (2007).
[CrossRef]

2005

2004

F. Guessous, T. Juchem, and N. Hampp, “Computer generated holograms recorded in bacteriorhodopsin,” Proc. SPIE 5310, 369-376 (2004).
[CrossRef]

2003

F. Watt, J. A. van Kan, I. Rajta, A. A. Bettiol, T. F. Choo, M. B. H. Breese, and T. Osipowicz, “The National University of Singapore high energy ion nano-probe facility: performance tests,” Nucl. Instrum. Methods Phys. Res. B 210, 14-20 (2003).
[CrossRef]

C. S. Guo, Z. Y. Rong, H. T. Wang, Y. R. Wang, and L. Z. Cai, “Phase-shifting with computer-generated holograms written on a spatial light modulator,” Appl. Opt. 42, 6975-6979 (2003).
[CrossRef]

1998

K. Nakagawa, S. Iguchi, and T. Minemoto, “Computer-generated holograms in photorefractive LiNbO3 crystal,” Proc. SPIE 3470, 77-83 (1998).
[CrossRef]

1993

M. B. H. Breese, G. W. Grime, and F. Watt, “MeV ion beam lithography of PMMA,” Nucl. Instrum. Methods Phys. Res. B 77, 169-174 (1993).
[CrossRef]

1992

Z. Z. Zhong, D. E. Schuele, W. L. Gordon, K. J. Adamic, and R. B. Akins, “Dieletric properties of a PMMA/E7 polymer-dispersed liquid crystal,” J. Polym. Sci. Polym. Phys. 30, 1443-1449 (1992).
[CrossRef]

1990

J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, and J. Bergstrom, “Diffraction efficiency of binary optical elements,” Proc. SPIE 1211, 116-124 (1990).
[CrossRef]

L. Pugliese and G. M. Morris, “Computer-generated holography in photorefractive materials,” Opt. Lett. 15, 338-340(1990).
[CrossRef]

1986

1976

D. Casasent and C. Szczutkowski, “Optical Mellin transforms using computer generated holograms,” Opt. Commun. 19, 217-222 (1976).
[CrossRef]

1972

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).

1971

1967

Abbate, G.

Adamic, K. J.

Z. Z. Zhong, D. E. Schuele, W. L. Gordon, K. J. Adamic, and R. B. Akins, “Dieletric properties of a PMMA/E7 polymer-dispersed liquid crystal,” J. Polym. Sci. Polym. Phys. 30, 1443-1449 (1992).
[CrossRef]

Akins, R. B.

Z. Z. Zhong, D. E. Schuele, W. L. Gordon, K. J. Adamic, and R. B. Akins, “Dieletric properties of a PMMA/E7 polymer-dispersed liquid crystal,” J. Polym. Sci. Polym. Phys. 30, 1443-1449 (1992).
[CrossRef]

Arrizon, V.

Bergstrom, J.

J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, and J. Bergstrom, “Diffraction efficiency of binary optical elements,” Proc. SPIE 1211, 116-124 (1990).
[CrossRef]

Bettiol, A. A.

F. Watt, J. A. van Kan, I. Rajta, A. A. Bettiol, T. F. Choo, M. B. H. Breese, and T. Osipowicz, “The National University of Singapore high energy ion nano-probe facility: performance tests,” Nucl. Instrum. Methods Phys. Res. B 210, 14-20 (2003).
[CrossRef]

Birch, P. M.

S. Chavali, P. M. Birch, R. Young, and C. Chatwin, “Synthesis and reconstruction of computer generated holograms by a double pass technique on a twisted nematic-based liquid crystal spatial light modulator,” Opt. Lasers Eng. 45, 413-418 (2007).
[CrossRef]

Breese, M. B. H.

F. Watt, J. A. van Kan, I. Rajta, A. A. Bettiol, T. F. Choo, M. B. H. Breese, and T. Osipowicz, “The National University of Singapore high energy ion nano-probe facility: performance tests,” Nucl. Instrum. Methods Phys. Res. B 210, 14-20 (2003).
[CrossRef]

M. B. H. Breese, G. W. Grime, and F. Watt, “MeV ion beam lithography of PMMA,” Nucl. Instrum. Methods Phys. Res. B 77, 169-174 (1993).
[CrossRef]

Cai, L. Z.

Casasent, D.

D. Casasent and C. Szczutkowski, “Optical Mellin transforms using computer generated holograms,” Opt. Commun. 19, 217-222 (1976).
[CrossRef]

Chatwin, C.

S. Chavali, P. M. Birch, R. Young, and C. Chatwin, “Synthesis and reconstruction of computer generated holograms by a double pass technique on a twisted nematic-based liquid crystal spatial light modulator,” Opt. Lasers Eng. 45, 413-418 (2007).
[CrossRef]

Chavali, S.

S. Chavali, P. M. Birch, R. Young, and C. Chatwin, “Synthesis and reconstruction of computer generated holograms by a double pass technique on a twisted nematic-based liquid crystal spatial light modulator,” Opt. Lasers Eng. 45, 413-418 (2007).
[CrossRef]

Choo, T. F.

F. Watt, J. A. van Kan, I. Rajta, A. A. Bettiol, T. F. Choo, M. B. H. Breese, and T. Osipowicz, “The National University of Singapore high energy ion nano-probe facility: performance tests,” Nucl. Instrum. Methods Phys. Res. B 210, 14-20 (2003).
[CrossRef]

Cox, J. A.

J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, and J. Bergstrom, “Diffraction efficiency of binary optical elements,” Proc. SPIE 1211, 116-124 (1990).
[CrossRef]

Dallas, W. J.

W. J. Dallas, “Computer-generated holograms,” in The Computer in Optical Research: Methods and Applications, B. R. Frieden, ed, Vol. 41 of Topics in Applied Physics (Springer-Verlag, 1980), pp. 291-366.

Diep, J.

Fritz, B.

J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, and J. Bergstrom, “Diffraction efficiency of binary optical elements,” Proc. SPIE 1211, 116-124 (1990).
[CrossRef]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).

Gonzalez, L. A.

Gordon, W. L.

Z. Z. Zhong, D. E. Schuele, W. L. Gordon, K. J. Adamic, and R. B. Akins, “Dieletric properties of a PMMA/E7 polymer-dispersed liquid crystal,” J. Polym. Sci. Polym. Phys. 30, 1443-1449 (1992).
[CrossRef]

Grime, G. W.

M. B. H. Breese, G. W. Grime, and F. Watt, “MeV ion beam lithography of PMMA,” Nucl. Instrum. Methods Phys. Res. B 77, 169-174 (1993).
[CrossRef]

Guessous, F.

F. Guessous, T. Juchem, and N. Hampp, “Computer generated holograms recorded in bacteriorhodopsin,” Proc. SPIE 5310, 369-376 (2004).
[CrossRef]

Guo, C. S.

Hampp, N.

F. Guessous, T. Juchem, and N. Hampp, “Computer generated holograms recorded in bacteriorhodopsin,” Proc. SPIE 5310, 369-376 (2004).
[CrossRef]

Iguchi, S.

K. Nakagawa, S. Iguchi, and T. Minemoto, “Computer-generated holograms in photorefractive LiNbO3 crystal,” Proc. SPIE 3470, 77-83 (1998).
[CrossRef]

Juchem, T.

F. Guessous, T. Juchem, and N. Hampp, “Computer generated holograms recorded in bacteriorhodopsin,” Proc. SPIE 5310, 369-376 (2004).
[CrossRef]

Lee, J.

J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, and J. Bergstrom, “Diffraction efficiency of binary optical elements,” Proc. SPIE 1211, 116-124 (1990).
[CrossRef]

Lee, W. H.

W. H. Lee, “Computer generated holograms: techniques and applications,” in Progress in Optics, E. Wolf, ed. (Elsevier Science, 1978), Vol XVI, pp. 119-232

Liu, H. K.

Liu, Y. J.

Y. J. Liu, X. W. Sun, D. Luo, and Z. Raszewski, “Generating electrically tunable optical vortices by a liquid crystal cell with patterned electrode,” Appl. Phys. Lett. 92, 101114 (2008).
[CrossRef]

Y. J. Liu, X. W. Sun, Q. Wang, and D. Luo, “Electrically switchable optical vortex generated by a computer-generated hologram recorded in polymer-dispersed liquid crystals,” Opt. Express 15, 16645-16650 (2007).
[CrossRef]

Y. J. Liu and X. W. Sun, “Electrically switchable computer-generated hologram recorded in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 90, 191118 (2007).
[CrossRef]

Lohman, A. W.

Luo, D.

Y. J. Liu, X. W. Sun, D. Luo, and Z. Raszewski, “Generating electrically tunable optical vortices by a liquid crystal cell with patterned electrode,” Appl. Phys. Lett. 92, 101114 (2008).
[CrossRef]

Y. J. Liu, X. W. Sun, Q. Wang, and D. Luo, “Electrically switchable optical vortex generated by a computer-generated hologram recorded in polymer-dispersed liquid crystals,” Opt. Express 15, 16645-16650 (2007).
[CrossRef]

MacGovern, A. J.

Marino, A.

Minemoto, T.

K. Nakagawa, S. Iguchi, and T. Minemoto, “Computer-generated holograms in photorefractive LiNbO3 crystal,” Proc. SPIE 3470, 77-83 (1998).
[CrossRef]

Mok, F.

Morris, G. M.

Nakagawa, K.

K. Nakagawa, S. Iguchi, and T. Minemoto, “Computer-generated holograms in photorefractive LiNbO3 crystal,” Proc. SPIE 3470, 77-83 (1998).
[CrossRef]

Nelson, S.

J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, and J. Bergstrom, “Diffraction efficiency of binary optical elements,” Proc. SPIE 1211, 116-124 (1990).
[CrossRef]

Osipowicz, T.

F. Watt, J. A. van Kan, I. Rajta, A. A. Bettiol, T. F. Choo, M. B. H. Breese, and T. Osipowicz, “The National University of Singapore high energy ion nano-probe facility: performance tests,” Nucl. Instrum. Methods Phys. Res. B 210, 14-20 (2003).
[CrossRef]

Piccirillo, B.

Ponce, R.

Psaltis, D.

Pugliese, L.

Rajta, I.

F. Watt, J. A. van Kan, I. Rajta, A. A. Bettiol, T. F. Choo, M. B. H. Breese, and T. Osipowicz, “The National University of Singapore high energy ion nano-probe facility: performance tests,” Nucl. Instrum. Methods Phys. Res. B 210, 14-20 (2003).
[CrossRef]

Raszewski, Z.

Y. J. Liu, X. W. Sun, D. Luo, and Z. Raszewski, “Generating electrically tunable optical vortices by a liquid crystal cell with patterned electrode,” Appl. Phys. Lett. 92, 101114 (2008).
[CrossRef]

Rong, Z. Y.

Santamato, E.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).

Schuele, D. E.

Z. Z. Zhong, D. E. Schuele, W. L. Gordon, K. J. Adamic, and R. B. Akins, “Dieletric properties of a PMMA/E7 polymer-dispersed liquid crystal,” J. Polym. Sci. Polym. Phys. 30, 1443-1449 (1992).
[CrossRef]

Serrano-Heredia, A.

Sun, X. W.

Y. J. Liu, X. W. Sun, D. Luo, and Z. Raszewski, “Generating electrically tunable optical vortices by a liquid crystal cell with patterned electrode,” Appl. Phys. Lett. 92, 101114 (2008).
[CrossRef]

Y. J. Liu, X. W. Sun, Q. Wang, and D. Luo, “Electrically switchable optical vortex generated by a computer-generated hologram recorded in polymer-dispersed liquid crystals,” Opt. Express 15, 16645-16650 (2007).
[CrossRef]

Y. J. Liu and X. W. Sun, “Electrically switchable computer-generated hologram recorded in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 90, 191118 (2007).
[CrossRef]

Szczutkowski, C.

D. Casasent and C. Szczutkowski, “Optical Mellin transforms using computer generated holograms,” Opt. Commun. 19, 217-222 (1976).
[CrossRef]

Tkachenko, V.

van Kan, J. A.

F. Watt, J. A. van Kan, I. Rajta, A. A. Bettiol, T. F. Choo, M. B. H. Breese, and T. Osipowicz, “The National University of Singapore high energy ion nano-probe facility: performance tests,” Nucl. Instrum. Methods Phys. Res. B 210, 14-20 (2003).
[CrossRef]

Wang, H. T.

Wang, Q.

Wang, Y. R.

Watt, F.

F. Watt, J. A. van Kan, I. Rajta, A. A. Bettiol, T. F. Choo, M. B. H. Breese, and T. Osipowicz, “The National University of Singapore high energy ion nano-probe facility: performance tests,” Nucl. Instrum. Methods Phys. Res. B 210, 14-20 (2003).
[CrossRef]

M. B. H. Breese, G. W. Grime, and F. Watt, “MeV ion beam lithography of PMMA,” Nucl. Instrum. Methods Phys. Res. B 77, 169-174 (1993).
[CrossRef]

Werner, T.

J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, and J. Bergstrom, “Diffraction efficiency of binary optical elements,” Proc. SPIE 1211, 116-124 (1990).
[CrossRef]

Wyant, J. C.

Young, R.

S. Chavali, P. M. Birch, R. Young, and C. Chatwin, “Synthesis and reconstruction of computer generated holograms by a double pass technique on a twisted nematic-based liquid crystal spatial light modulator,” Opt. Lasers Eng. 45, 413-418 (2007).
[CrossRef]

Zhong, Z. Z.

Z. Z. Zhong, D. E. Schuele, W. L. Gordon, K. J. Adamic, and R. B. Akins, “Dieletric properties of a PMMA/E7 polymer-dispersed liquid crystal,” J. Polym. Sci. Polym. Phys. 30, 1443-1449 (1992).
[CrossRef]

Zito, G.

Appl. Opt.

Appl. Phys. Lett.

Y. J. Liu and X. W. Sun, “Electrically switchable computer-generated hologram recorded in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 90, 191118 (2007).
[CrossRef]

Y. J. Liu, X. W. Sun, D. Luo, and Z. Raszewski, “Generating electrically tunable optical vortices by a liquid crystal cell with patterned electrode,” Appl. Phys. Lett. 92, 101114 (2008).
[CrossRef]

J. Polym. Sci. Polym. Phys.

Z. Z. Zhong, D. E. Schuele, W. L. Gordon, K. J. Adamic, and R. B. Akins, “Dieletric properties of a PMMA/E7 polymer-dispersed liquid crystal,” J. Polym. Sci. Polym. Phys. 30, 1443-1449 (1992).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B

M. B. H. Breese, G. W. Grime, and F. Watt, “MeV ion beam lithography of PMMA,” Nucl. Instrum. Methods Phys. Res. B 77, 169-174 (1993).
[CrossRef]

F. Watt, J. A. van Kan, I. Rajta, A. A. Bettiol, T. F. Choo, M. B. H. Breese, and T. Osipowicz, “The National University of Singapore high energy ion nano-probe facility: performance tests,” Nucl. Instrum. Methods Phys. Res. B 210, 14-20 (2003).
[CrossRef]

Opt. Commun.

D. Casasent and C. Szczutkowski, “Optical Mellin transforms using computer generated holograms,” Opt. Commun. 19, 217-222 (1976).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

S. Chavali, P. M. Birch, R. Young, and C. Chatwin, “Synthesis and reconstruction of computer generated holograms by a double pass technique on a twisted nematic-based liquid crystal spatial light modulator,” Opt. Lasers Eng. 45, 413-418 (2007).
[CrossRef]

Opt. Lett.

Optik (Stuttg.)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).

Proc. SPIE

K. Nakagawa, S. Iguchi, and T. Minemoto, “Computer-generated holograms in photorefractive LiNbO3 crystal,” Proc. SPIE 3470, 77-83 (1998).
[CrossRef]

F. Guessous, T. Juchem, and N. Hampp, “Computer generated holograms recorded in bacteriorhodopsin,” Proc. SPIE 5310, 369-376 (2004).
[CrossRef]

J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, and J. Bergstrom, “Diffraction efficiency of binary optical elements,” Proc. SPIE 1211, 116-124 (1990).
[CrossRef]

Other

W. J. Dallas, “Computer-generated holograms,” in The Computer in Optical Research: Methods and Applications, B. R. Frieden, ed, Vol. 41 of Topics in Applied Physics (Springer-Verlag, 1980), pp. 291-366.

W. H. Lee, “Computer generated holograms: techniques and applications,” in Progress in Optics, E. Wolf, ed. (Elsevier Science, 1978), Vol XVI, pp. 119-232

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics