Abstract

Photopolymer materials shrink because of photopolymerization. This shrinkage distorts the recorded interference fringes in a medium made of such material, which in turn degrades the reconstructed image quality. Adaptive optics controlled by a genetic algorithm was developed to optimize the wavefront of the reference beam while reproducing in order to compensate for the interference fringe distortion. We defined a fitness measure for this genetic algorithm that involves the mean brightness and coefficients of the variations of bit data “1” and “0”. In an experiment, the adaptive optics improved the reconstructed image to the extent that data could be reproduced from the entire area of the image, and the signal to noise ratio of the reproduced data could be improved.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Booth, M. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. USA 99, 5788-5792 (2002).
    [CrossRef] [PubMed]
  2. M. Booth, T. Wilson, H. Sun, T. Ota, and S. Kawata, “Methods for the characterization of deformable membrane mirror,” Appl. Opt. 44, 5131-5139 (2005).
    [CrossRef] [PubMed]
  3. N. Ishii, T. Muroi, N. Kinoshita, K. Kamijo, and N. Shimidzu, “A method of phase compensation for holographic data storage,” Jpn. J. Appl. Phys. 46, 3862-3866 (2007).
    [CrossRef]
  4. N. Ishii, T. Muroi, N. Kinoshita, K. Kamijo, and N. Shimidzu, “Adaptive optics for holographic data storage,” Proc. SPIE 6488, 64880G-1 (2007).
  5. S. Baba, S. Yoshimura, and N. Kihara, “Inter-frame image processing method for recovering holographic images,” Jpn. J. Appl. Phys. 45, 1258-1265 (2006).
    [CrossRef]
  6. M. Toishi, A. Fukumoto, and K. Watanabe, “Temperature change analysis for hologram recording using photopolymer medium process simulator,” presented at the International Workshop on Holographic Memories 2007, Penang, Malaysia, 26-28 October 2007, paper 27p02.
  7. T. Muroi, N. Kinoshita, N. Ishii, N. Shimidzu, K. Kamijo, M. Booth, R. Jaskaitis, and T. Wilson, “Compensation and improvement of intensity and distribution in reconstructed image using adaptive optics in holographic data storage,” Jpn. J. Appl. Phys. 47, 5900-5903 (2008).
    [CrossRef]
  8. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, 2000)
  9. E. J. Fernandez and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056-1069 (2003).
    [CrossRef] [PubMed]
  10. X. An and D. Psaltis, “Experimental characterization of an angle-multiplexed holographic memory,” Opt. Lett. 20, 1913-1915 (1995).
    [CrossRef] [PubMed]
  11. G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, and C. M. Jefferson, “Noise reduction of page-oriented data storage by inverse filtering during recording,” Opt. Lett. 23, 289-291 (1998).
    [CrossRef]
  12. M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, and C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247-254 (1999).
    [CrossRef]
  13. L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced change in photopolymer volume holograms,” Appl. Phy. Lett. 73, 1337-1339(1998).
    [CrossRef]

2008 (1)

T. Muroi, N. Kinoshita, N. Ishii, N. Shimidzu, K. Kamijo, M. Booth, R. Jaskaitis, and T. Wilson, “Compensation and improvement of intensity and distribution in reconstructed image using adaptive optics in holographic data storage,” Jpn. J. Appl. Phys. 47, 5900-5903 (2008).
[CrossRef]

2007 (2)

N. Ishii, T. Muroi, N. Kinoshita, K. Kamijo, and N. Shimidzu, “A method of phase compensation for holographic data storage,” Jpn. J. Appl. Phys. 46, 3862-3866 (2007).
[CrossRef]

N. Ishii, T. Muroi, N. Kinoshita, K. Kamijo, and N. Shimidzu, “Adaptive optics for holographic data storage,” Proc. SPIE 6488, 64880G-1 (2007).

2006 (1)

S. Baba, S. Yoshimura, and N. Kihara, “Inter-frame image processing method for recovering holographic images,” Jpn. J. Appl. Phys. 45, 1258-1265 (2006).
[CrossRef]

2005 (1)

2003 (1)

2002 (1)

M. Booth, M. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. USA 99, 5788-5792 (2002).
[CrossRef] [PubMed]

1999 (1)

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, and C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247-254 (1999).
[CrossRef]

1998 (2)

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced change in photopolymer volume holograms,” Appl. Phy. Lett. 73, 1337-1339(1998).
[CrossRef]

G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, and C. M. Jefferson, “Noise reduction of page-oriented data storage by inverse filtering during recording,” Opt. Lett. 23, 289-291 (1998).
[CrossRef]

1995 (1)

An, X.

Artal, P.

Baba, S.

S. Baba, S. Yoshimura, and N. Kihara, “Inter-frame image processing method for recovering holographic images,” Jpn. J. Appl. Phys. 45, 1258-1265 (2006).
[CrossRef]

Bair, H.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced change in photopolymer volume holograms,” Appl. Phy. Lett. 73, 1337-1339(1998).
[CrossRef]

Blyler, L. L.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, and C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247-254 (1999).
[CrossRef]

Booth, M.

T. Muroi, N. Kinoshita, N. Ishii, N. Shimidzu, K. Kamijo, M. Booth, R. Jaskaitis, and T. Wilson, “Compensation and improvement of intensity and distribution in reconstructed image using adaptive optics in holographic data storage,” Jpn. J. Appl. Phys. 47, 5900-5903 (2008).
[CrossRef]

M. Booth, T. Wilson, H. Sun, T. Ota, and S. Kawata, “Methods for the characterization of deformable membrane mirror,” Appl. Opt. 44, 5131-5139 (2005).
[CrossRef] [PubMed]

M. Booth, M. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. USA 99, 5788-5792 (2002).
[CrossRef] [PubMed]

Boyd, C.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, and C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247-254 (1999).
[CrossRef]

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced change in photopolymer volume holograms,” Appl. Phy. Lett. 73, 1337-1339(1998).
[CrossRef]

Burr, G. W.

Colvin, V. L.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, and C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247-254 (1999).
[CrossRef]

Coufal, H.

Coufal, H. J.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, 2000)

Dhar, L.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, and C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247-254 (1999).
[CrossRef]

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced change in photopolymer volume holograms,” Appl. Phy. Lett. 73, 1337-1339(1998).
[CrossRef]

Fernandez, E. J.

Fukumoto, A.

M. Toishi, A. Fukumoto, and K. Watanabe, “Temperature change analysis for hologram recording using photopolymer medium process simulator,” presented at the International Workshop on Holographic Memories 2007, Penang, Malaysia, 26-28 October 2007, paper 27p02.

Grygier, R. K.

Hale, A.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, and C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247-254 (1999).
[CrossRef]

Harris, A. L.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, and C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247-254 (1999).
[CrossRef]

Hoffnagle, J. A.

Ishii, N.

T. Muroi, N. Kinoshita, N. Ishii, N. Shimidzu, K. Kamijo, M. Booth, R. Jaskaitis, and T. Wilson, “Compensation and improvement of intensity and distribution in reconstructed image using adaptive optics in holographic data storage,” Jpn. J. Appl. Phys. 47, 5900-5903 (2008).
[CrossRef]

N. Ishii, T. Muroi, N. Kinoshita, K. Kamijo, and N. Shimidzu, “A method of phase compensation for holographic data storage,” Jpn. J. Appl. Phys. 46, 3862-3866 (2007).
[CrossRef]

N. Ishii, T. Muroi, N. Kinoshita, K. Kamijo, and N. Shimidzu, “Adaptive optics for holographic data storage,” Proc. SPIE 6488, 64880G-1 (2007).

Jaskaitis, R.

T. Muroi, N. Kinoshita, N. Ishii, N. Shimidzu, K. Kamijo, M. Booth, R. Jaskaitis, and T. Wilson, “Compensation and improvement of intensity and distribution in reconstructed image using adaptive optics in holographic data storage,” Jpn. J. Appl. Phys. 47, 5900-5903 (2008).
[CrossRef]

Jefferson, C. M.

Juskaitis, R.

M. Booth, M. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. USA 99, 5788-5792 (2002).
[CrossRef] [PubMed]

Kamijo, K.

T. Muroi, N. Kinoshita, N. Ishii, N. Shimidzu, K. Kamijo, M. Booth, R. Jaskaitis, and T. Wilson, “Compensation and improvement of intensity and distribution in reconstructed image using adaptive optics in holographic data storage,” Jpn. J. Appl. Phys. 47, 5900-5903 (2008).
[CrossRef]

N. Ishii, T. Muroi, N. Kinoshita, K. Kamijo, and N. Shimidzu, “Adaptive optics for holographic data storage,” Proc. SPIE 6488, 64880G-1 (2007).

N. Ishii, T. Muroi, N. Kinoshita, K. Kamijo, and N. Shimidzu, “A method of phase compensation for holographic data storage,” Jpn. J. Appl. Phys. 46, 3862-3866 (2007).
[CrossRef]

Katz, H. E.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, and C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247-254 (1999).
[CrossRef]

Kawata, S.

Kihara, N.

S. Baba, S. Yoshimura, and N. Kihara, “Inter-frame image processing method for recovering holographic images,” Jpn. J. Appl. Phys. 45, 1258-1265 (2006).
[CrossRef]

Kinoshita, N.

T. Muroi, N. Kinoshita, N. Ishii, N. Shimidzu, K. Kamijo, M. Booth, R. Jaskaitis, and T. Wilson, “Compensation and improvement of intensity and distribution in reconstructed image using adaptive optics in holographic data storage,” Jpn. J. Appl. Phys. 47, 5900-5903 (2008).
[CrossRef]

N. Ishii, T. Muroi, N. Kinoshita, K. Kamijo, and N. Shimidzu, “Adaptive optics for holographic data storage,” Proc. SPIE 6488, 64880G-1 (2007).

N. Ishii, T. Muroi, N. Kinoshita, K. Kamijo, and N. Shimidzu, “A method of phase compensation for holographic data storage,” Jpn. J. Appl. Phys. 46, 3862-3866 (2007).
[CrossRef]

Muroi, T.

T. Muroi, N. Kinoshita, N. Ishii, N. Shimidzu, K. Kamijo, M. Booth, R. Jaskaitis, and T. Wilson, “Compensation and improvement of intensity and distribution in reconstructed image using adaptive optics in holographic data storage,” Jpn. J. Appl. Phys. 47, 5900-5903 (2008).
[CrossRef]

N. Ishii, T. Muroi, N. Kinoshita, K. Kamijo, and N. Shimidzu, “A method of phase compensation for holographic data storage,” Jpn. J. Appl. Phys. 46, 3862-3866 (2007).
[CrossRef]

N. Ishii, T. Muroi, N. Kinoshita, K. Kamijo, and N. Shimidzu, “Adaptive optics for holographic data storage,” Proc. SPIE 6488, 64880G-1 (2007).

Neil, M.

M. Booth, M. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. USA 99, 5788-5792 (2002).
[CrossRef] [PubMed]

Ota, T.

Psaltis, D.

Schilling, F. C.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, and C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247-254 (1999).
[CrossRef]

Schilling, M.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced change in photopolymer volume holograms,” Appl. Phy. Lett. 73, 1337-1339(1998).
[CrossRef]

Schilling, M. L.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, and C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247-254 (1999).
[CrossRef]

Schnoes, M. G.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced change in photopolymer volume holograms,” Appl. Phy. Lett. 73, 1337-1339(1998).
[CrossRef]

Shimidzu, N.

T. Muroi, N. Kinoshita, N. Ishii, N. Shimidzu, K. Kamijo, M. Booth, R. Jaskaitis, and T. Wilson, “Compensation and improvement of intensity and distribution in reconstructed image using adaptive optics in holographic data storage,” Jpn. J. Appl. Phys. 47, 5900-5903 (2008).
[CrossRef]

N. Ishii, T. Muroi, N. Kinoshita, K. Kamijo, and N. Shimidzu, “Adaptive optics for holographic data storage,” Proc. SPIE 6488, 64880G-1 (2007).

N. Ishii, T. Muroi, N. Kinoshita, K. Kamijo, and N. Shimidzu, “A method of phase compensation for holographic data storage,” Jpn. J. Appl. Phys. 46, 3862-3866 (2007).
[CrossRef]

Sincerbox, G. T.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, 2000)

Sun, H.

Toishi, M.

M. Toishi, A. Fukumoto, and K. Watanabe, “Temperature change analysis for hologram recording using photopolymer medium process simulator,” presented at the International Workshop on Holographic Memories 2007, Penang, Malaysia, 26-28 October 2007, paper 27p02.

Watanabe, K.

M. Toishi, A. Fukumoto, and K. Watanabe, “Temperature change analysis for hologram recording using photopolymer medium process simulator,” presented at the International Workshop on Holographic Memories 2007, Penang, Malaysia, 26-28 October 2007, paper 27p02.

Wilson, T.

T. Muroi, N. Kinoshita, N. Ishii, N. Shimidzu, K. Kamijo, M. Booth, R. Jaskaitis, and T. Wilson, “Compensation and improvement of intensity and distribution in reconstructed image using adaptive optics in holographic data storage,” Jpn. J. Appl. Phys. 47, 5900-5903 (2008).
[CrossRef]

M. Booth, T. Wilson, H. Sun, T. Ota, and S. Kawata, “Methods for the characterization of deformable membrane mirror,” Appl. Opt. 44, 5131-5139 (2005).
[CrossRef] [PubMed]

M. Booth, M. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. USA 99, 5788-5792 (2002).
[CrossRef] [PubMed]

Wysocki, T.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, and C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247-254 (1999).
[CrossRef]

Wysocki, T. L.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced change in photopolymer volume holograms,” Appl. Phy. Lett. 73, 1337-1339(1998).
[CrossRef]

Yoshimura, S.

S. Baba, S. Yoshimura, and N. Kihara, “Inter-frame image processing method for recovering holographic images,” Jpn. J. Appl. Phys. 45, 1258-1265 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phy. Lett. (1)

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced change in photopolymer volume holograms,” Appl. Phy. Lett. 73, 1337-1339(1998).
[CrossRef]

Chem. Mater. (1)

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, and C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247-254 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (3)

N. Ishii, T. Muroi, N. Kinoshita, K. Kamijo, and N. Shimidzu, “A method of phase compensation for holographic data storage,” Jpn. J. Appl. Phys. 46, 3862-3866 (2007).
[CrossRef]

S. Baba, S. Yoshimura, and N. Kihara, “Inter-frame image processing method for recovering holographic images,” Jpn. J. Appl. Phys. 45, 1258-1265 (2006).
[CrossRef]

T. Muroi, N. Kinoshita, N. Ishii, N. Shimidzu, K. Kamijo, M. Booth, R. Jaskaitis, and T. Wilson, “Compensation and improvement of intensity and distribution in reconstructed image using adaptive optics in holographic data storage,” Jpn. J. Appl. Phys. 47, 5900-5903 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Proc. Natl. Acad. Sci. USA (1)

M. Booth, M. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proc. Natl. Acad. Sci. USA 99, 5788-5792 (2002).
[CrossRef] [PubMed]

Proc. SPIE (1)

N. Ishii, T. Muroi, N. Kinoshita, K. Kamijo, and N. Shimidzu, “Adaptive optics for holographic data storage,” Proc. SPIE 6488, 64880G-1 (2007).

Other (2)

M. Toishi, A. Fukumoto, and K. Watanabe, “Temperature change analysis for hologram recording using photopolymer medium process simulator,” presented at the International Workshop on Holographic Memories 2007, Penang, Malaysia, 26-28 October 2007, paper 27p02.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, 2000)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Bragg diffraction on the k-sphere: (a) recording of interference fringes of beams k s and k r w , (b) Bragg angle match, (c) Bragg angle mismatch caused by shrinkage, (d) rotated reference beam, and (e) optimized wavefront of the reference beam.

Fig. 2
Fig. 2

Reconstructed white image: the reference beam has been rotated, but the wavefront has not been optimized.

Fig. 3
Fig. 3

Optical setup for holographic data storage using adaptive optics; a deformable mirror (DM) can make various wavefronts for the reference beam.

Fig. 4
Fig. 4

Schematic illustration of a deformable mirror: (a) cross sectional view and (b) top image.

Fig. 5
Fig. 5

Wavefront of the reference beam: (a) levels of all deformable mirror pins are 0; (b) level of pin No. 1 is 192, and the other levels are 0; phase of the center is about 6 μm ahead compared with the other areas; (c) level of pin No. 5 is 192, and the other levels are 0; (d) level of pin No. 14 is 192, and the other levels are 0.

Fig. 6
Fig. 6

Flowchart of the genetic algorithm: The genes are defined as the values of the pins driving the DM. The individual is the condition of the DM, as determined by the genes. The population is a group of s individuals. The initial population P 0 is randomly determined. By repeating generation alternation, an optimized wavefront is obtained.

Fig. 7
Fig. 7

Reconstruction with the original wavefront: (a) reconstructed image with a dark area due to distortion caused by anisotropic shrinkage, (b) wavefront of the reference beam.

Fig. 8
Fig. 8

Fitness as a function of generation in the genetic algorithm: Fitness improved and saturated at the 25th generation.

Fig. 9
Fig. 9

Reconstruction with an optimized wavefront: (a) reconstructed image improved using adaptive optics controlled with a genetic algorithm; (b) wavefront of the reference beam.

Fig. 10
Fig. 10

Coefficient of Zernike polynomials of original and optimized wavefronts of the reference beam.

Fig. 11
Fig. 11

Angle selective profiles of the reconstructed image for the original and optimized wavefronts.

Fig. 12
Fig. 12

Mean brightness of the reconstructed image as a function of page number.

Fig. 13
Fig. 13

Minimum SNR as a function of page number: solid and dotted lines show optimized and original wavefronts, respectively.

Fig. 14
Fig. 14

Fitness as a function of generation in a genetic algorithm of reconstructed image at page 2: (a) not including optimized wavefront for page 1, (b) including optimized wavefront for page 1.

Fig. 15
Fig. 15

Minimum SNR with an optimized wavefront as a function of page number with five generation alternations: solid and dotted lines show inclusion and no inclusion of the optimized individual for the previous data page in the initial population, respectively.

Tables (1)

Tables Icon

Table 1 Relationship between Order and Aberration in Zernike Polynomials

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d k = k r r + K k d .
SNR = 20 log μ 1 μ 0 σ 1 2 + σ 0 2 ,
Fit μ 1 μ 0 c 1 2 + c 0 2 ,

Metrics