Abstract

Fluidic lenses have been developed for ophthalmic applications with continuously varying optical powers for second order Zernike modes. Continuously varying corrections for both myopic and hyperopic defocus have been demonstrated over a range of three diopters using a fluidic lens with a circular retaining aperture. Likewise, a six diopter range of astigmatism has been continuously corrected using fluidic lenses with rectangular apertures. Imaging results have been characterized using a model eye.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Kennedy and C. Paterson, “Correcting the ocular aberrations of a healthy adult population using microelectromechanical (MEMS) deformable mirrors,” Opt. Commun. 271, 278-284 (2007).
    [CrossRef]
  2. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884-2892 (1997).
    [CrossRef]
  3. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517-1524 (1997).
    [CrossRef] [PubMed]
  4. J. D. Schmidt, M. E. Goda, and B. D. Duncan, “Aberration production using a high-resolution liquid-crystal spatial light modulator,” Appl. Opt. 46, 2423-2433 (2007).
    [CrossRef] [PubMed]
  5. X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid-crystal-on-silicon spatial light modulator,” Opt. Eng. 43, 2769-2774(2004).
    [CrossRef]
  6. B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martiez, S. R. Terstaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
    [CrossRef]
  7. B. E. Bagwell, D. V. Wick, and J. Schwiegerling, “Multi-spectral foveated imaging system,” in 2006 IEEE Aerospace Conference (IEEE, 2006).
    [CrossRef]
  8. D. V. Wick, T. Martinez, S. R. Restaino, and B. R. Stone, “Foveated imaging demonstration,” Opt. Express 10, 60-65 (2002).
    [PubMed]
  9. D. V. Wick and T. Martinez, “Adaptive optical zoom,” Opt. Eng. 43, 8-9 (2004).
    [CrossRef]
  10. R. A. Gunasekaran, M. Agarwal, S. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluidic controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686-703 (2005).
    [CrossRef]
  11. D.-Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y.-H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783-787 (2004).
    [CrossRef] [PubMed]
  12. F. S. Tsai, S. H. Cho, Y.-H. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett. 33, 291-293 (2008).
    [CrossRef] [PubMed]
  13. D.-Y. Zhang, N. Justis, and Y.-H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249, 175-182 (2005).
    [CrossRef]
  14. S. Sinzinger and J. Jahns, Microoptics (Wiley-VCH, 1999), pp. 86-87.
  15. L. Thiobos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberration,” J. Vision 4, 329-351 (2004).
  16. S. Westland, H. Owens, V. Cheung, and I. Paterson-Stephens, “Model of luminance contrast-sensitivity function for application to image assessment,” Color Res. Appl. 31, 315-319 (2006).
    [CrossRef]

2008

2007

J. D. Schmidt, M. E. Goda, and B. D. Duncan, “Aberration production using a high-resolution liquid-crystal spatial light modulator,” Appl. Opt. 46, 2423-2433 (2007).
[CrossRef] [PubMed]

G. T. Kennedy and C. Paterson, “Correcting the ocular aberrations of a healthy adult population using microelectromechanical (MEMS) deformable mirrors,” Opt. Commun. 271, 278-284 (2007).
[CrossRef]

2006

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martiez, S. R. Terstaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

S. Westland, H. Owens, V. Cheung, and I. Paterson-Stephens, “Model of luminance contrast-sensitivity function for application to image assessment,” Color Res. Appl. 31, 315-319 (2006).
[CrossRef]

2005

D.-Y. Zhang, N. Justis, and Y.-H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249, 175-182 (2005).
[CrossRef]

R. A. Gunasekaran, M. Agarwal, S. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluidic controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686-703 (2005).
[CrossRef]

2004

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid-crystal-on-silicon spatial light modulator,” Opt. Eng. 43, 2769-2774(2004).
[CrossRef]

D. V. Wick and T. Martinez, “Adaptive optical zoom,” Opt. Eng. 43, 8-9 (2004).
[CrossRef]

L. Thiobos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberration,” J. Vision 4, 329-351 (2004).

D.-Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y.-H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783-787 (2004).
[CrossRef] [PubMed]

2002

1997

Agarwal, M.

R. A. Gunasekaran, M. Agarwal, S. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluidic controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686-703 (2005).
[CrossRef]

Anderson, J. E.

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid-crystal-on-silicon spatial light modulator,” Opt. Eng. 43, 2769-2774(2004).
[CrossRef]

Applegate, R. A.

L. Thiobos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberration,” J. Vision 4, 329-351 (2004).

Bagwell, B. E.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martiez, S. R. Terstaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

B. E. Bagwell, D. V. Wick, and J. Schwiegerling, “Multi-spectral foveated imaging system,” in 2006 IEEE Aerospace Conference (IEEE, 2006).
[CrossRef]

Batchko, R.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martiez, S. R. Terstaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

Berdichevsky, Y.

Bos, P. J.

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid-crystal-on-silicon spatial light modulator,” Opt. Eng. 43, 2769-2774(2004).
[CrossRef]

Bradley, A.

L. Thiobos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberration,” J. Vision 4, 329-351 (2004).

Cheung, V.

S. Westland, H. Owens, V. Cheung, and I. Paterson-Stephens, “Model of luminance contrast-sensitivity function for application to image assessment,” Color Res. Appl. 31, 315-319 (2006).
[CrossRef]

Cho, S. H.

Coane, P.

R. A. Gunasekaran, M. Agarwal, S. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluidic controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686-703 (2005).
[CrossRef]

Dubasi, P.

R. A. Gunasekaran, M. Agarwal, S. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluidic controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686-703 (2005).
[CrossRef]

Duncan, B. D.

Goda, M. E.

Gunasekaran, R. A.

R. A. Gunasekaran, M. Agarwal, S. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluidic controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686-703 (2005).
[CrossRef]

Harriman, J.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martiez, S. R. Terstaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

Hong, X.

L. Thiobos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberration,” J. Vision 4, 329-351 (2004).

Jahns, J.

S. Sinzinger and J. Jahns, Microoptics (Wiley-VCH, 1999), pp. 86-87.

Justis, N.

D.-Y. Zhang, N. Justis, and Y.-H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249, 175-182 (2005).
[CrossRef]

D.-Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y.-H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783-787 (2004).
[CrossRef] [PubMed]

Kennedy, G. T.

G. T. Kennedy and C. Paterson, “Correcting the ocular aberrations of a healthy adult population using microelectromechanical (MEMS) deformable mirrors,” Opt. Commun. 271, 278-284 (2007).
[CrossRef]

Liang, J.

Lien, V.

Lo, Y.-H.

Love, G. D.

Mansell, J. D.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martiez, S. R. Terstaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

Martiez, T.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martiez, S. R. Terstaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

Martinez, T.

Miller, D. T.

Miranda, F.

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid-crystal-on-silicon spatial light modulator,” Opt. Eng. 43, 2769-2774(2004).
[CrossRef]

Owens, H.

S. Westland, H. Owens, V. Cheung, and I. Paterson-Stephens, “Model of luminance contrast-sensitivity function for application to image assessment,” Color Res. Appl. 31, 315-319 (2006).
[CrossRef]

Paterson, C.

G. T. Kennedy and C. Paterson, “Correcting the ocular aberrations of a healthy adult population using microelectromechanical (MEMS) deformable mirrors,” Opt. Commun. 271, 278-284 (2007).
[CrossRef]

Paterson-Stephens, I.

S. Westland, H. Owens, V. Cheung, and I. Paterson-Stephens, “Model of luminance contrast-sensitivity function for application to image assessment,” Color Res. Appl. 31, 315-319 (2006).
[CrossRef]

Payne, D. M.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martiez, S. R. Terstaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

Pouch, J.

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid-crystal-on-silicon spatial light modulator,” Opt. Eng. 43, 2769-2774(2004).
[CrossRef]

Restaino, S. R.

Schmidt, J. D.

Schwiegerling, J.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martiez, S. R. Terstaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

B. E. Bagwell, D. V. Wick, and J. Schwiegerling, “Multi-spectral foveated imaging system,” in 2006 IEEE Aerospace Conference (IEEE, 2006).
[CrossRef]

Serati, S.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martiez, S. R. Terstaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

Sharp, G.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martiez, S. R. Terstaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

Singh, S.

R. A. Gunasekaran, M. Agarwal, S. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluidic controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686-703 (2005).
[CrossRef]

Sinzinger, S.

S. Sinzinger and J. Jahns, Microoptics (Wiley-VCH, 1999), pp. 86-87.

Stone, B. R.

Terstaino, S. R.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martiez, S. R. Terstaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

Thiobos, L.

L. Thiobos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberration,” J. Vision 4, 329-351 (2004).

Tsai, F. S.

Varahramyan, K.

R. A. Gunasekaran, M. Agarwal, S. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluidic controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686-703 (2005).
[CrossRef]

Vasko, B.

Vasko, J.

Wang, B.

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid-crystal-on-silicon spatial light modulator,” Opt. Eng. 43, 2769-2774(2004).
[CrossRef]

Wang, X.

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid-crystal-on-silicon spatial light modulator,” Opt. Eng. 43, 2769-2774(2004).
[CrossRef]

Westland, S.

S. Westland, H. Owens, V. Cheung, and I. Paterson-Stephens, “Model of luminance contrast-sensitivity function for application to image assessment,” Color Res. Appl. 31, 315-319 (2006).
[CrossRef]

Wick, D. V.

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martiez, S. R. Terstaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

D. V. Wick and T. Martinez, “Adaptive optical zoom,” Opt. Eng. 43, 8-9 (2004).
[CrossRef]

D. V. Wick, T. Martinez, S. R. Restaino, and B. R. Stone, “Foveated imaging demonstration,” Opt. Express 10, 60-65 (2002).
[PubMed]

B. E. Bagwell, D. V. Wick, and J. Schwiegerling, “Multi-spectral foveated imaging system,” in 2006 IEEE Aerospace Conference (IEEE, 2006).
[CrossRef]

Williams, D. R.

Zhang, D.-Y.

D.-Y. Zhang, N. Justis, and Y.-H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249, 175-182 (2005).
[CrossRef]

D.-Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y.-H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783-787 (2004).
[CrossRef] [PubMed]

Appl. Opt.

Color Res. Appl.

S. Westland, H. Owens, V. Cheung, and I. Paterson-Stephens, “Model of luminance contrast-sensitivity function for application to image assessment,” Color Res. Appl. 31, 315-319 (2006).
[CrossRef]

J. Opt. Soc. Am. A

J. Vision

L. Thiobos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberration,” J. Vision 4, 329-351 (2004).

Opt. Commun.

G. T. Kennedy and C. Paterson, “Correcting the ocular aberrations of a healthy adult population using microelectromechanical (MEMS) deformable mirrors,” Opt. Commun. 271, 278-284 (2007).
[CrossRef]

D.-Y. Zhang, N. Justis, and Y.-H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249, 175-182 (2005).
[CrossRef]

Opt. Eng.

D. V. Wick and T. Martinez, “Adaptive optical zoom,” Opt. Eng. 43, 8-9 (2004).
[CrossRef]

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid-crystal-on-silicon spatial light modulator,” Opt. Eng. 43, 2769-2774(2004).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

R. A. Gunasekaran, M. Agarwal, S. Singh, P. Dubasi, P. Coane, and K. Varahramyan, “Design and fabrication of fluidic controlled dynamic optical lens system,” Opt. Lasers Eng. 43, 686-703 (2005).
[CrossRef]

Opt. Lett.

Proc. SPIE

B. E. Bagwell, D. V. Wick, R. Batchko, J. D. Mansell, T. Martiez, S. R. Terstaino, D. M. Payne, J. Harriman, S. Serati, G. Sharp, and J. Schwiegerling, “Liquid crystal based active optics,” Proc. SPIE 6289, 628908 (2006).
[CrossRef]

Other

B. E. Bagwell, D. V. Wick, and J. Schwiegerling, “Multi-spectral foveated imaging system,” in 2006 IEEE Aerospace Conference (IEEE, 2006).
[CrossRef]

S. Sinzinger and J. Jahns, Microoptics (Wiley-VCH, 1999), pp. 86-87.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Photograph of the fluidic lens. The larger syringe is used to fill the lens, while the smaller syringe is used to fine tune the optical properties of the lens.

Fig. 2
Fig. 2

Schematic diagram of the imaging system, which is composed of a model eye and the fluidic lens. An ophthalmic correction lens is shown before the fluidic lens and is used to correct the spherical portion of the optical power for the astigmatic lens. The details of the system are discussed in the paper.

Fig. 3
Fig. 3

Model diagram for the refractive nature of the membrane with changes in fluidic volume.

Fig. 4
Fig. 4

Graph of the optical power as a function of the injected fluidic volume. The experimental points are plotted on the diagram, while the solid line corresponds to the simple theoretical model.

Fig. 5
Fig. 5

Measured wavefront for the circular retaining ring is plotted for two orthogonal directions. The deflection was measured using an optical profiler.

Fig. 6
Fig. 6

Zernike coefficients were extracted from the Shack–Hartman measurements of the fluidic lens with the circular aperture. The inset has an expanded scale for the higher order aberrations.

Fig. 7
Fig. 7

Two-dimensional plots of the residual error after subtracting the Zernike polynomials from the wavefront determined from Shack–Hartman measurements. A 6 mm pupil size was used for the images. The distribution progresses with optical power and is attributed to artifacts of the membrane restraint.

Fig. 8
Fig. 8

Images of a Siemen’s star were taken with the model eye. A 1 diopter ophthalmic trial lens was used to generate defocus in the model eye. (a) The uncorrected images and (b) the image corrected with the fluidic lens are shown. Likewise, (c) is the uncorrected image for 2 diopters of defocus, and (d) is the image is corrected by the fluidic lens.

Fig. 9
Fig. 9

VSOTF as a function of the optical power for a fluidic lens with a circular restraining aperture.

Fig. 10
Fig. 10

Optical powers produced by the astigmatic fluid lens as the fluid volume is changed. (a) Spherical power and (b) cylindrical power. The cylinder is given in the ophthalmic convention where the axis varies between 0 ° and 180 ° .

Fig. 11
Fig. 11

Zernike wavefronts extracted from Shack–Hartman measurements for different fluid volumes. The defocus component, Z(2,0), increases in almost equal proportions to the astigmatic component, Z(2,2). The inset shows very small values for the higher order Zernike terms.

Fig. 12
Fig. 12

Residual error terms produced after subtracting the Zernike terms from the measured wavefront. A 6 mm pupil size was used for calculation of the Zernike terms. The values of the cylinder and axis are also shown for each plot.

Fig. 13
Fig. 13

Image taken with a model eye. (a) An ophthalmic trial lens of 2D cylinder was used to produce the astigmatism in the model eye. (b) The fluidic lens was adjusted to correct the astigmatism in the fluidic eye. A second ophthalmic trial lens was used to remove the defocus generated by the fluidic lens.

Fig. 14
Fig. 14

Measured VSOTF for the astigmatic lens. The high values of the VSOTF are indicative of the high optical quality of the lens.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

r c = n fluid n air D ,
h = r c ± r c 2 d 2 / 4 ,
V = π h 2 ( 3 r c h ) 3 .
VSOTF = CSF N ( f x , f y ) OTF ( f x , f y ) d f x d f y CSF N ( f x , f y ) OTF DL ( f x , f y ) d f x d f y .
90 °
90 °

Metrics