Abstract

Some fluctuations in the output power of a copper vapor laser with a 16mm bore were recorded by varying the excitation frequency from 13 to 33 kHz. The effect arises from the laser tube, which performs both as an optical and an acoustic resonator at the acoustic resonant frequencies. It is shown that a similar effect occurs in other metal vapor and copper halide lasers as well.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. G. Huang, H. Y. Shan, Y. Huo, and H. Wang, “A gold-vapor laser using Ne─H2 as buffer gas,” Appl. Phys. B 44, 57-59(1987).
    [CrossRef]
  2. R. R. Lewis, “The operating regime of longitudinal discharge copper vapour lasers,” Opt. Quantum Electron. 23, s493-s512 (1991).
    [CrossRef]
  3. C. Cheng, “Plasma kinetics mechanism of an optimized copper vapor laser,” J. Phys. D: Appl. Phys. 33, 1167-1178 (2000).
    [CrossRef]
  4. S. Behrouzinia, R. Sadighi, and P. Parvin, “Pressure dependence of the small-signal gain and saturation intensity of a copper vapor laser,” Appl. Opt. 42, 1013-1018 (2003).
    [CrossRef] [PubMed]
  5. S. Behrouzinia, R. Sadighi, P. Parvin, and M. Zand, “Temperature dependence of the amplifying parameters of a copper vapor laser,” Laser Phys. 14, 1050-1053 (2004).
  6. C. E. Little, Metal Vapour Lasers: Physics, Engineering and Application (Wiley-VCH, 1999), Chap. 3.
  7. V. F. Kravchenko, E. K. Karabute, A. A. Gudkov, and V. E. Bogoslavski, “Influence of acoustic waves on the output power of pulsed gas discharge lasers,” Sov. J. Quantum Electron. 12(2), 143-146 (1982).
    [CrossRef]
  8. D. N. Astadjov, N. K. Vuchkov, and N. V. Sabotinov, “Parametric study of CuBr laser with hydrogen additives,” IEEE J. Quantum Electron. 24, 1927-1935 (1988).
    [CrossRef]
  9. D. N. Astadjov, K. D. Dimitrov, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, “A CuBr laser with 1.4 W/cm3 average output power,” IEEE J. Quantum Electron. 30, 1358-1360 (1994).
    [CrossRef]
  10. D. N. Astadjov, K. D. Dimitrov, D. R. Jones, V. Kirkov, L. Little, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, “Influence on operating characteristics of scaling sealed-off CuBr lasers in active length,” Opt. Commun. 135, 289-294 (1997).
    [CrossRef]
  11. K. Khorasani, D. Salehinia, S. Behrouzinia, B. Sajad, and M. Parvizian, “Frequency dependence of the output power of metal vapor lasers,” Opt. Commun. 281, 3799-3801 (2008).
    [CrossRef]
  12. M. W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60(7), R83 (1986).
    [CrossRef]
  13. R. Haensel, G. Keitel, N. Kosuch, U. Nielsen, and P. Schreiber, “Optical absorption of solid neon and argon in the soft x-ray region,” J. Phys. (Paris) Colloq. 32(C4), 236-240 (1971).
    [CrossRef]
  14. O. Uteza, Ph. Delaporte, B. Fontaine, B. Forestier, M. Sentis, I. Tassy, and J. P. Truong, “Acoustic wave origin in excimer lasers,” Appl. Phys. B 64, 531-537 (1997).
    [CrossRef]
  15. F. E. C. Culick, P. I. Shen, and W. S. Griffin, “Acoustic waves and heating due to molecular energy transfer in an electric discharge CO laser,” IEEE J. Quantum Electron. 12, 566-574 (1976).
    [CrossRef]
  16. A. V. Artamonov, V. A. Konev, V. V. Likhaskii, and A. P. Napartovich, “Output-power fluctuations of flowing-gas CO2 lasers with unstable resonators,” Sov. J. Quantum Electron. 14, 807-812 (1984).
    [CrossRef]
  17. V. Yu. Baranov, V. M. Borisov, A. Yu. Vinokhodov, F. I. Vysikailo, A. V. Gubarev, Yu. B. Kiryukhin, I. E. Krayushkin, and S. A. Laptev, “Acoustic vibration in the gas-discharge chamber of the fast-flow pulse-periodic laser,” Sov. J. Quantum Electron. 17 , 766-770 (1987).
    [CrossRef]
  18. W. Demtroder, Atoms, Molecules and Photons: An Introduction to Atomic, Molecular, and Quantum-Physics (Academic, 2006).
  19. A. Miklos, P. Hess, and Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937-1955 (2001).
    [CrossRef]
  20. B. Baumann, M. Wolff, B. Kost, and H. Groninga, “Calculation of quality factors and amplitudes of photoacoustic resonator,” Proceeding of the COMSOL Users Conference (Springer, 2006), pp. 134-138.
  21. M. P. Morse and K. U. Ingard, Theoretical Acoustics (McGraw-Hill, 1968).
  22. M. J. Withford, D. J. W. Brown, and J. A. Piper, “Investigation of the effect of hydrogen and deuterium on copper vapour laser performance,” Opt. Commun. 110, 699-707 (1994).
    [CrossRef]
  23. M. J. Withford, D. J. W. Brown, R. J. Carman, and J. A. Piper, “Enhanced performance of elemental copper-vapor lasers by use of H2─HCl─Ne buffer-gas mixtures,” Opt. Lett. 23, 706-708 (1998).
    [CrossRef]
  24. B. A. Ghani and M. Hammadi, “Modeling the plasma kinetic mechanisms of CuBr laser with neon-hydrogen additives,” Opt. Laser. Technol. 38, 67-76 (2006).
    [CrossRef]
  25. O. S. Torosyan, A. R. Mkrtchyan, and M. K. Musakhanian, “Acoustic instability in inhomogeneous gas-discharge plasma,” High Temp. 43, 486-495 (2005).
    [CrossRef]
  26. R. J. Carman, M. J. Withford, D. J. Brown, and J. A. Piper, “Influence of the pre-pulse electron density on the performance of elemental copper vapor lasers,” Opt. Commun. 157, 99-104 (1998).
    [CrossRef]
  27. R. J. Carman, R. P. Mildren, M. J. Withford, D. J. Brown, and J. A. Piper, “Modeling the plasma kinetics in a kinetically enhanced copper vapor laser utilizing HCl+H2 admixtures,” IEEE J. Quantum Electron. 36, 438-449 (2000).
    [CrossRef]
  28. P. A. Bokhan, V. I. Silant'ev, and V. I. Solomonov, “Mechanism for limiting the repetition frequency of pulses from a copper vapor laser,” Sov. J. Quantum Electron. 10, 724-727(1980).
    [CrossRef]

2008 (1)

K. Khorasani, D. Salehinia, S. Behrouzinia, B. Sajad, and M. Parvizian, “Frequency dependence of the output power of metal vapor lasers,” Opt. Commun. 281, 3799-3801 (2008).
[CrossRef]

2006 (1)

B. A. Ghani and M. Hammadi, “Modeling the plasma kinetic mechanisms of CuBr laser with neon-hydrogen additives,” Opt. Laser. Technol. 38, 67-76 (2006).
[CrossRef]

2005 (1)

O. S. Torosyan, A. R. Mkrtchyan, and M. K. Musakhanian, “Acoustic instability in inhomogeneous gas-discharge plasma,” High Temp. 43, 486-495 (2005).
[CrossRef]

2004 (1)

S. Behrouzinia, R. Sadighi, P. Parvin, and M. Zand, “Temperature dependence of the amplifying parameters of a copper vapor laser,” Laser Phys. 14, 1050-1053 (2004).

2003 (1)

2001 (1)

A. Miklos, P. Hess, and Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937-1955 (2001).
[CrossRef]

2000 (2)

C. Cheng, “Plasma kinetics mechanism of an optimized copper vapor laser,” J. Phys. D: Appl. Phys. 33, 1167-1178 (2000).
[CrossRef]

R. J. Carman, R. P. Mildren, M. J. Withford, D. J. Brown, and J. A. Piper, “Modeling the plasma kinetics in a kinetically enhanced copper vapor laser utilizing HCl+H2 admixtures,” IEEE J. Quantum Electron. 36, 438-449 (2000).
[CrossRef]

1998 (2)

R. J. Carman, M. J. Withford, D. J. Brown, and J. A. Piper, “Influence of the pre-pulse electron density on the performance of elemental copper vapor lasers,” Opt. Commun. 157, 99-104 (1998).
[CrossRef]

M. J. Withford, D. J. W. Brown, R. J. Carman, and J. A. Piper, “Enhanced performance of elemental copper-vapor lasers by use of H2─HCl─Ne buffer-gas mixtures,” Opt. Lett. 23, 706-708 (1998).
[CrossRef]

1997 (2)

D. N. Astadjov, K. D. Dimitrov, D. R. Jones, V. Kirkov, L. Little, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, “Influence on operating characteristics of scaling sealed-off CuBr lasers in active length,” Opt. Commun. 135, 289-294 (1997).
[CrossRef]

O. Uteza, Ph. Delaporte, B. Fontaine, B. Forestier, M. Sentis, I. Tassy, and J. P. Truong, “Acoustic wave origin in excimer lasers,” Appl. Phys. B 64, 531-537 (1997).
[CrossRef]

1994 (2)

M. J. Withford, D. J. W. Brown, and J. A. Piper, “Investigation of the effect of hydrogen and deuterium on copper vapour laser performance,” Opt. Commun. 110, 699-707 (1994).
[CrossRef]

D. N. Astadjov, K. D. Dimitrov, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, “A CuBr laser with 1.4 W/cm3 average output power,” IEEE J. Quantum Electron. 30, 1358-1360 (1994).
[CrossRef]

1991 (1)

R. R. Lewis, “The operating regime of longitudinal discharge copper vapour lasers,” Opt. Quantum Electron. 23, s493-s512 (1991).
[CrossRef]

1988 (1)

D. N. Astadjov, N. K. Vuchkov, and N. V. Sabotinov, “Parametric study of CuBr laser with hydrogen additives,” IEEE J. Quantum Electron. 24, 1927-1935 (1988).
[CrossRef]

1987 (2)

Z. G. Huang, H. Y. Shan, Y. Huo, and H. Wang, “A gold-vapor laser using Ne─H2 as buffer gas,” Appl. Phys. B 44, 57-59(1987).
[CrossRef]

V. Yu. Baranov, V. M. Borisov, A. Yu. Vinokhodov, F. I. Vysikailo, A. V. Gubarev, Yu. B. Kiryukhin, I. E. Krayushkin, and S. A. Laptev, “Acoustic vibration in the gas-discharge chamber of the fast-flow pulse-periodic laser,” Sov. J. Quantum Electron. 17 , 766-770 (1987).
[CrossRef]

1986 (1)

M. W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60(7), R83 (1986).
[CrossRef]

1984 (1)

A. V. Artamonov, V. A. Konev, V. V. Likhaskii, and A. P. Napartovich, “Output-power fluctuations of flowing-gas CO2 lasers with unstable resonators,” Sov. J. Quantum Electron. 14, 807-812 (1984).
[CrossRef]

1982 (1)

V. F. Kravchenko, E. K. Karabute, A. A. Gudkov, and V. E. Bogoslavski, “Influence of acoustic waves on the output power of pulsed gas discharge lasers,” Sov. J. Quantum Electron. 12(2), 143-146 (1982).
[CrossRef]

1980 (1)

P. A. Bokhan, V. I. Silant'ev, and V. I. Solomonov, “Mechanism for limiting the repetition frequency of pulses from a copper vapor laser,” Sov. J. Quantum Electron. 10, 724-727(1980).
[CrossRef]

1976 (1)

F. E. C. Culick, P. I. Shen, and W. S. Griffin, “Acoustic waves and heating due to molecular energy transfer in an electric discharge CO laser,” IEEE J. Quantum Electron. 12, 566-574 (1976).
[CrossRef]

1971 (1)

R. Haensel, G. Keitel, N. Kosuch, U. Nielsen, and P. Schreiber, “Optical absorption of solid neon and argon in the soft x-ray region,” J. Phys. (Paris) Colloq. 32(C4), 236-240 (1971).
[CrossRef]

Artamonov, A. V.

A. V. Artamonov, V. A. Konev, V. V. Likhaskii, and A. P. Napartovich, “Output-power fluctuations of flowing-gas CO2 lasers with unstable resonators,” Sov. J. Quantum Electron. 14, 807-812 (1984).
[CrossRef]

Astadjov, D. N.

D. N. Astadjov, K. D. Dimitrov, D. R. Jones, V. Kirkov, L. Little, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, “Influence on operating characteristics of scaling sealed-off CuBr lasers in active length,” Opt. Commun. 135, 289-294 (1997).
[CrossRef]

D. N. Astadjov, K. D. Dimitrov, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, “A CuBr laser with 1.4 W/cm3 average output power,” IEEE J. Quantum Electron. 30, 1358-1360 (1994).
[CrossRef]

D. N. Astadjov, N. K. Vuchkov, and N. V. Sabotinov, “Parametric study of CuBr laser with hydrogen additives,” IEEE J. Quantum Electron. 24, 1927-1935 (1988).
[CrossRef]

Baranov, V. Yu.

V. Yu. Baranov, V. M. Borisov, A. Yu. Vinokhodov, F. I. Vysikailo, A. V. Gubarev, Yu. B. Kiryukhin, I. E. Krayushkin, and S. A. Laptev, “Acoustic vibration in the gas-discharge chamber of the fast-flow pulse-periodic laser,” Sov. J. Quantum Electron. 17 , 766-770 (1987).
[CrossRef]

Baumann, B.

B. Baumann, M. Wolff, B. Kost, and H. Groninga, “Calculation of quality factors and amplitudes of photoacoustic resonator,” Proceeding of the COMSOL Users Conference (Springer, 2006), pp. 134-138.

Behrouzinia, S.

K. Khorasani, D. Salehinia, S. Behrouzinia, B. Sajad, and M. Parvizian, “Frequency dependence of the output power of metal vapor lasers,” Opt. Commun. 281, 3799-3801 (2008).
[CrossRef]

S. Behrouzinia, R. Sadighi, P. Parvin, and M. Zand, “Temperature dependence of the amplifying parameters of a copper vapor laser,” Laser Phys. 14, 1050-1053 (2004).

S. Behrouzinia, R. Sadighi, and P. Parvin, “Pressure dependence of the small-signal gain and saturation intensity of a copper vapor laser,” Appl. Opt. 42, 1013-1018 (2003).
[CrossRef] [PubMed]

Bogoslavski, V. E.

V. F. Kravchenko, E. K. Karabute, A. A. Gudkov, and V. E. Bogoslavski, “Influence of acoustic waves on the output power of pulsed gas discharge lasers,” Sov. J. Quantum Electron. 12(2), 143-146 (1982).
[CrossRef]

Bokhan, P. A.

P. A. Bokhan, V. I. Silant'ev, and V. I. Solomonov, “Mechanism for limiting the repetition frequency of pulses from a copper vapor laser,” Sov. J. Quantum Electron. 10, 724-727(1980).
[CrossRef]

Borisov, V. M.

V. Yu. Baranov, V. M. Borisov, A. Yu. Vinokhodov, F. I. Vysikailo, A. V. Gubarev, Yu. B. Kiryukhin, I. E. Krayushkin, and S. A. Laptev, “Acoustic vibration in the gas-discharge chamber of the fast-flow pulse-periodic laser,” Sov. J. Quantum Electron. 17 , 766-770 (1987).
[CrossRef]

Bozoki, Z.

A. Miklos, P. Hess, and Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937-1955 (2001).
[CrossRef]

Brown, D. J.

R. J. Carman, R. P. Mildren, M. J. Withford, D. J. Brown, and J. A. Piper, “Modeling the plasma kinetics in a kinetically enhanced copper vapor laser utilizing HCl+H2 admixtures,” IEEE J. Quantum Electron. 36, 438-449 (2000).
[CrossRef]

R. J. Carman, M. J. Withford, D. J. Brown, and J. A. Piper, “Influence of the pre-pulse electron density on the performance of elemental copper vapor lasers,” Opt. Commun. 157, 99-104 (1998).
[CrossRef]

Brown, D. J. W.

M. J. Withford, D. J. W. Brown, R. J. Carman, and J. A. Piper, “Enhanced performance of elemental copper-vapor lasers by use of H2─HCl─Ne buffer-gas mixtures,” Opt. Lett. 23, 706-708 (1998).
[CrossRef]

M. J. Withford, D. J. W. Brown, and J. A. Piper, “Investigation of the effect of hydrogen and deuterium on copper vapour laser performance,” Opt. Commun. 110, 699-707 (1994).
[CrossRef]

Carman, R. J.

R. J. Carman, R. P. Mildren, M. J. Withford, D. J. Brown, and J. A. Piper, “Modeling the plasma kinetics in a kinetically enhanced copper vapor laser utilizing HCl+H2 admixtures,” IEEE J. Quantum Electron. 36, 438-449 (2000).
[CrossRef]

R. J. Carman, M. J. Withford, D. J. Brown, and J. A. Piper, “Influence of the pre-pulse electron density on the performance of elemental copper vapor lasers,” Opt. Commun. 157, 99-104 (1998).
[CrossRef]

M. J. Withford, D. J. W. Brown, R. J. Carman, and J. A. Piper, “Enhanced performance of elemental copper-vapor lasers by use of H2─HCl─Ne buffer-gas mixtures,” Opt. Lett. 23, 706-708 (1998).
[CrossRef]

Cheng, C.

C. Cheng, “Plasma kinetics mechanism of an optimized copper vapor laser,” J. Phys. D: Appl. Phys. 33, 1167-1178 (2000).
[CrossRef]

Culick, F. E. C.

F. E. C. Culick, P. I. Shen, and W. S. Griffin, “Acoustic waves and heating due to molecular energy transfer in an electric discharge CO laser,” IEEE J. Quantum Electron. 12, 566-574 (1976).
[CrossRef]

Delaporte, Ph.

O. Uteza, Ph. Delaporte, B. Fontaine, B. Forestier, M. Sentis, I. Tassy, and J. P. Truong, “Acoustic wave origin in excimer lasers,” Appl. Phys. B 64, 531-537 (1997).
[CrossRef]

Demtroder, W.

W. Demtroder, Atoms, Molecules and Photons: An Introduction to Atomic, Molecular, and Quantum-Physics (Academic, 2006).

Dimitrov, K. D.

D. N. Astadjov, K. D. Dimitrov, D. R. Jones, V. Kirkov, L. Little, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, “Influence on operating characteristics of scaling sealed-off CuBr lasers in active length,” Opt. Commun. 135, 289-294 (1997).
[CrossRef]

D. N. Astadjov, K. D. Dimitrov, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, “A CuBr laser with 1.4 W/cm3 average output power,” IEEE J. Quantum Electron. 30, 1358-1360 (1994).
[CrossRef]

Fontaine, B.

O. Uteza, Ph. Delaporte, B. Fontaine, B. Forestier, M. Sentis, I. Tassy, and J. P. Truong, “Acoustic wave origin in excimer lasers,” Appl. Phys. B 64, 531-537 (1997).
[CrossRef]

Forestier, B.

O. Uteza, Ph. Delaporte, B. Fontaine, B. Forestier, M. Sentis, I. Tassy, and J. P. Truong, “Acoustic wave origin in excimer lasers,” Appl. Phys. B 64, 531-537 (1997).
[CrossRef]

Ghani, B. A.

B. A. Ghani and M. Hammadi, “Modeling the plasma kinetic mechanisms of CuBr laser with neon-hydrogen additives,” Opt. Laser. Technol. 38, 67-76 (2006).
[CrossRef]

Griffin, W. S.

F. E. C. Culick, P. I. Shen, and W. S. Griffin, “Acoustic waves and heating due to molecular energy transfer in an electric discharge CO laser,” IEEE J. Quantum Electron. 12, 566-574 (1976).
[CrossRef]

Groninga, H.

B. Baumann, M. Wolff, B. Kost, and H. Groninga, “Calculation of quality factors and amplitudes of photoacoustic resonator,” Proceeding of the COMSOL Users Conference (Springer, 2006), pp. 134-138.

Gubarev, A. V.

V. Yu. Baranov, V. M. Borisov, A. Yu. Vinokhodov, F. I. Vysikailo, A. V. Gubarev, Yu. B. Kiryukhin, I. E. Krayushkin, and S. A. Laptev, “Acoustic vibration in the gas-discharge chamber of the fast-flow pulse-periodic laser,” Sov. J. Quantum Electron. 17 , 766-770 (1987).
[CrossRef]

Gudkov, A. A.

V. F. Kravchenko, E. K. Karabute, A. A. Gudkov, and V. E. Bogoslavski, “Influence of acoustic waves on the output power of pulsed gas discharge lasers,” Sov. J. Quantum Electron. 12(2), 143-146 (1982).
[CrossRef]

Haensel, R.

R. Haensel, G. Keitel, N. Kosuch, U. Nielsen, and P. Schreiber, “Optical absorption of solid neon and argon in the soft x-ray region,” J. Phys. (Paris) Colloq. 32(C4), 236-240 (1971).
[CrossRef]

Hammadi, M.

B. A. Ghani and M. Hammadi, “Modeling the plasma kinetic mechanisms of CuBr laser with neon-hydrogen additives,” Opt. Laser. Technol. 38, 67-76 (2006).
[CrossRef]

Hess, P.

A. Miklos, P. Hess, and Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937-1955 (2001).
[CrossRef]

Huang, Z. G.

Z. G. Huang, H. Y. Shan, Y. Huo, and H. Wang, “A gold-vapor laser using Ne─H2 as buffer gas,” Appl. Phys. B 44, 57-59(1987).
[CrossRef]

Huo, Y.

Z. G. Huang, H. Y. Shan, Y. Huo, and H. Wang, “A gold-vapor laser using Ne─H2 as buffer gas,” Appl. Phys. B 44, 57-59(1987).
[CrossRef]

Ingard, K. U.

M. P. Morse and K. U. Ingard, Theoretical Acoustics (McGraw-Hill, 1968).

Jones, D. R.

D. N. Astadjov, K. D. Dimitrov, D. R. Jones, V. Kirkov, L. Little, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, “Influence on operating characteristics of scaling sealed-off CuBr lasers in active length,” Opt. Commun. 135, 289-294 (1997).
[CrossRef]

Karabute, E. K.

V. F. Kravchenko, E. K. Karabute, A. A. Gudkov, and V. E. Bogoslavski, “Influence of acoustic waves on the output power of pulsed gas discharge lasers,” Sov. J. Quantum Electron. 12(2), 143-146 (1982).
[CrossRef]

Keitel, G.

R. Haensel, G. Keitel, N. Kosuch, U. Nielsen, and P. Schreiber, “Optical absorption of solid neon and argon in the soft x-ray region,” J. Phys. (Paris) Colloq. 32(C4), 236-240 (1971).
[CrossRef]

Khorasani, K.

K. Khorasani, D. Salehinia, S. Behrouzinia, B. Sajad, and M. Parvizian, “Frequency dependence of the output power of metal vapor lasers,” Opt. Commun. 281, 3799-3801 (2008).
[CrossRef]

Kirkov, V.

D. N. Astadjov, K. D. Dimitrov, D. R. Jones, V. Kirkov, L. Little, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, “Influence on operating characteristics of scaling sealed-off CuBr lasers in active length,” Opt. Commun. 135, 289-294 (1997).
[CrossRef]

Kiryukhin, Yu. B.

V. Yu. Baranov, V. M. Borisov, A. Yu. Vinokhodov, F. I. Vysikailo, A. V. Gubarev, Yu. B. Kiryukhin, I. E. Krayushkin, and S. A. Laptev, “Acoustic vibration in the gas-discharge chamber of the fast-flow pulse-periodic laser,” Sov. J. Quantum Electron. 17 , 766-770 (1987).
[CrossRef]

Konev, V. A.

A. V. Artamonov, V. A. Konev, V. V. Likhaskii, and A. P. Napartovich, “Output-power fluctuations of flowing-gas CO2 lasers with unstable resonators,” Sov. J. Quantum Electron. 14, 807-812 (1984).
[CrossRef]

Kost, B.

B. Baumann, M. Wolff, B. Kost, and H. Groninga, “Calculation of quality factors and amplitudes of photoacoustic resonator,” Proceeding of the COMSOL Users Conference (Springer, 2006), pp. 134-138.

Kosuch, N.

R. Haensel, G. Keitel, N. Kosuch, U. Nielsen, and P. Schreiber, “Optical absorption of solid neon and argon in the soft x-ray region,” J. Phys. (Paris) Colloq. 32(C4), 236-240 (1971).
[CrossRef]

Kravchenko, V. F.

V. F. Kravchenko, E. K. Karabute, A. A. Gudkov, and V. E. Bogoslavski, “Influence of acoustic waves on the output power of pulsed gas discharge lasers,” Sov. J. Quantum Electron. 12(2), 143-146 (1982).
[CrossRef]

Krayushkin, I. E.

V. Yu. Baranov, V. M. Borisov, A. Yu. Vinokhodov, F. I. Vysikailo, A. V. Gubarev, Yu. B. Kiryukhin, I. E. Krayushkin, and S. A. Laptev, “Acoustic vibration in the gas-discharge chamber of the fast-flow pulse-periodic laser,” Sov. J. Quantum Electron. 17 , 766-770 (1987).
[CrossRef]

Laptev, S. A.

V. Yu. Baranov, V. M. Borisov, A. Yu. Vinokhodov, F. I. Vysikailo, A. V. Gubarev, Yu. B. Kiryukhin, I. E. Krayushkin, and S. A. Laptev, “Acoustic vibration in the gas-discharge chamber of the fast-flow pulse-periodic laser,” Sov. J. Quantum Electron. 17 , 766-770 (1987).
[CrossRef]

Lewis, R. R.

R. R. Lewis, “The operating regime of longitudinal discharge copper vapour lasers,” Opt. Quantum Electron. 23, s493-s512 (1991).
[CrossRef]

Likhaskii, V. V.

A. V. Artamonov, V. A. Konev, V. V. Likhaskii, and A. P. Napartovich, “Output-power fluctuations of flowing-gas CO2 lasers with unstable resonators,” Sov. J. Quantum Electron. 14, 807-812 (1984).
[CrossRef]

Little, C. E.

D. N. Astadjov, K. D. Dimitrov, D. R. Jones, V. Kirkov, L. Little, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, “Influence on operating characteristics of scaling sealed-off CuBr lasers in active length,” Opt. Commun. 135, 289-294 (1997).
[CrossRef]

D. N. Astadjov, K. D. Dimitrov, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, “A CuBr laser with 1.4 W/cm3 average output power,” IEEE J. Quantum Electron. 30, 1358-1360 (1994).
[CrossRef]

C. E. Little, Metal Vapour Lasers: Physics, Engineering and Application (Wiley-VCH, 1999), Chap. 3.

Little, L.

D. N. Astadjov, K. D. Dimitrov, D. R. Jones, V. Kirkov, L. Little, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, “Influence on operating characteristics of scaling sealed-off CuBr lasers in active length,” Opt. Commun. 135, 289-294 (1997).
[CrossRef]

Miklos, A.

A. Miklos, P. Hess, and Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937-1955 (2001).
[CrossRef]

Mildren, R. P.

R. J. Carman, R. P. Mildren, M. J. Withford, D. J. Brown, and J. A. Piper, “Modeling the plasma kinetics in a kinetically enhanced copper vapor laser utilizing HCl+H2 admixtures,” IEEE J. Quantum Electron. 36, 438-449 (2000).
[CrossRef]

Mkrtchyan, A. R.

O. S. Torosyan, A. R. Mkrtchyan, and M. K. Musakhanian, “Acoustic instability in inhomogeneous gas-discharge plasma,” High Temp. 43, 486-495 (2005).
[CrossRef]

Morse, M. P.

M. P. Morse and K. U. Ingard, Theoretical Acoustics (McGraw-Hill, 1968).

Musakhanian, M. K.

O. S. Torosyan, A. R. Mkrtchyan, and M. K. Musakhanian, “Acoustic instability in inhomogeneous gas-discharge plasma,” High Temp. 43, 486-495 (2005).
[CrossRef]

Napartovich, A. P.

A. V. Artamonov, V. A. Konev, V. V. Likhaskii, and A. P. Napartovich, “Output-power fluctuations of flowing-gas CO2 lasers with unstable resonators,” Sov. J. Quantum Electron. 14, 807-812 (1984).
[CrossRef]

Nielsen, U.

R. Haensel, G. Keitel, N. Kosuch, U. Nielsen, and P. Schreiber, “Optical absorption of solid neon and argon in the soft x-ray region,” J. Phys. (Paris) Colloq. 32(C4), 236-240 (1971).
[CrossRef]

Parvin, P.

S. Behrouzinia, R. Sadighi, P. Parvin, and M. Zand, “Temperature dependence of the amplifying parameters of a copper vapor laser,” Laser Phys. 14, 1050-1053 (2004).

S. Behrouzinia, R. Sadighi, and P. Parvin, “Pressure dependence of the small-signal gain and saturation intensity of a copper vapor laser,” Appl. Opt. 42, 1013-1018 (2003).
[CrossRef] [PubMed]

Parvizian, M.

K. Khorasani, D. Salehinia, S. Behrouzinia, B. Sajad, and M. Parvizian, “Frequency dependence of the output power of metal vapor lasers,” Opt. Commun. 281, 3799-3801 (2008).
[CrossRef]

Piper, J. A.

R. J. Carman, R. P. Mildren, M. J. Withford, D. J. Brown, and J. A. Piper, “Modeling the plasma kinetics in a kinetically enhanced copper vapor laser utilizing HCl+H2 admixtures,” IEEE J. Quantum Electron. 36, 438-449 (2000).
[CrossRef]

R. J. Carman, M. J. Withford, D. J. Brown, and J. A. Piper, “Influence of the pre-pulse electron density on the performance of elemental copper vapor lasers,” Opt. Commun. 157, 99-104 (1998).
[CrossRef]

M. J. Withford, D. J. W. Brown, R. J. Carman, and J. A. Piper, “Enhanced performance of elemental copper-vapor lasers by use of H2─HCl─Ne buffer-gas mixtures,” Opt. Lett. 23, 706-708 (1998).
[CrossRef]

M. J. Withford, D. J. W. Brown, and J. A. Piper, “Investigation of the effect of hydrogen and deuterium on copper vapour laser performance,” Opt. Commun. 110, 699-707 (1994).
[CrossRef]

Sabotinov, N. V.

D. N. Astadjov, K. D. Dimitrov, D. R. Jones, V. Kirkov, L. Little, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, “Influence on operating characteristics of scaling sealed-off CuBr lasers in active length,” Opt. Commun. 135, 289-294 (1997).
[CrossRef]

D. N. Astadjov, K. D. Dimitrov, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, “A CuBr laser with 1.4 W/cm3 average output power,” IEEE J. Quantum Electron. 30, 1358-1360 (1994).
[CrossRef]

D. N. Astadjov, N. K. Vuchkov, and N. V. Sabotinov, “Parametric study of CuBr laser with hydrogen additives,” IEEE J. Quantum Electron. 24, 1927-1935 (1988).
[CrossRef]

Sadighi, R.

S. Behrouzinia, R. Sadighi, P. Parvin, and M. Zand, “Temperature dependence of the amplifying parameters of a copper vapor laser,” Laser Phys. 14, 1050-1053 (2004).

S. Behrouzinia, R. Sadighi, and P. Parvin, “Pressure dependence of the small-signal gain and saturation intensity of a copper vapor laser,” Appl. Opt. 42, 1013-1018 (2003).
[CrossRef] [PubMed]

Sajad, B.

K. Khorasani, D. Salehinia, S. Behrouzinia, B. Sajad, and M. Parvizian, “Frequency dependence of the output power of metal vapor lasers,” Opt. Commun. 281, 3799-3801 (2008).
[CrossRef]

Salehinia, D.

K. Khorasani, D. Salehinia, S. Behrouzinia, B. Sajad, and M. Parvizian, “Frequency dependence of the output power of metal vapor lasers,” Opt. Commun. 281, 3799-3801 (2008).
[CrossRef]

Schreiber, P.

R. Haensel, G. Keitel, N. Kosuch, U. Nielsen, and P. Schreiber, “Optical absorption of solid neon and argon in the soft x-ray region,” J. Phys. (Paris) Colloq. 32(C4), 236-240 (1971).
[CrossRef]

Sentis, M.

O. Uteza, Ph. Delaporte, B. Fontaine, B. Forestier, M. Sentis, I. Tassy, and J. P. Truong, “Acoustic wave origin in excimer lasers,” Appl. Phys. B 64, 531-537 (1997).
[CrossRef]

Shan, H. Y.

Z. G. Huang, H. Y. Shan, Y. Huo, and H. Wang, “A gold-vapor laser using Ne─H2 as buffer gas,” Appl. Phys. B 44, 57-59(1987).
[CrossRef]

Shen, P. I.

F. E. C. Culick, P. I. Shen, and W. S. Griffin, “Acoustic waves and heating due to molecular energy transfer in an electric discharge CO laser,” IEEE J. Quantum Electron. 12, 566-574 (1976).
[CrossRef]

Sigrist, M. W.

M. W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60(7), R83 (1986).
[CrossRef]

Silant'ev, V. I.

P. A. Bokhan, V. I. Silant'ev, and V. I. Solomonov, “Mechanism for limiting the repetition frequency of pulses from a copper vapor laser,” Sov. J. Quantum Electron. 10, 724-727(1980).
[CrossRef]

Solomonov, V. I.

P. A. Bokhan, V. I. Silant'ev, and V. I. Solomonov, “Mechanism for limiting the repetition frequency of pulses from a copper vapor laser,” Sov. J. Quantum Electron. 10, 724-727(1980).
[CrossRef]

Tassy, I.

O. Uteza, Ph. Delaporte, B. Fontaine, B. Forestier, M. Sentis, I. Tassy, and J. P. Truong, “Acoustic wave origin in excimer lasers,” Appl. Phys. B 64, 531-537 (1997).
[CrossRef]

Torosyan, O. S.

O. S. Torosyan, A. R. Mkrtchyan, and M. K. Musakhanian, “Acoustic instability in inhomogeneous gas-discharge plasma,” High Temp. 43, 486-495 (2005).
[CrossRef]

Truong, J. P.

O. Uteza, Ph. Delaporte, B. Fontaine, B. Forestier, M. Sentis, I. Tassy, and J. P. Truong, “Acoustic wave origin in excimer lasers,” Appl. Phys. B 64, 531-537 (1997).
[CrossRef]

Uteza, O.

O. Uteza, Ph. Delaporte, B. Fontaine, B. Forestier, M. Sentis, I. Tassy, and J. P. Truong, “Acoustic wave origin in excimer lasers,” Appl. Phys. B 64, 531-537 (1997).
[CrossRef]

Vinokhodov, A. Yu.

V. Yu. Baranov, V. M. Borisov, A. Yu. Vinokhodov, F. I. Vysikailo, A. V. Gubarev, Yu. B. Kiryukhin, I. E. Krayushkin, and S. A. Laptev, “Acoustic vibration in the gas-discharge chamber of the fast-flow pulse-periodic laser,” Sov. J. Quantum Electron. 17 , 766-770 (1987).
[CrossRef]

Vuchkov, N. K.

D. N. Astadjov, K. D. Dimitrov, D. R. Jones, V. Kirkov, L. Little, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, “Influence on operating characteristics of scaling sealed-off CuBr lasers in active length,” Opt. Commun. 135, 289-294 (1997).
[CrossRef]

D. N. Astadjov, K. D. Dimitrov, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, “A CuBr laser with 1.4 W/cm3 average output power,” IEEE J. Quantum Electron. 30, 1358-1360 (1994).
[CrossRef]

D. N. Astadjov, N. K. Vuchkov, and N. V. Sabotinov, “Parametric study of CuBr laser with hydrogen additives,” IEEE J. Quantum Electron. 24, 1927-1935 (1988).
[CrossRef]

Vysikailo, F. I.

V. Yu. Baranov, V. M. Borisov, A. Yu. Vinokhodov, F. I. Vysikailo, A. V. Gubarev, Yu. B. Kiryukhin, I. E. Krayushkin, and S. A. Laptev, “Acoustic vibration in the gas-discharge chamber of the fast-flow pulse-periodic laser,” Sov. J. Quantum Electron. 17 , 766-770 (1987).
[CrossRef]

Wang, H.

Z. G. Huang, H. Y. Shan, Y. Huo, and H. Wang, “A gold-vapor laser using Ne─H2 as buffer gas,” Appl. Phys. B 44, 57-59(1987).
[CrossRef]

Withford, M. J.

R. J. Carman, R. P. Mildren, M. J. Withford, D. J. Brown, and J. A. Piper, “Modeling the plasma kinetics in a kinetically enhanced copper vapor laser utilizing HCl+H2 admixtures,” IEEE J. Quantum Electron. 36, 438-449 (2000).
[CrossRef]

R. J. Carman, M. J. Withford, D. J. Brown, and J. A. Piper, “Influence of the pre-pulse electron density on the performance of elemental copper vapor lasers,” Opt. Commun. 157, 99-104 (1998).
[CrossRef]

M. J. Withford, D. J. W. Brown, R. J. Carman, and J. A. Piper, “Enhanced performance of elemental copper-vapor lasers by use of H2─HCl─Ne buffer-gas mixtures,” Opt. Lett. 23, 706-708 (1998).
[CrossRef]

M. J. Withford, D. J. W. Brown, and J. A. Piper, “Investigation of the effect of hydrogen and deuterium on copper vapour laser performance,” Opt. Commun. 110, 699-707 (1994).
[CrossRef]

Wolff, M.

B. Baumann, M. Wolff, B. Kost, and H. Groninga, “Calculation of quality factors and amplitudes of photoacoustic resonator,” Proceeding of the COMSOL Users Conference (Springer, 2006), pp. 134-138.

Zand, M.

S. Behrouzinia, R. Sadighi, P. Parvin, and M. Zand, “Temperature dependence of the amplifying parameters of a copper vapor laser,” Laser Phys. 14, 1050-1053 (2004).

Appl. Opt. (1)

Appl. Phys. B (2)

Z. G. Huang, H. Y. Shan, Y. Huo, and H. Wang, “A gold-vapor laser using Ne─H2 as buffer gas,” Appl. Phys. B 44, 57-59(1987).
[CrossRef]

O. Uteza, Ph. Delaporte, B. Fontaine, B. Forestier, M. Sentis, I. Tassy, and J. P. Truong, “Acoustic wave origin in excimer lasers,” Appl. Phys. B 64, 531-537 (1997).
[CrossRef]

High Temp. (1)

O. S. Torosyan, A. R. Mkrtchyan, and M. K. Musakhanian, “Acoustic instability in inhomogeneous gas-discharge plasma,” High Temp. 43, 486-495 (2005).
[CrossRef]

IEEE J. Quantum Electron. (4)

R. J. Carman, R. P. Mildren, M. J. Withford, D. J. Brown, and J. A. Piper, “Modeling the plasma kinetics in a kinetically enhanced copper vapor laser utilizing HCl+H2 admixtures,” IEEE J. Quantum Electron. 36, 438-449 (2000).
[CrossRef]

F. E. C. Culick, P. I. Shen, and W. S. Griffin, “Acoustic waves and heating due to molecular energy transfer in an electric discharge CO laser,” IEEE J. Quantum Electron. 12, 566-574 (1976).
[CrossRef]

D. N. Astadjov, N. K. Vuchkov, and N. V. Sabotinov, “Parametric study of CuBr laser with hydrogen additives,” IEEE J. Quantum Electron. 24, 1927-1935 (1988).
[CrossRef]

D. N. Astadjov, K. D. Dimitrov, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, “A CuBr laser with 1.4 W/cm3 average output power,” IEEE J. Quantum Electron. 30, 1358-1360 (1994).
[CrossRef]

J. Appl. Phys. (1)

M. W. Sigrist, “Laser generation of acoustic waves in liquids and gases,” J. Appl. Phys. 60(7), R83 (1986).
[CrossRef]

J. Phys. (Paris) Colloq. (1)

R. Haensel, G. Keitel, N. Kosuch, U. Nielsen, and P. Schreiber, “Optical absorption of solid neon and argon in the soft x-ray region,” J. Phys. (Paris) Colloq. 32(C4), 236-240 (1971).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

C. Cheng, “Plasma kinetics mechanism of an optimized copper vapor laser,” J. Phys. D: Appl. Phys. 33, 1167-1178 (2000).
[CrossRef]

Laser Phys. (1)

S. Behrouzinia, R. Sadighi, P. Parvin, and M. Zand, “Temperature dependence of the amplifying parameters of a copper vapor laser,” Laser Phys. 14, 1050-1053 (2004).

Opt. Commun. (4)

D. N. Astadjov, K. D. Dimitrov, D. R. Jones, V. Kirkov, L. Little, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, “Influence on operating characteristics of scaling sealed-off CuBr lasers in active length,” Opt. Commun. 135, 289-294 (1997).
[CrossRef]

K. Khorasani, D. Salehinia, S. Behrouzinia, B. Sajad, and M. Parvizian, “Frequency dependence of the output power of metal vapor lasers,” Opt. Commun. 281, 3799-3801 (2008).
[CrossRef]

R. J. Carman, M. J. Withford, D. J. Brown, and J. A. Piper, “Influence of the pre-pulse electron density on the performance of elemental copper vapor lasers,” Opt. Commun. 157, 99-104 (1998).
[CrossRef]

M. J. Withford, D. J. W. Brown, and J. A. Piper, “Investigation of the effect of hydrogen and deuterium on copper vapour laser performance,” Opt. Commun. 110, 699-707 (1994).
[CrossRef]

Opt. Laser. Technol. (1)

B. A. Ghani and M. Hammadi, “Modeling the plasma kinetic mechanisms of CuBr laser with neon-hydrogen additives,” Opt. Laser. Technol. 38, 67-76 (2006).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

R. R. Lewis, “The operating regime of longitudinal discharge copper vapour lasers,” Opt. Quantum Electron. 23, s493-s512 (1991).
[CrossRef]

Rev. Sci. Instrum. (1)

A. Miklos, P. Hess, and Z. Bozoki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72, 1937-1955 (2001).
[CrossRef]

Sov. J. Quantum Electron. (4)

P. A. Bokhan, V. I. Silant'ev, and V. I. Solomonov, “Mechanism for limiting the repetition frequency of pulses from a copper vapor laser,” Sov. J. Quantum Electron. 10, 724-727(1980).
[CrossRef]

V. F. Kravchenko, E. K. Karabute, A. A. Gudkov, and V. E. Bogoslavski, “Influence of acoustic waves on the output power of pulsed gas discharge lasers,” Sov. J. Quantum Electron. 12(2), 143-146 (1982).
[CrossRef]

A. V. Artamonov, V. A. Konev, V. V. Likhaskii, and A. P. Napartovich, “Output-power fluctuations of flowing-gas CO2 lasers with unstable resonators,” Sov. J. Quantum Electron. 14, 807-812 (1984).
[CrossRef]

V. Yu. Baranov, V. M. Borisov, A. Yu. Vinokhodov, F. I. Vysikailo, A. V. Gubarev, Yu. B. Kiryukhin, I. E. Krayushkin, and S. A. Laptev, “Acoustic vibration in the gas-discharge chamber of the fast-flow pulse-periodic laser,” Sov. J. Quantum Electron. 17 , 766-770 (1987).
[CrossRef]

Other (4)

W. Demtroder, Atoms, Molecules and Photons: An Introduction to Atomic, Molecular, and Quantum-Physics (Academic, 2006).

C. E. Little, Metal Vapour Lasers: Physics, Engineering and Application (Wiley-VCH, 1999), Chap. 3.

B. Baumann, M. Wolff, B. Kost, and H. Groninga, “Calculation of quality factors and amplitudes of photoacoustic resonator,” Proceeding of the COMSOL Users Conference (Springer, 2006), pp. 134-138.

M. P. Morse and K. U. Ingard, Theoretical Acoustics (McGraw-Hill, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the acoustic longitudinal, azimuthal, and radial modes in a cylindrical resonator.

Fig. 2
Fig. 2

Schematic of (a) the laser tube and the corresponding resonator and (b) the excitation circuit of the CVL. C p = 0.68 nF , C s = 1.65 nF , L 1 = 100 mH , and L 2 = 100 μH .

Fig. 3
Fig. 3

Schematic of the optical and acoustic measurement arrangement of the CVL.

Fig. 4
Fig. 4

Total output power of the CVL versus excitation frequency for Ne + 1 % H 2 (electrical input power 1.5 kW ; gas pressure 30 T orr ), Ne (electrical input power 1.6 kW ; gas pressure 35 T orr ), and helium buffer gas (electrical input power 1.7 kW ; gas pressure 20 T orr ).

Fig. 5
Fig. 5

(a) Output power fluctuation and the corresponding peak of sound level signals versus CVL excitation frequencies within the tube filled with pure neon (the optical resonator is unblocked). The audio response when the optical resonator is blocked is also depicted. (b) Sound level difference (dB) of the blocked and the unblocked resonator.

Fig. 6
Fig. 6

Sound spectra recorded by a sound level meter (Brüel and Kjaer 2260): (a) background; (b), (c) when the thyratron is turned on at the onset of discharge; (d), (e) after laser stabilization; and (f), (g) when the optical resonator is blocked at 15.3 kHz and 16.4 kHz , respectively.

Fig. 7
Fig. 7

Fluctuation of output power versus frequency in various lasers. Kravchenco et al. (CuCl–Ne laser with 2.5 cm dia.). Astadjov et al. (CuBr–Ne lasers with [8] 4 cm dia. and [9] 15 mm dia. with inner diaphragms; [10] CuBr–Ne– H 2 with 40 mm dia., with (curve a) 50 cm and (curve b) 120 cm lengths without diaphragms). Khorasani et al. (Cu–Ne laser with 16 mm dia.) and this work (Cu–Ne– 1 % H 2 laser with 16 mm dia.).

Tables (2)

Tables Icon

Table 1 Contribution of Laser Components in Sound Intensity at 15.3 kHz and 16.4 kHz Excitation Frequencies

Tables Icon

Table 2 Experimental and Calculated Extrema of Power Fluctuations, Summarized for Various MVLs

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

2 p ( r , ω ) + k 2 p ( r , ω ) = i ω γ 1 c 2 H ( r , ω ) ,
p ( r , ω ) = j A j ( ω ) p j ( r ) .
A j ( ω ) = i A j ω ω 2 ω j 2 + i ω ω j / Q j ,
A j = γ 1 V t V t p j * H ( r , ω ) d V ,
f q m n = c 2 [ ( α m n π R 0 ) 2 + ( q L ) 2 ] 1 2 ,
f q = c q 2 L ( 1 M 2 ) ,
c = γ R T m ,
c ¯ = i c i w i ,

Metrics