Abstract

We inscribed thick volume gratings in WMS-15 glass ceramic by ultraviolet light at 193 and 248nm. Unlike earlier work in ceramic materials, the inscription process modified the optical properties of the material without the need for any additional chemical or thermal processing. Experimental evidence from measurements of grating growth, thermal annealing, and spectral absorption indicates that two distinct physical mechanisms are responsible for the grating formation. Weak, easily thermally bleached gratings resulted from exposure fluences below 0.3kJ/cm2. Optical absorption measurements suggest that these low fluence gratings are predominantly absorption gratings. More thermally stable gratings, found to be refractive index gratings with unsaturated refractive index modulation amplitude as large as 6×105 were formed at cumulative fluences of 1kJ/cm2 and above.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Höland and G. Beall, Glass Ceramic Technology (American Ceramic Society, 2002).
  2. M. Brinkmann, J. Hayden, M. Letz, S. Reichel, C. Click, W. Mannstadt, B. Schreder, S. Wolff, S. Ritter, M. J. Davis, T. E. Bauer, H. Ren, Y.-H. Fan, S.-T. Wu, K. Bonrad, E. Krätzig, K. Buse, and R. A. Paquin, “Optical materials and their properties,” in Springer Handbook of Lasers and Optics, F. Träger, ed. (Springer, 2006), pp. 300-306.
  3. C. N. Chu, N. Saka, and N. P. Suh, “Negative thermal expansion ceramics: a review,” Mater. Sci. Eng. 95, 303-308 (1987).
    [CrossRef]
  4. D. L. Weidman, G. H. Beall, K. C. Chyung, G. L. Francis, R. A. Modaavis, and R. M. Morena, “A novel negative expansion substrate material for athermalizing fiber Bragg gratings,” in Proceedings of 22nd European Conference on Optical Communication (1996), Vol. 1, paper MoB.3.5, pp. 61-64.
  5. H. Bach and D. Krause, Low Thermal Expansion Glass Ceramics (Springer, 2005).
    [CrossRef]
  6. N. Goto, M. Kataoka, and D. G. Polensky, “Glass-ceramics for a light filter,” U.S. patent 6,677,259 (13 January 2004).
  7. .H. Minamikawa, K. Ohara, and N. Goto, “Low expansion transparent glass-ceramics, glass-ceramic substrate and optical waveguide element,” U.S. patent 7,148,164 (12 December 2006).
  8. Y. Feng, J. Lu, K. Takaichi, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Passively Q-switched ceramic Nd3+:YAG/Cr4+:YAG lasers,” Appl. Opt. 43, 2944-2947(2004).
    [CrossRef] [PubMed]
  9. M. Ciofini and A. Lapucci, “Efficiency optimization for a diode-pumped Nd:YAG ceramic slab laser,” Appl. Opt. 44, 4388-4393 (2005).
    [CrossRef] [PubMed]
  10. A. Ikesue and V. L. Aung, “Ceramic laser materials,” Nat. Photon. 2, 721-727 (2008).
    [CrossRef]
  11. A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, O. S. Dymshits, A. A. Zhilin, and U. Kang, “Cobalt-doped transparent glass ceramic as a saturable absorber Q switch for erbium:glass lasers,” Appl. Opt. 40, 4322-4325 (2001).
    [CrossRef]
  12. Y. V. Volk, A. M. Malyarevich, K. V. Yumashev, O. S. Dymshits, A. V. Shashkin, A. A. Zhilin, U. Kang, and K. Lee, “Influence of reducing-oxidizing conditions on the optical properties of Co2+-doped magnesium aluminosilicate glass ceramics and their use as an effective saturable absorber Q switch,” Appl. Opt. 43, 6011-6015 (2004).
    [CrossRef] [PubMed]
  13. T. Erdogan, A. Partovi, V. Mizrahi, P. J. Lemaire, W. L. Wilson, T. A. Strasser, and A. M. Glass, “Volume gratings for holographic storage applications written in high-quality germanosilicate glass,” Appl. Opt. 34, 6738-6743 (1995).
    [CrossRef] [PubMed]
  14. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  15. A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).
  16. P. Jelger, P. Wang, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection,” Opt. Express 16, 9507-9512 (2008).
    [CrossRef] [PubMed]
  17. S. D. Stookey, “Photosensitive glass--A new photographic medium,” Ind. Eng. Chem. 41, 856 (1949).
    [CrossRef]
  18. P. D. Fuqua, S. W. Janson, W. W. Hansen, and H. Helvajian, “Fabrication of true 3D microstructures in glass/ceramic materials by pulsed UV laser volumetric exposure techniques,” Proc. SPIE 3618, 213-220 (1999).
    [CrossRef]
  19. F. E. Livingston, P. M. Adams, and H. Helvajian, “Active photo-physical processes in the pulsed UV nanosecond laser exposure of photostructurable glass ceramic materials,” Proc. SPIE 5662, 44-50 (2004).
    [CrossRef]
  20. F. E. Livingston and H. Helvajian, “Variable UV laser exposure processing of photosensitive glass-ceramics: maskless micro- to mesoscale structure fabrication,” Appl. Phys. A 81, 1569-1581 (2005).
    [CrossRef]
  21. L. B. Glebov and V. I. Smirnov, “Sensitization of photo-thermo-refractive glass to visible radiation by two-step illumination,” U.S. patent 7,326,500 (5 February 2008).
  22. M. Kösters, H.-T. Hsieh, D. Psaltis, and K. Buse, “Holography in commercially available photoetchable glasses,” Appl. Opt. 44, 3399-3402 (2005).
    [CrossRef] [PubMed]
  23. Y. Cheng, K. Sugioka, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, and K. Midorikawa, “3D microstructuring inside Foturan glass by femtosecond laser,” RIKEN Rev. 50, 101-106 (2003).
  24. O. M. Efimov, L. G. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38, 619-627 (1999).
    [CrossRef]
  25. N. Chiodini, A. Paleari, and G. Spinolo, “Photorefractivity in nanostructured tin-silicate glass ceramics: a radiation-induced nanocluster size effect,” Phys. Rev. Lett. 90, 055507 (2003).
    [CrossRef] [PubMed]
  26. N. Chiodini, A. Paleari, G. Spinolo, P. Crespi, “Photorefractivity in SiO2∶SnO2 glass-ceramics by visible light,” J. Non-Cryst. Solids 322, 266-271 (2003).
    [CrossRef]
  27. A. Paleari, E. Franchina, N. Chiodini, A. Lauria, E. Bricchi, and P. G. Kazansky, “SnO2 nanoparticles in silica: nanosized tools for femtosecond-laser machining of refractive index patterns,” Appl. Phys. Lett. 88, 131912 (2006).
    [CrossRef]
  28. “Glass-ceramic substrate for DWDM thin-film filter (WMS-15)” (Ohara Corporation), http://www.ohara-inc.co.jp/en/product/electronics/wms.html.
  29. C. Ghio, Ohara Corporation (personal communication, 2008).
  30. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
  31. M. Lancry, M. Douay, P. Niay, F. Beclin, Y. Menke, G. Milanese, M. Ferraris, and B. Poumellec, “Self induced gratings in ternary SiO2∶SnO2∶NaO2 bulk glasses by UV light seeding,” Opt. Express 13, 6878 (2005).
    [CrossRef] [PubMed]
  32. X.-C. Long and S. R. Brueck, “Large photosensitivity in lead-silicate glasses,” Appl. Phys. Lett. 74, 2110-2112 (1999).
    [CrossRef]
  33. J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99, 083511 (2006).
    [CrossRef]

2008 (2)

2006 (2)

A. Paleari, E. Franchina, N. Chiodini, A. Lauria, E. Bricchi, and P. G. Kazansky, “SnO2 nanoparticles in silica: nanosized tools for femtosecond-laser machining of refractive index patterns,” Appl. Phys. Lett. 88, 131912 (2006).
[CrossRef]

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

2005 (4)

2004 (3)

2003 (3)

N. Chiodini, A. Paleari, and G. Spinolo, “Photorefractivity in nanostructured tin-silicate glass ceramics: a radiation-induced nanocluster size effect,” Phys. Rev. Lett. 90, 055507 (2003).
[CrossRef] [PubMed]

N. Chiodini, A. Paleari, G. Spinolo, P. Crespi, “Photorefractivity in SiO2∶SnO2 glass-ceramics by visible light,” J. Non-Cryst. Solids 322, 266-271 (2003).
[CrossRef]

Y. Cheng, K. Sugioka, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, and K. Midorikawa, “3D microstructuring inside Foturan glass by femtosecond laser,” RIKEN Rev. 50, 101-106 (2003).

2001 (1)

1999 (3)

O. M. Efimov, L. G. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38, 619-627 (1999).
[CrossRef]

P. D. Fuqua, S. W. Janson, W. W. Hansen, and H. Helvajian, “Fabrication of true 3D microstructures in glass/ceramic materials by pulsed UV laser volumetric exposure techniques,” Proc. SPIE 3618, 213-220 (1999).
[CrossRef]

X.-C. Long and S. R. Brueck, “Large photosensitivity in lead-silicate glasses,” Appl. Phys. Lett. 74, 2110-2112 (1999).
[CrossRef]

1995 (1)

1987 (1)

C. N. Chu, N. Saka, and N. P. Suh, “Negative thermal expansion ceramics: a review,” Mater. Sci. Eng. 95, 303-308 (1987).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).

1949 (1)

S. D. Stookey, “Photosensitive glass--A new photographic medium,” Ind. Eng. Chem. 41, 856 (1949).
[CrossRef]

Adams, P. M.

F. E. Livingston, P. M. Adams, and H. Helvajian, “Active photo-physical processes in the pulsed UV nanosecond laser exposure of photostructurable glass ceramic materials,” Proc. SPIE 5662, 44-50 (2004).
[CrossRef]

Aung, V. L.

A. Ikesue and V. L. Aung, “Ceramic laser materials,” Nat. Photon. 2, 721-727 (2008).
[CrossRef]

Bach, H.

H. Bach and D. Krause, Low Thermal Expansion Glass Ceramics (Springer, 2005).
[CrossRef]

Bauer, T. E.

M. Brinkmann, J. Hayden, M. Letz, S. Reichel, C. Click, W. Mannstadt, B. Schreder, S. Wolff, S. Ritter, M. J. Davis, T. E. Bauer, H. Ren, Y.-H. Fan, S.-T. Wu, K. Bonrad, E. Krätzig, K. Buse, and R. A. Paquin, “Optical materials and their properties,” in Springer Handbook of Lasers and Optics, F. Träger, ed. (Springer, 2006), pp. 300-306.

Beall, G.

W. Höland and G. Beall, Glass Ceramic Technology (American Ceramic Society, 2002).

Beall, G. H.

D. L. Weidman, G. H. Beall, K. C. Chyung, G. L. Francis, R. A. Modaavis, and R. M. Morena, “A novel negative expansion substrate material for athermalizing fiber Bragg gratings,” in Proceedings of 22nd European Conference on Optical Communication (1996), Vol. 1, paper MoB.3.5, pp. 61-64.

Beclin, F.

Bonrad, K.

M. Brinkmann, J. Hayden, M. Letz, S. Reichel, C. Click, W. Mannstadt, B. Schreder, S. Wolff, S. Ritter, M. J. Davis, T. E. Bauer, H. Ren, Y.-H. Fan, S.-T. Wu, K. Bonrad, E. Krätzig, K. Buse, and R. A. Paquin, “Optical materials and their properties,” in Springer Handbook of Lasers and Optics, F. Träger, ed. (Springer, 2006), pp. 300-306.

Bricchi, E.

A. Paleari, E. Franchina, N. Chiodini, A. Lauria, E. Bricchi, and P. G. Kazansky, “SnO2 nanoparticles in silica: nanosized tools for femtosecond-laser machining of refractive index patterns,” Appl. Phys. Lett. 88, 131912 (2006).
[CrossRef]

Brinkmann, M.

M. Brinkmann, J. Hayden, M. Letz, S. Reichel, C. Click, W. Mannstadt, B. Schreder, S. Wolff, S. Ritter, M. J. Davis, T. E. Bauer, H. Ren, Y.-H. Fan, S.-T. Wu, K. Bonrad, E. Krätzig, K. Buse, and R. A. Paquin, “Optical materials and their properties,” in Springer Handbook of Lasers and Optics, F. Träger, ed. (Springer, 2006), pp. 300-306.

Brueck, S. R.

X.-C. Long and S. R. Brueck, “Large photosensitivity in lead-silicate glasses,” Appl. Phys. Lett. 74, 2110-2112 (1999).
[CrossRef]

Buse, K.

M. Kösters, H.-T. Hsieh, D. Psaltis, and K. Buse, “Holography in commercially available photoetchable glasses,” Appl. Opt. 44, 3399-3402 (2005).
[CrossRef] [PubMed]

M. Brinkmann, J. Hayden, M. Letz, S. Reichel, C. Click, W. Mannstadt, B. Schreder, S. Wolff, S. Ritter, M. J. Davis, T. E. Bauer, H. Ren, Y.-H. Fan, S.-T. Wu, K. Bonrad, E. Krätzig, K. Buse, and R. A. Paquin, “Optical materials and their properties,” in Springer Handbook of Lasers and Optics, F. Träger, ed. (Springer, 2006), pp. 300-306.

Cheng, Y.

Y. Cheng, K. Sugioka, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, and K. Midorikawa, “3D microstructuring inside Foturan glass by femtosecond laser,” RIKEN Rev. 50, 101-106 (2003).

Chiodini, N.

A. Paleari, E. Franchina, N. Chiodini, A. Lauria, E. Bricchi, and P. G. Kazansky, “SnO2 nanoparticles in silica: nanosized tools for femtosecond-laser machining of refractive index patterns,” Appl. Phys. Lett. 88, 131912 (2006).
[CrossRef]

N. Chiodini, A. Paleari, and G. Spinolo, “Photorefractivity in nanostructured tin-silicate glass ceramics: a radiation-induced nanocluster size effect,” Phys. Rev. Lett. 90, 055507 (2003).
[CrossRef] [PubMed]

N. Chiodini, A. Paleari, G. Spinolo, P. Crespi, “Photorefractivity in SiO2∶SnO2 glass-ceramics by visible light,” J. Non-Cryst. Solids 322, 266-271 (2003).
[CrossRef]

Chu, C. N.

C. N. Chu, N. Saka, and N. P. Suh, “Negative thermal expansion ceramics: a review,” Mater. Sci. Eng. 95, 303-308 (1987).
[CrossRef]

Chyung, K. C.

D. L. Weidman, G. H. Beall, K. C. Chyung, G. L. Francis, R. A. Modaavis, and R. M. Morena, “A novel negative expansion substrate material for athermalizing fiber Bragg gratings,” in Proceedings of 22nd European Conference on Optical Communication (1996), Vol. 1, paper MoB.3.5, pp. 61-64.

Ciofini, M.

Clarkson, W. A.

Click, C.

M. Brinkmann, J. Hayden, M. Letz, S. Reichel, C. Click, W. Mannstadt, B. Schreder, S. Wolff, S. Ritter, M. J. Davis, T. E. Bauer, H. Ren, Y.-H. Fan, S.-T. Wu, K. Bonrad, E. Krätzig, K. Buse, and R. A. Paquin, “Optical materials and their properties,” in Springer Handbook of Lasers and Optics, F. Träger, ed. (Springer, 2006), pp. 300-306.

Crespi, P.

N. Chiodini, A. Paleari, G. Spinolo, P. Crespi, “Photorefractivity in SiO2∶SnO2 glass-ceramics by visible light,” J. Non-Cryst. Solids 322, 266-271 (2003).
[CrossRef]

Davis, M. J.

M. Brinkmann, J. Hayden, M. Letz, S. Reichel, C. Click, W. Mannstadt, B. Schreder, S. Wolff, S. Ritter, M. J. Davis, T. E. Bauer, H. Ren, Y.-H. Fan, S.-T. Wu, K. Bonrad, E. Krätzig, K. Buse, and R. A. Paquin, “Optical materials and their properties,” in Springer Handbook of Lasers and Optics, F. Träger, ed. (Springer, 2006), pp. 300-306.

Denisov, I. A.

Douay, M.

Dymshits, O. S.

Efimov, O. M.

Erdogan, T.

Fan, Y.-H.

M. Brinkmann, J. Hayden, M. Letz, S. Reichel, C. Click, W. Mannstadt, B. Schreder, S. Wolff, S. Ritter, M. J. Davis, T. E. Bauer, H. Ren, Y.-H. Fan, S.-T. Wu, K. Bonrad, E. Krätzig, K. Buse, and R. A. Paquin, “Optical materials and their properties,” in Springer Handbook of Lasers and Optics, F. Träger, ed. (Springer, 2006), pp. 300-306.

Feng, Y.

Ferraris, M.

Franchina, E.

A. Paleari, E. Franchina, N. Chiodini, A. Lauria, E. Bricchi, and P. G. Kazansky, “SnO2 nanoparticles in silica: nanosized tools for femtosecond-laser machining of refractive index patterns,” Appl. Phys. Lett. 88, 131912 (2006).
[CrossRef]

Francis, G. L.

D. L. Weidman, G. H. Beall, K. C. Chyung, G. L. Francis, R. A. Modaavis, and R. M. Morena, “A novel negative expansion substrate material for athermalizing fiber Bragg gratings,” in Proceedings of 22nd European Conference on Optical Communication (1996), Vol. 1, paper MoB.3.5, pp. 61-64.

Fuqua, P. D.

P. D. Fuqua, S. W. Janson, W. W. Hansen, and H. Helvajian, “Fabrication of true 3D microstructures in glass/ceramic materials by pulsed UV laser volumetric exposure techniques,” Proc. SPIE 3618, 213-220 (1999).
[CrossRef]

Ghio, C.

C. Ghio, Ohara Corporation (personal communication, 2008).

Glass, A. M.

Glebov, L. B.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

L. B. Glebov and V. I. Smirnov, “Sensitization of photo-thermo-refractive glass to visible radiation by two-step illumination,” U.S. patent 7,326,500 (5 February 2008).

Glebov, L. G.

Glebova, L. N.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

O. M. Efimov, L. G. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38, 619-627 (1999).
[CrossRef]

Goto, N.

.H. Minamikawa, K. Ohara, and N. Goto, “Low expansion transparent glass-ceramics, glass-ceramic substrate and optical waveguide element,” U.S. patent 7,148,164 (12 December 2006).

N. Goto, M. Kataoka, and D. G. Polensky, “Glass-ceramics for a light filter,” U.S. patent 6,677,259 (13 January 2004).

Hansen, W. W.

P. D. Fuqua, S. W. Janson, W. W. Hansen, and H. Helvajian, “Fabrication of true 3D microstructures in glass/ceramic materials by pulsed UV laser volumetric exposure techniques,” Proc. SPIE 3618, 213-220 (1999).
[CrossRef]

Hayden, J.

M. Brinkmann, J. Hayden, M. Letz, S. Reichel, C. Click, W. Mannstadt, B. Schreder, S. Wolff, S. Ritter, M. J. Davis, T. E. Bauer, H. Ren, Y.-H. Fan, S.-T. Wu, K. Bonrad, E. Krätzig, K. Buse, and R. A. Paquin, “Optical materials and their properties,” in Springer Handbook of Lasers and Optics, F. Träger, ed. (Springer, 2006), pp. 300-306.

Helvajian, H.

F. E. Livingston and H. Helvajian, “Variable UV laser exposure processing of photosensitive glass-ceramics: maskless micro- to mesoscale structure fabrication,” Appl. Phys. A 81, 1569-1581 (2005).
[CrossRef]

F. E. Livingston, P. M. Adams, and H. Helvajian, “Active photo-physical processes in the pulsed UV nanosecond laser exposure of photostructurable glass ceramic materials,” Proc. SPIE 5662, 44-50 (2004).
[CrossRef]

P. D. Fuqua, S. W. Janson, W. W. Hansen, and H. Helvajian, “Fabrication of true 3D microstructures in glass/ceramic materials by pulsed UV laser volumetric exposure techniques,” Proc. SPIE 3618, 213-220 (1999).
[CrossRef]

Höland, W.

W. Höland and G. Beall, Glass Ceramic Technology (American Ceramic Society, 2002).

Hsieh, H.-T.

Ikesue, A.

A. Ikesue and V. L. Aung, “Ceramic laser materials,” Nat. Photon. 2, 721-727 (2008).
[CrossRef]

Janson, S. W.

P. D. Fuqua, S. W. Janson, W. W. Hansen, and H. Helvajian, “Fabrication of true 3D microstructures in glass/ceramic materials by pulsed UV laser volumetric exposure techniques,” Proc. SPIE 3618, 213-220 (1999).
[CrossRef]

Jelger, P.

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).

Kaminskii, A. A.

Kang, U.

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Kataoka, M.

N. Goto, M. Kataoka, and D. G. Polensky, “Glass-ceramics for a light filter,” U.S. patent 6,677,259 (13 January 2004).

Kawachi, M.

Y. Cheng, K. Sugioka, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, and K. Midorikawa, “3D microstructuring inside Foturan glass by femtosecond laser,” RIKEN Rev. 50, 101-106 (2003).

Kazansky, P. G.

A. Paleari, E. Franchina, N. Chiodini, A. Lauria, E. Bricchi, and P. G. Kazansky, “SnO2 nanoparticles in silica: nanosized tools for femtosecond-laser machining of refractive index patterns,” Appl. Phys. Lett. 88, 131912 (2006).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).

Kösters, M.

Krätzig, E.

M. Brinkmann, J. Hayden, M. Letz, S. Reichel, C. Click, W. Mannstadt, B. Schreder, S. Wolff, S. Ritter, M. J. Davis, T. E. Bauer, H. Ren, Y.-H. Fan, S.-T. Wu, K. Bonrad, E. Krätzig, K. Buse, and R. A. Paquin, “Optical materials and their properties,” in Springer Handbook of Lasers and Optics, F. Träger, ed. (Springer, 2006), pp. 300-306.

Krause, D.

H. Bach and D. Krause, Low Thermal Expansion Glass Ceramics (Springer, 2005).
[CrossRef]

Lancry, M.

Lapucci, A.

Laurell, F.

Lauria, A.

A. Paleari, E. Franchina, N. Chiodini, A. Lauria, E. Bricchi, and P. G. Kazansky, “SnO2 nanoparticles in silica: nanosized tools for femtosecond-laser machining of refractive index patterns,” Appl. Phys. Lett. 88, 131912 (2006).
[CrossRef]

Lee, K.

Lemaire, P. J.

Letz, M.

M. Brinkmann, J. Hayden, M. Letz, S. Reichel, C. Click, W. Mannstadt, B. Schreder, S. Wolff, S. Ritter, M. J. Davis, T. E. Bauer, H. Ren, Y.-H. Fan, S.-T. Wu, K. Bonrad, E. Krätzig, K. Buse, and R. A. Paquin, “Optical materials and their properties,” in Springer Handbook of Lasers and Optics, F. Träger, ed. (Springer, 2006), pp. 300-306.

Livingston, F. E.

F. E. Livingston and H. Helvajian, “Variable UV laser exposure processing of photosensitive glass-ceramics: maskless micro- to mesoscale structure fabrication,” Appl. Phys. A 81, 1569-1581 (2005).
[CrossRef]

F. E. Livingston, P. M. Adams, and H. Helvajian, “Active photo-physical processes in the pulsed UV nanosecond laser exposure of photostructurable glass ceramic materials,” Proc. SPIE 5662, 44-50 (2004).
[CrossRef]

Long, X.-C.

X.-C. Long and S. R. Brueck, “Large photosensitivity in lead-silicate glasses,” Appl. Phys. Lett. 74, 2110-2112 (1999).
[CrossRef]

Lu, J.

Malyarevich, A. M.

Mannstadt, W.

M. Brinkmann, J. Hayden, M. Letz, S. Reichel, C. Click, W. Mannstadt, B. Schreder, S. Wolff, S. Ritter, M. J. Davis, T. E. Bauer, H. Ren, Y.-H. Fan, S.-T. Wu, K. Bonrad, E. Krätzig, K. Buse, and R. A. Paquin, “Optical materials and their properties,” in Springer Handbook of Lasers and Optics, F. Träger, ed. (Springer, 2006), pp. 300-306.

Masuda, M.

Y. Cheng, K. Sugioka, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, and K. Midorikawa, “3D microstructuring inside Foturan glass by femtosecond laser,” RIKEN Rev. 50, 101-106 (2003).

Menke, Y.

Midorikawa, K.

Y. Cheng, K. Sugioka, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, and K. Midorikawa, “3D microstructuring inside Foturan glass by femtosecond laser,” RIKEN Rev. 50, 101-106 (2003).

Milanese, G.

Minamikawa, H.

.H. Minamikawa, K. Ohara, and N. Goto, “Low expansion transparent glass-ceramics, glass-ceramic substrate and optical waveguide element,” U.S. patent 7,148,164 (12 December 2006).

Mizrahi, V.

Modaavis, R. A.

D. L. Weidman, G. H. Beall, K. C. Chyung, G. L. Francis, R. A. Modaavis, and R. M. Morena, “A novel negative expansion substrate material for athermalizing fiber Bragg gratings,” in Proceedings of 22nd European Conference on Optical Communication (1996), Vol. 1, paper MoB.3.5, pp. 61-64.

Morena, R. M.

D. L. Weidman, G. H. Beall, K. C. Chyung, G. L. Francis, R. A. Modaavis, and R. M. Morena, “A novel negative expansion substrate material for athermalizing fiber Bragg gratings,” in Proceedings of 22nd European Conference on Optical Communication (1996), Vol. 1, paper MoB.3.5, pp. 61-64.

Niay, P.

Ohara, K.

.H. Minamikawa, K. Ohara, and N. Goto, “Low expansion transparent glass-ceramics, glass-ceramic substrate and optical waveguide element,” U.S. patent 7,148,164 (12 December 2006).

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).

Paleari, A.

A. Paleari, E. Franchina, N. Chiodini, A. Lauria, E. Bricchi, and P. G. Kazansky, “SnO2 nanoparticles in silica: nanosized tools for femtosecond-laser machining of refractive index patterns,” Appl. Phys. Lett. 88, 131912 (2006).
[CrossRef]

N. Chiodini, A. Paleari, G. Spinolo, P. Crespi, “Photorefractivity in SiO2∶SnO2 glass-ceramics by visible light,” J. Non-Cryst. Solids 322, 266-271 (2003).
[CrossRef]

N. Chiodini, A. Paleari, and G. Spinolo, “Photorefractivity in nanostructured tin-silicate glass ceramics: a radiation-induced nanocluster size effect,” Phys. Rev. Lett. 90, 055507 (2003).
[CrossRef] [PubMed]

Paquin, R. A.

M. Brinkmann, J. Hayden, M. Letz, S. Reichel, C. Click, W. Mannstadt, B. Schreder, S. Wolff, S. Ritter, M. J. Davis, T. E. Bauer, H. Ren, Y.-H. Fan, S.-T. Wu, K. Bonrad, E. Krätzig, K. Buse, and R. A. Paquin, “Optical materials and their properties,” in Springer Handbook of Lasers and Optics, F. Träger, ed. (Springer, 2006), pp. 300-306.

Partovi, A.

Polensky, D. G.

N. Goto, M. Kataoka, and D. G. Polensky, “Glass-ceramics for a light filter,” U.S. patent 6,677,259 (13 January 2004).

Poumellec, B.

Psaltis, D.

Reichel, S.

M. Brinkmann, J. Hayden, M. Letz, S. Reichel, C. Click, W. Mannstadt, B. Schreder, S. Wolff, S. Ritter, M. J. Davis, T. E. Bauer, H. Ren, Y.-H. Fan, S.-T. Wu, K. Bonrad, E. Krätzig, K. Buse, and R. A. Paquin, “Optical materials and their properties,” in Springer Handbook of Lasers and Optics, F. Träger, ed. (Springer, 2006), pp. 300-306.

Ren, H.

M. Brinkmann, J. Hayden, M. Letz, S. Reichel, C. Click, W. Mannstadt, B. Schreder, S. Wolff, S. Ritter, M. J. Davis, T. E. Bauer, H. Ren, Y.-H. Fan, S.-T. Wu, K. Bonrad, E. Krätzig, K. Buse, and R. A. Paquin, “Optical materials and their properties,” in Springer Handbook of Lasers and Optics, F. Träger, ed. (Springer, 2006), pp. 300-306.

Richardson, K. C.

Ritter, S.

M. Brinkmann, J. Hayden, M. Letz, S. Reichel, C. Click, W. Mannstadt, B. Schreder, S. Wolff, S. Ritter, M. J. Davis, T. E. Bauer, H. Ren, Y.-H. Fan, S.-T. Wu, K. Bonrad, E. Krätzig, K. Buse, and R. A. Paquin, “Optical materials and their properties,” in Springer Handbook of Lasers and Optics, F. Träger, ed. (Springer, 2006), pp. 300-306.

Rotari, E.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

Sahu, J. K.

Saka, N.

C. N. Chu, N. Saka, and N. P. Suh, “Negative thermal expansion ceramics: a review,” Mater. Sci. Eng. 95, 303-308 (1987).
[CrossRef]

Schneider, J. F.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

Schreder, B.

M. Brinkmann, J. Hayden, M. Letz, S. Reichel, C. Click, W. Mannstadt, B. Schreder, S. Wolff, S. Ritter, M. J. Davis, T. E. Bauer, H. Ren, Y.-H. Fan, S.-T. Wu, K. Bonrad, E. Krätzig, K. Buse, and R. A. Paquin, “Optical materials and their properties,” in Springer Handbook of Lasers and Optics, F. Träger, ed. (Springer, 2006), pp. 300-306.

Shashkin, A. V.

Shihoyama, K.

Y. Cheng, K. Sugioka, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, and K. Midorikawa, “3D microstructuring inside Foturan glass by femtosecond laser,” RIKEN Rev. 50, 101-106 (2003).

Smirnov, V. I.

O. M. Efimov, L. G. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38, 619-627 (1999).
[CrossRef]

L. B. Glebov and V. I. Smirnov, “Sensitization of photo-thermo-refractive glass to visible radiation by two-step illumination,” U.S. patent 7,326,500 (5 February 2008).

Spinolo, G.

N. Chiodini, A. Paleari, and G. Spinolo, “Photorefractivity in nanostructured tin-silicate glass ceramics: a radiation-induced nanocluster size effect,” Phys. Rev. Lett. 90, 055507 (2003).
[CrossRef] [PubMed]

N. Chiodini, A. Paleari, G. Spinolo, P. Crespi, “Photorefractivity in SiO2∶SnO2 glass-ceramics by visible light,” J. Non-Cryst. Solids 322, 266-271 (2003).
[CrossRef]

Stookey, S. D.

S. D. Stookey, “Photosensitive glass--A new photographic medium,” Ind. Eng. Chem. 41, 856 (1949).
[CrossRef]

Strasser, T. A.

Sugioka, K.

Y. Cheng, K. Sugioka, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, and K. Midorikawa, “3D microstructuring inside Foturan glass by femtosecond laser,” RIKEN Rev. 50, 101-106 (2003).

Suh, N. P.

C. N. Chu, N. Saka, and N. P. Suh, “Negative thermal expansion ceramics: a review,” Mater. Sci. Eng. 95, 303-308 (1987).
[CrossRef]

Takaichi, K.

Toyoda, K.

Y. Cheng, K. Sugioka, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, and K. Midorikawa, “3D microstructuring inside Foturan glass by femtosecond laser,” RIKEN Rev. 50, 101-106 (2003).

Ueda, K.

Volk, Y. V.

Wang, P.

Weidman, D. L.

D. L. Weidman, G. H. Beall, K. C. Chyung, G. L. Francis, R. A. Modaavis, and R. M. Morena, “A novel negative expansion substrate material for athermalizing fiber Bragg gratings,” in Proceedings of 22nd European Conference on Optical Communication (1996), Vol. 1, paper MoB.3.5, pp. 61-64.

Werner-Zwanziger, U.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

Wilson, W. L.

Wolff, S.

M. Brinkmann, J. Hayden, M. Letz, S. Reichel, C. Click, W. Mannstadt, B. Schreder, S. Wolff, S. Ritter, M. J. Davis, T. E. Bauer, H. Ren, Y.-H. Fan, S.-T. Wu, K. Bonrad, E. Krätzig, K. Buse, and R. A. Paquin, “Optical materials and their properties,” in Springer Handbook of Lasers and Optics, F. Träger, ed. (Springer, 2006), pp. 300-306.

Wu, S.-T.

M. Brinkmann, J. Hayden, M. Letz, S. Reichel, C. Click, W. Mannstadt, B. Schreder, S. Wolff, S. Ritter, M. J. Davis, T. E. Bauer, H. Ren, Y.-H. Fan, S.-T. Wu, K. Bonrad, E. Krätzig, K. Buse, and R. A. Paquin, “Optical materials and their properties,” in Springer Handbook of Lasers and Optics, F. Träger, ed. (Springer, 2006), pp. 300-306.

Yagi, H.

Yanagitani, T.

Yumashev, K. V.

Zanotto, E. D.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

Zhilin, A. A.

Zwanziger, J. W.

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

Appl. Opt. (7)

Y. Feng, J. Lu, K. Takaichi, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Passively Q-switched ceramic Nd3+:YAG/Cr4+:YAG lasers,” Appl. Opt. 43, 2944-2947(2004).
[CrossRef] [PubMed]

M. Ciofini and A. Lapucci, “Efficiency optimization for a diode-pumped Nd:YAG ceramic slab laser,” Appl. Opt. 44, 4388-4393 (2005).
[CrossRef] [PubMed]

A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, O. S. Dymshits, A. A. Zhilin, and U. Kang, “Cobalt-doped transparent glass ceramic as a saturable absorber Q switch for erbium:glass lasers,” Appl. Opt. 40, 4322-4325 (2001).
[CrossRef]

Y. V. Volk, A. M. Malyarevich, K. V. Yumashev, O. S. Dymshits, A. V. Shashkin, A. A. Zhilin, U. Kang, and K. Lee, “Influence of reducing-oxidizing conditions on the optical properties of Co2+-doped magnesium aluminosilicate glass ceramics and their use as an effective saturable absorber Q switch,” Appl. Opt. 43, 6011-6015 (2004).
[CrossRef] [PubMed]

T. Erdogan, A. Partovi, V. Mizrahi, P. J. Lemaire, W. L. Wilson, T. A. Strasser, and A. M. Glass, “Volume gratings for holographic storage applications written in high-quality germanosilicate glass,” Appl. Opt. 34, 6738-6743 (1995).
[CrossRef] [PubMed]

M. Kösters, H.-T. Hsieh, D. Psaltis, and K. Buse, “Holography in commercially available photoetchable glasses,” Appl. Opt. 44, 3399-3402 (2005).
[CrossRef] [PubMed]

O. M. Efimov, L. G. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38, 619-627 (1999).
[CrossRef]

Appl. Phys. A (1)

F. E. Livingston and H. Helvajian, “Variable UV laser exposure processing of photosensitive glass-ceramics: maskless micro- to mesoscale structure fabrication,” Appl. Phys. A 81, 1569-1581 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

A. Paleari, E. Franchina, N. Chiodini, A. Lauria, E. Bricchi, and P. G. Kazansky, “SnO2 nanoparticles in silica: nanosized tools for femtosecond-laser machining of refractive index patterns,” Appl. Phys. Lett. 88, 131912 (2006).
[CrossRef]

X.-C. Long and S. R. Brueck, “Large photosensitivity in lead-silicate glasses,” Appl. Phys. Lett. 74, 2110-2112 (1999).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).

Ind. Eng. Chem. (1)

S. D. Stookey, “Photosensitive glass--A new photographic medium,” Ind. Eng. Chem. 41, 856 (1949).
[CrossRef]

J. Appl. Phys. (1)

J. W. Zwanziger, U. Werner-Zwanziger, E. D. Zanotto, E. Rotari, L. N. Glebova, L. B. Glebov, and J. F. Schneider, “Residual internal stress in partially crystallized photothermorefractive glass: evaluation by nuclear magnetic resonance spectroscopy and first principles calculations,” J. Appl. Phys. 99, 083511 (2006).
[CrossRef]

J. Non-Cryst. Solids (1)

N. Chiodini, A. Paleari, G. Spinolo, P. Crespi, “Photorefractivity in SiO2∶SnO2 glass-ceramics by visible light,” J. Non-Cryst. Solids 322, 266-271 (2003).
[CrossRef]

Mater. Sci. Eng. (1)

C. N. Chu, N. Saka, and N. P. Suh, “Negative thermal expansion ceramics: a review,” Mater. Sci. Eng. 95, 303-308 (1987).
[CrossRef]

Nat. Photon. (1)

A. Ikesue and V. L. Aung, “Ceramic laser materials,” Nat. Photon. 2, 721-727 (2008).
[CrossRef]

Opt. Express (2)

Phys. Rev. Lett. (1)

N. Chiodini, A. Paleari, and G. Spinolo, “Photorefractivity in nanostructured tin-silicate glass ceramics: a radiation-induced nanocluster size effect,” Phys. Rev. Lett. 90, 055507 (2003).
[CrossRef] [PubMed]

Proc. SPIE (2)

P. D. Fuqua, S. W. Janson, W. W. Hansen, and H. Helvajian, “Fabrication of true 3D microstructures in glass/ceramic materials by pulsed UV laser volumetric exposure techniques,” Proc. SPIE 3618, 213-220 (1999).
[CrossRef]

F. E. Livingston, P. M. Adams, and H. Helvajian, “Active photo-physical processes in the pulsed UV nanosecond laser exposure of photostructurable glass ceramic materials,” Proc. SPIE 5662, 44-50 (2004).
[CrossRef]

RIKEN Rev. (1)

Y. Cheng, K. Sugioka, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, and K. Midorikawa, “3D microstructuring inside Foturan glass by femtosecond laser,” RIKEN Rev. 50, 101-106 (2003).

Other (11)

“Glass-ceramic substrate for DWDM thin-film filter (WMS-15)” (Ohara Corporation), http://www.ohara-inc.co.jp/en/product/electronics/wms.html.

C. Ghio, Ohara Corporation (personal communication, 2008).

L. B. Glebov and V. I. Smirnov, “Sensitization of photo-thermo-refractive glass to visible radiation by two-step illumination,” U.S. patent 7,326,500 (5 February 2008).

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).

W. Höland and G. Beall, Glass Ceramic Technology (American Ceramic Society, 2002).

M. Brinkmann, J. Hayden, M. Letz, S. Reichel, C. Click, W. Mannstadt, B. Schreder, S. Wolff, S. Ritter, M. J. Davis, T. E. Bauer, H. Ren, Y.-H. Fan, S.-T. Wu, K. Bonrad, E. Krätzig, K. Buse, and R. A. Paquin, “Optical materials and their properties,” in Springer Handbook of Lasers and Optics, F. Träger, ed. (Springer, 2006), pp. 300-306.

D. L. Weidman, G. H. Beall, K. C. Chyung, G. L. Francis, R. A. Modaavis, and R. M. Morena, “A novel negative expansion substrate material for athermalizing fiber Bragg gratings,” in Proceedings of 22nd European Conference on Optical Communication (1996), Vol. 1, paper MoB.3.5, pp. 61-64.

H. Bach and D. Krause, Low Thermal Expansion Glass Ceramics (Springer, 2005).
[CrossRef]

N. Goto, M. Kataoka, and D. G. Polensky, “Glass-ceramics for a light filter,” U.S. patent 6,677,259 (13 January 2004).

.H. Minamikawa, K. Ohara, and N. Goto, “Low expansion transparent glass-ceramics, glass-ceramic substrate and optical waveguide element,” U.S. patent 7,148,164 (12 December 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Diffraction efficiency as a function of UV dose (which we define as fluence integrated over the entire exposure), for gratings written at 248 nm .

Fig. 2
Fig. 2

Diffraction efficiency versus incident beam angular offset from the Bragg angle. The squares are measured, and the continuous curve is an empirical Lorentzian fit to the data. The grating was written with 30 kJ / cm 2 at 248 nm .

Fig. 3
Fig. 3

Refractive index modulation depth for gratings written at 248 nm (squares) and 193 nm (circles). The dashed vertical line divides the low- and high-UV-dose regimes.

Fig. 4
Fig. 4

Bragg diffraction efficiency versus UV dose for a grating written at 248 nm and subsequently annealed at various temperatures. (a) Log-log plot to emphasize effects at a low-UV dose. (b) The same data plotted on linear axes to emphasize the effects at a high-UV dose.

Fig. 5
Fig. 5

Bragg diffraction efficiency versus annealing temperature for a grating written at 248 nm . This figure presents an alternative view of the same data as Fig. 4.

Fig. 6
Fig. 6

Optical absorption spectra for a 3 mm thick WMS-15 glass-ceramic slab. Three spectra are shown: unprocessed sample (solid curve), 0.03 kJ / cm 2 exposed sample (dashed curve), and 30 kJ / cm 2 exposed sample (dotted curve). In this representation, the low- and high-UV dose spectra are almost indistinguishable. The dashed vertical line at 248 nm marks the UV exposure wavelength.

Fig. 7
Fig. 7

Optical absorption increase due to 248 nm exposure as a function of the UV dose. The four curves represent spectral data averaged over the indicated wavelength bands.

Fig. 8
Fig. 8

Optical absorption decrease due to thermal annealing at 200 ° C of samples that had previously been exposed at 248 nm . As in Fig. 7, the four curves represent spectral data averaged over the indicated wavelength bands.

Fig. 9
Fig. 9

Spectra of total absorption increase due to UV exposure at 248 nm , followed by annealing at 200 ° C . The thick curves show low-UV dose spectra and the thin lines are the high-UV dose spectra.

Tables (4)

Tables Icon

Table 1 Chemical Composition Range of Ohara WMS-15 Glass Ceramic as Reported by the Manufacturer [29]

Tables Icon

Table 2 Stages in the Thermal Annealing of the Glass-Ceramic Gratings

Tables Icon

Table 3 Measured Absorption Depth at 248 nm and Grating Thickness for Unexposed, Weakly Exposed, and Strongly Exposed Glass-Ceramic Samples a

Tables Icon

Table 4 Summary of Differences Between Low-Energy-Dose and High-Energy-Dose Changes in WMS-15 Glass Ceramic Exposed at 248 nm

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d Λ 2 Δ θ ½ .
d 1.5 λ 2 Δ θ ½ π n sin θ B .
Δ n = λ cos θ B π d arcsin η .
Q = 2 π λ d n Λ 2 .
η a b s = exp ( 2 α a v d cos θ B ) × sinh 2 ( Δ α u v d 2 cos θ B ) .
λ B = 2 n Λ ,
Δ λ B = 1 λ B d λ B d T = 2 Λ λ B ( ξ + n α ) ,

Metrics