Abstract

A novel design of a 25-layer metal–dielectric nonpolarizing beam splitter in a cube is proposed by use of the optimization method and is theoretically investigated. The simulations of the reflectance and differential phases induced by reflection and transmission are presented. The simulation results reveal that both the amplitude and the phase characteristics of the nonpolarizing beam splitter could realize the design targets, the differences between the simulated and the target reflectance of 50% are less than 2%, and the differential phases are less than 3° in the range of 530nm570nm for both p and s components.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. R. Costich, “Reduction of polarization effects in interference coatings,” Appl. Opt. 9, 866-870 (1970).
    [CrossRef] [PubMed]
  2. H. F. Mahlein, “Nonpolarizing beam splitters,” Opt. Acta 21, 577-583 (1974).
    [CrossRef]
  3. A. Thelen, “Nonpolarizing interference films inside a glass cube,” Appl. Opt. 15, 2983-2985 (1976).
    [CrossRef] [PubMed]
  4. Z. Knittl and H. Houserkova, “Equivalent layers in oblique incidence: the problem of unsplit admittances and depolarization of partial reflectors,” Appl. Opt. 21, 2055-2068 (1982).
    [CrossRef] [PubMed]
  5. J. Ciosek, “Nonpolarizing beam splitter inside a glass cube,” Proc. SPIE 2943, 179-183 (1996).
    [CrossRef]
  6. J. Ciosek, J. A. Dobrowolski, G. A. Clarke, and G. Laframboise, “Design and manufacture of all-dielectric nonpolarizing beam splitters,” Appl. Opt. 38, 1244-1250 (1999).
    [CrossRef]
  7. P. Baumeister, Optical Coating Technology (SPIE, 2004).
    [CrossRef]
  8. H. Qi, R. Hong, K. Yi, J. Shao, and Z. Fan, “Nonpolarizing and polarizing filter design,” Appl. Opt. 44, 2343-2348 (2005).
    [CrossRef] [PubMed]
  9. X. Xu, J. Shao, and Z. Fan, “Nonpolarizing beam splitter designed by frustrated total internal reflection inside a glass cube,” Appl. Opt. 45, 4297-4302 (2006).
    [CrossRef] [PubMed]
  10. J. H. Shi and Z. P. Wang, “Theoretical analysis of two nonpolarizing beam splitters in asymmetrical glass cubes,” Appl. Opt. 47, C275-C278 (2008).
    [CrossRef] [PubMed]
  11. J. H. Shi and Z. P. Wang, “Designs of infrared nonpolarizing beam splitters with a Ag layer in a glass cube,” Appl. Opt. 47, 2619-2622 (2008).
    [CrossRef] [PubMed]
  12. M. Tilsch and K. Hendrix, “Optical Interference Coatings Design Contest 2007: triple bandpass filter and nonpolarizing beam splitter,” Appl. Opt. 47, C55-C69(2008).
  13. R. R. Willey, “Building blocks for nonpolarizing optical coatings,” Appl. Opt. 47, 6230-6235 (2008).
    [CrossRef] [PubMed]
  14. L. Y. Chang and S. H. Mo, “Design of nonpolarizing prism beam splitter,” in Optical Interference Coatings, Vol. 6 of 1988 OSA Technical Digest Series (Optical Society of America, 1988), pp. 381-384.
  15. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493-5508 (1996).
    [CrossRef] [PubMed]
  16. L. G. Schulz, “The optical constants of silver, gold, copper, and aluminum. I. The absorption coefficient k,” J. Opt. Soc. Am. 44, 357-362 (1954).
    [CrossRef]
  17. L. G. Schulz and F. R. Tangherlini, “Optical constants of silver, gold, copper, and aluminum. II. The index of refraction n, ” J. Opt. Soc. Am. 44, 362-367 (1954).
    [CrossRef]
  18. D. H. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, 2003), p. 486.

2008 (4)

2006 (1)

2005 (1)

1999 (1)

1996 (2)

1982 (1)

1976 (1)

1974 (1)

H. F. Mahlein, “Nonpolarizing beam splitters,” Opt. Acta 21, 577-583 (1974).
[CrossRef]

1970 (1)

1954 (2)

Baumeister, P.

P. Baumeister, Optical Coating Technology (SPIE, 2004).
[CrossRef]

Chang, L. Y.

L. Y. Chang and S. H. Mo, “Design of nonpolarizing prism beam splitter,” in Optical Interference Coatings, Vol. 6 of 1988 OSA Technical Digest Series (Optical Society of America, 1988), pp. 381-384.

Ciosek, J.

Clarke, G. A.

Costich, V. R.

DeBell, G. W.

Dobrowolski, J. A.

Fan, Z.

Goldstein, D. H.

D. H. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, 2003), p. 486.

Hendrix, K.

M. Tilsch and K. Hendrix, “Optical Interference Coatings Design Contest 2007: triple bandpass filter and nonpolarizing beam splitter,” Appl. Opt. 47, C55-C69(2008).

Hong, R.

Houserkova, H.

Knittl, Z.

Laframboise, G.

Mahlein, H. F.

H. F. Mahlein, “Nonpolarizing beam splitters,” Opt. Acta 21, 577-583 (1974).
[CrossRef]

Mo, S. H.

L. Y. Chang and S. H. Mo, “Design of nonpolarizing prism beam splitter,” in Optical Interference Coatings, Vol. 6 of 1988 OSA Technical Digest Series (Optical Society of America, 1988), pp. 381-384.

Opt, Appl.

M. Tilsch and K. Hendrix, “Optical Interference Coatings Design Contest 2007: triple bandpass filter and nonpolarizing beam splitter,” Appl. Opt. 47, C55-C69(2008).

Qi, H.

Schulz, L. G.

Shao, J.

Shi, J. H.

Tangherlini, F. R.

Thelen, A.

Tikhonravov, A. V.

Tilsch, M.

M. Tilsch and K. Hendrix, “Optical Interference Coatings Design Contest 2007: triple bandpass filter and nonpolarizing beam splitter,” Appl. Opt. 47, C55-C69(2008).

Trubetskov, M. K.

Wang, Z. P.

Willey, R. R.

Xu, X.

Yi, K.

Appl. Opt. (10)

V. R. Costich, “Reduction of polarization effects in interference coatings,” Appl. Opt. 9, 866-870 (1970).
[CrossRef] [PubMed]

A. Thelen, “Nonpolarizing interference films inside a glass cube,” Appl. Opt. 15, 2983-2985 (1976).
[CrossRef] [PubMed]

Z. Knittl and H. Houserkova, “Equivalent layers in oblique incidence: the problem of unsplit admittances and depolarization of partial reflectors,” Appl. Opt. 21, 2055-2068 (1982).
[CrossRef] [PubMed]

H. Qi, R. Hong, K. Yi, J. Shao, and Z. Fan, “Nonpolarizing and polarizing filter design,” Appl. Opt. 44, 2343-2348 (2005).
[CrossRef] [PubMed]

X. Xu, J. Shao, and Z. Fan, “Nonpolarizing beam splitter designed by frustrated total internal reflection inside a glass cube,” Appl. Opt. 45, 4297-4302 (2006).
[CrossRef] [PubMed]

J. H. Shi and Z. P. Wang, “Theoretical analysis of two nonpolarizing beam splitters in asymmetrical glass cubes,” Appl. Opt. 47, C275-C278 (2008).
[CrossRef] [PubMed]

J. H. Shi and Z. P. Wang, “Designs of infrared nonpolarizing beam splitters with a Ag layer in a glass cube,” Appl. Opt. 47, 2619-2622 (2008).
[CrossRef] [PubMed]

J. Ciosek, J. A. Dobrowolski, G. A. Clarke, and G. Laframboise, “Design and manufacture of all-dielectric nonpolarizing beam splitters,” Appl. Opt. 38, 1244-1250 (1999).
[CrossRef]

R. R. Willey, “Building blocks for nonpolarizing optical coatings,” Appl. Opt. 47, 6230-6235 (2008).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493-5508 (1996).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (2)

Opt. Acta (1)

H. F. Mahlein, “Nonpolarizing beam splitters,” Opt. Acta 21, 577-583 (1974).
[CrossRef]

Proc. SPIE (1)

J. Ciosek, “Nonpolarizing beam splitter inside a glass cube,” Proc. SPIE 2943, 179-183 (1996).
[CrossRef]

Other (4)

M. Tilsch and K. Hendrix, “Optical Interference Coatings Design Contest 2007: triple bandpass filter and nonpolarizing beam splitter,” Appl. Opt. 47, C55-C69(2008).

D. H. Goldstein, Polarized Light, 2nd ed. (Marcel Dekker, 2003), p. 486.

L. Y. Chang and S. H. Mo, “Design of nonpolarizing prism beam splitter,” in Optical Interference Coatings, Vol. 6 of 1988 OSA Technical Digest Series (Optical Society of America, 1988), pp. 381-384.

P. Baumeister, Optical Coating Technology (SPIE, 2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of ideal NPBS.

Fig. 2
Fig. 2

Reflectance of the NPBS composed of metal–dielectric thin films.

Fig. 3
Fig. 3

Differential phase of the NPBS composed of metal–dielectric thin films.

Fig. 4
Fig. 4

Reflectance of the NPBS composed of metal–dielectric thin films at different incident angles.

Fig. 5
Fig. 5

Differential phase of the NPBS composed of metal–dielectric thin films at different incident angles. The curves regarding the angles align as the arrow direction for Δ r and Δ t , which denote differential phase induced by reflection and transmission.

Fig. 6
Fig. 6

Reflectance of the NPBS with 5% error thickness of the 24th Ag layer. The curves regarding the thickness align as the arrow direction for s and p components, where T denotes the original thickness of the 24th Ag layer.

Fig. 7
Fig. 7

Differential phase of the NPBS with 5% error thickness of the 24th Ag layer. The curves regarding the thickness align as the arrow direction for Δ r and Δ t , which denote differential phase induced by reflection and transmission.

Fig. 8
Fig. 8

Reflectance of the original and the reversed NPBS.

Fig. 9
Fig. 9

Differential phase of the original and the reversed NPBS. Δ r and Δ t denote differential phases induced by reflection and transmission.

Fig. 10
Fig. 10

Absorptance of the metal–dielectric NPBS at an incident angle of 45 ° .

Tables (3)

Tables Icon

Table 1 Optical Constants of the Materials

Tables Icon

Table 2 Thicknesses of Optical Thin Films (nm)

Tables Icon

Table 3 Optimization Data of the Nonpolarizing Beam Splitter

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n p = n / cos θ ,
n s = n cos θ .
Δ n = n p / n s ,
R p min = ( k / n 1 + 1 + ( k / n ) 2 ) 2 .
| R p R s | < 2 % , | R p 50 % | < 2 % , | R s 50 % | < 2 % , | Δ r | < 3 ° , | Δ t | < 3 ° .
| R p R s | = 1.26 % < 2 % , | R p 50 % | = 0.10 % < 2 % , | R s 50 % | = 1.16 % < 2 % , | Δ r | = 1.83 ° < 3 ° , | Δ t | = 1.36 ° < 3 ° .
R p = ( n 1 / cos θ ) 2 + k 2 ( n + 1 / cos θ ) 2 + k 2 .
cos θ = 1 n 2 + k 2 .
R p min = ( k / n 1 + 1 + ( k / n ) 2 ) 2 .

Metrics