Abstract

We present a technique for programming the source of the spherical reference illumination in digital in-line holography using digital micromirror devices. The programmable point source is achieved by individually addressing the elements of a digital micromirror device to spatially control the illumination of the object located at some distance from the source of the spherical reference field. By moving the location of the “ON” element on the digital micromirror device, translation of both the source of the spherical reference beam and the captured holograms is achieved. Results obtained through numerical recon struction of these translated holograms shows the possibility of expanding the field of view by about 263%.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars and P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
    [CrossRef]
  2. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD-target and numerical reconstruction,” Appl. Opt. 33, 179-181 (1994).
    [CrossRef] [PubMed]
  3. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367-5375 (2002).
    [CrossRef] [PubMed]
  4. W. Xu, M. H. Jerico, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
    [CrossRef] [PubMed]
  5. J. P. Ryle, U. Gopinathan, S. McDonnell, T. J. Naughton, and J. T. Sheridan, “Digital in-line holography of biological specimens,” Proc. SPIE 6311, 63110C (2006).
    [CrossRef]
  6. J. Garcia-Sucerquia, W. Xu, S. Jericho, M. H. Jericho, P. Klages, and H. J. Kreuzer, “Resolution power in digital in-line holography,” Proc. SPIE 6027, 637-644 (2006).
  7. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
    [CrossRef] [PubMed]
  8. S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
    [CrossRef]
  9. U. Gopinathan, G. Pedrini, and W. Osten, “Coherence effects in digital in-line holographic microscopy,” J. Opt. Soc. Am. A 25, 2459-2466 (2008).
    [CrossRef]
  10. L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29, 1132-1134 (2004).
    [CrossRef] [PubMed]
  11. H. J. Kreuzer, M. H. Jerico, I. A. Meinertzhagen, and W. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10729-10741 (2001).
    [CrossRef]
  12. S. Shin, M. Park, L. K. Han, and J. Son, “Digital holographic microscope with a wide field of view,” Proc. SPIE 6016, 307-315 (2005).
  13. J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, “High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning,” Appl. Opt. 47, 5654-5659 (2008).
    [CrossRef] [PubMed]
  14. A. L. P. Dlugan and C. E. MacAulay, “Update on the use of digital micromirror devices in quantitative microscopy,” Proc. SPIE 3604, 253-262 (1999).
    [CrossRef]
  15. V. Bansal, S. Patel, and P. Saggau, “A high speed confocal laser-scanning microscope based on acousto-optic deflectors and a digital micromirror device,” in Proceedings of the IEEE Conference on Engineering in Medicine and Biology Society (Institute of Electrical and Electronics Engineers, 2003), pp. 17-21.
  16. D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14-25 (2003).
    [CrossRef]
  17. K. J. Kearney and Z. Ninkov, “Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81-92 (1998).
    [CrossRef]
  18. R. S. Nesbitt, S. L. Smith, R. A. Molnar, and S. A. Benton, “Holographic recording using a digital micromirror device,” Proc. SPIE 3637, 12-20 (1999).
    [CrossRef]
  19. T. Kreis, P. Aswendt, and R. Höfling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926-933 (2001).
    [CrossRef]
  20. B. E. A. Saleh and M. C. Teich, Fundamental of Photonics (Wiley, 1991), Chap. 3.
    [CrossRef]

2008 (2)

2006 (4)

J. P. Ryle, U. Gopinathan, S. McDonnell, T. J. Naughton, and J. T. Sheridan, “Digital in-line holography of biological specimens,” Proc. SPIE 6311, 63110C (2006).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. Jericho, M. H. Jericho, P. Klages, and H. J. Kreuzer, “Resolution power in digital in-line holography,” Proc. SPIE 6027, 637-644 (2006).

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef] [PubMed]

2005 (1)

S. Shin, M. Park, L. K. Han, and J. Son, “Digital holographic microscope with a wide field of view,” Proc. SPIE 6016, 307-315 (2005).

2004 (1)

2003 (1)

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14-25 (2003).
[CrossRef]

2002 (2)

U. Schnars and P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367-5375 (2002).
[CrossRef] [PubMed]

2001 (3)

T. Kreis, P. Aswendt, and R. Höfling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926-933 (2001).
[CrossRef]

H. J. Kreuzer, M. H. Jerico, I. A. Meinertzhagen, and W. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10729-10741 (2001).
[CrossRef]

W. Xu, M. H. Jerico, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef] [PubMed]

1999 (2)

R. S. Nesbitt, S. L. Smith, R. A. Molnar, and S. A. Benton, “Holographic recording using a digital micromirror device,” Proc. SPIE 3637, 12-20 (1999).
[CrossRef]

A. L. P. Dlugan and C. E. MacAulay, “Update on the use of digital micromirror devices in quantitative microscopy,” Proc. SPIE 3604, 253-262 (1999).
[CrossRef]

1998 (1)

K. J. Kearney and Z. Ninkov, “Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81-92 (1998).
[CrossRef]

1994 (1)

Aswendt, P.

T. Kreis, P. Aswendt, and R. Höfling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926-933 (2001).
[CrossRef]

Bansal, V.

V. Bansal, S. Patel, and P. Saggau, “A high speed confocal laser-scanning microscope based on acousto-optic deflectors and a digital micromirror device,” in Proceedings of the IEEE Conference on Engineering in Medicine and Biology Society (Institute of Electrical and Electronics Engineers, 2003), pp. 17-21.

Benton, S. A.

R. S. Nesbitt, S. L. Smith, R. A. Molnar, and S. A. Benton, “Holographic recording using a digital micromirror device,” Proc. SPIE 3637, 12-20 (1999).
[CrossRef]

Di, J.

Dlugan, A. L. P.

A. L. P. Dlugan and C. E. MacAulay, “Update on the use of digital micromirror devices in quantitative microscopy,” Proc. SPIE 3604, 253-262 (1999).
[CrossRef]

Dudley, D.

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14-25 (2003).
[CrossRef]

Duncan, W. M.

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14-25 (2003).
[CrossRef]

Fan, Q.

Garcia-Sucerquia, J.

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. Jericho, M. H. Jericho, P. Klages, and H. J. Kreuzer, “Resolution power in digital in-line holography,” Proc. SPIE 6027, 637-644 (2006).

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef] [PubMed]

Gopinathan, U.

U. Gopinathan, G. Pedrini, and W. Osten, “Coherence effects in digital in-line holographic microscopy,” J. Opt. Soc. Am. A 25, 2459-2466 (2008).
[CrossRef]

J. P. Ryle, U. Gopinathan, S. McDonnell, T. J. Naughton, and J. T. Sheridan, “Digital in-line holography of biological specimens,” Proc. SPIE 6311, 63110C (2006).
[CrossRef]

Han, L. K.

S. Shin, M. Park, L. K. Han, and J. Son, “Digital holographic microscope with a wide field of view,” Proc. SPIE 6016, 307-315 (2005).

Höfling, R.

T. Kreis, P. Aswendt, and R. Höfling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926-933 (2001).
[CrossRef]

Jericho, M. H.

Jericho, S.

J. Garcia-Sucerquia, W. Xu, S. Jericho, M. H. Jericho, P. Klages, and H. J. Kreuzer, “Resolution power in digital in-line holography,” Proc. SPIE 6027, 637-644 (2006).

Jericho, S. K.

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef] [PubMed]

Jerico, M. H.

H. J. Kreuzer, M. H. Jerico, I. A. Meinertzhagen, and W. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10729-10741 (2001).
[CrossRef]

W. Xu, M. H. Jerico, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Jiang, H.

Jüptner, P. O.

U. Schnars and P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Jüptner, W.

Kearney, K. J.

K. J. Kearney and Z. Ninkov, “Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81-92 (1998).
[CrossRef]

Klages, P.

J. Garcia-Sucerquia, W. Xu, S. Jericho, M. H. Jericho, P. Klages, and H. J. Kreuzer, “Resolution power in digital in-line holography,” Proc. SPIE 6027, 637-644 (2006).

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef] [PubMed]

Kreis, T.

T. Kreis, P. Aswendt, and R. Höfling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926-933 (2001).
[CrossRef]

Kreuzer, H. J.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef] [PubMed]

J. Garcia-Sucerquia, W. Xu, S. Jericho, M. H. Jericho, P. Klages, and H. J. Kreuzer, “Resolution power in digital in-line holography,” Proc. SPIE 6027, 637-644 (2006).

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367-5375 (2002).
[CrossRef] [PubMed]

H. J. Kreuzer, M. H. Jerico, I. A. Meinertzhagen, and W. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10729-10741 (2001).
[CrossRef]

W. Xu, M. H. Jerico, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef] [PubMed]

MacAulay, C. E.

A. L. P. Dlugan and C. E. MacAulay, “Update on the use of digital micromirror devices in quantitative microscopy,” Proc. SPIE 3604, 253-262 (1999).
[CrossRef]

McDonnell, S.

J. P. Ryle, U. Gopinathan, S. McDonnell, T. J. Naughton, and J. T. Sheridan, “Digital in-line holography of biological specimens,” Proc. SPIE 6311, 63110C (2006).
[CrossRef]

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367-5375 (2002).
[CrossRef] [PubMed]

H. J. Kreuzer, M. H. Jerico, I. A. Meinertzhagen, and W. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10729-10741 (2001).
[CrossRef]

W. Xu, M. H. Jerico, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Molnar, R. A.

R. S. Nesbitt, S. L. Smith, R. A. Molnar, and S. A. Benton, “Holographic recording using a digital micromirror device,” Proc. SPIE 3637, 12-20 (1999).
[CrossRef]

Naughton, T. J.

J. P. Ryle, U. Gopinathan, S. McDonnell, T. J. Naughton, and J. T. Sheridan, “Digital in-line holography of biological specimens,” Proc. SPIE 6311, 63110C (2006).
[CrossRef]

Nesbitt, R. S.

R. S. Nesbitt, S. L. Smith, R. A. Molnar, and S. A. Benton, “Holographic recording using a digital micromirror device,” Proc. SPIE 3637, 12-20 (1999).
[CrossRef]

Ninkov, Z.

K. J. Kearney and Z. Ninkov, “Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81-92 (1998).
[CrossRef]

Osten, W.

Park, M.

S. Shin, M. Park, L. K. Han, and J. Son, “Digital holographic microscope with a wide field of view,” Proc. SPIE 6016, 307-315 (2005).

Patel, S.

V. Bansal, S. Patel, and P. Saggau, “A high speed confocal laser-scanning microscope based on acousto-optic deflectors and a digital micromirror device,” in Proceedings of the IEEE Conference on Engineering in Medicine and Biology Society (Institute of Electrical and Electronics Engineers, 2003), pp. 17-21.

Pedrini, G.

Piano, E.

Pontiggia, C.

Repetto, L.

Ryle, J. P.

J. P. Ryle, U. Gopinathan, S. McDonnell, T. J. Naughton, and J. T. Sheridan, “Digital in-line holography of biological specimens,” Proc. SPIE 6311, 63110C (2006).
[CrossRef]

Saggau, P.

V. Bansal, S. Patel, and P. Saggau, “A high speed confocal laser-scanning microscope based on acousto-optic deflectors and a digital micromirror device,” in Proceedings of the IEEE Conference on Engineering in Medicine and Biology Society (Institute of Electrical and Electronics Engineers, 2003), pp. 17-21.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamental of Photonics (Wiley, 1991), Chap. 3.
[CrossRef]

Schnars, U.

U. Schnars and P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD-target and numerical reconstruction,” Appl. Opt. 33, 179-181 (1994).
[CrossRef] [PubMed]

Sheridan, J. T.

J. P. Ryle, U. Gopinathan, S. McDonnell, T. J. Naughton, and J. T. Sheridan, “Digital in-line holography of biological specimens,” Proc. SPIE 6311, 63110C (2006).
[CrossRef]

Shin, S.

S. Shin, M. Park, L. K. Han, and J. Son, “Digital holographic microscope with a wide field of view,” Proc. SPIE 6016, 307-315 (2005).

Slaughter, J.

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14-25 (2003).
[CrossRef]

Smith, S. L.

R. S. Nesbitt, S. L. Smith, R. A. Molnar, and S. A. Benton, “Holographic recording using a digital micromirror device,” Proc. SPIE 3637, 12-20 (1999).
[CrossRef]

Son, J.

S. Shin, M. Park, L. K. Han, and J. Son, “Digital holographic microscope with a wide field of view,” Proc. SPIE 6016, 307-315 (2005).

Sun, W.

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamental of Photonics (Wiley, 1991), Chap. 3.
[CrossRef]

Xu, W.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef] [PubMed]

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. Jericho, M. H. Jericho, P. Klages, and H. J. Kreuzer, “Resolution power in digital in-line holography,” Proc. SPIE 6027, 637-644 (2006).

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367-5375 (2002).
[CrossRef] [PubMed]

H. J. Kreuzer, M. H. Jerico, I. A. Meinertzhagen, and W. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10729-10741 (2001).
[CrossRef]

W. Xu, M. H. Jerico, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Zhang, P.

Zhao, J.

Appl. Opt. (4)

J. Opt. Soc. Am. A (1)

J. Phys. Condens. Matter (1)

H. J. Kreuzer, M. H. Jerico, I. A. Meinertzhagen, and W. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10729-10741 (2001).
[CrossRef]

Meas. Sci. Technol. (1)

U. Schnars and P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Opt. Eng. (1)

T. Kreis, P. Aswendt, and R. Höfling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926-933 (2001).
[CrossRef]

Opt. Lett. (1)

Proc. Natl. Acad. Sci. USA (1)

W. Xu, M. H. Jerico, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Proc. SPIE (7)

J. P. Ryle, U. Gopinathan, S. McDonnell, T. J. Naughton, and J. T. Sheridan, “Digital in-line holography of biological specimens,” Proc. SPIE 6311, 63110C (2006).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. Jericho, M. H. Jericho, P. Klages, and H. J. Kreuzer, “Resolution power in digital in-line holography,” Proc. SPIE 6027, 637-644 (2006).

A. L. P. Dlugan and C. E. MacAulay, “Update on the use of digital micromirror devices in quantitative microscopy,” Proc. SPIE 3604, 253-262 (1999).
[CrossRef]

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14-25 (2003).
[CrossRef]

K. J. Kearney and Z. Ninkov, “Characterization of a digital micromirror device for use as an optical mask in imaging and spectroscopy,” Proc. SPIE 3292, 81-92 (1998).
[CrossRef]

R. S. Nesbitt, S. L. Smith, R. A. Molnar, and S. A. Benton, “Holographic recording using a digital micromirror device,” Proc. SPIE 3637, 12-20 (1999).
[CrossRef]

S. Shin, M. Park, L. K. Han, and J. Son, “Digital holographic microscope with a wide field of view,” Proc. SPIE 6016, 307-315 (2005).

Rev. Sci. Instrum. (1)

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

Other (2)

V. Bansal, S. Patel, and P. Saggau, “A high speed confocal laser-scanning microscope based on acousto-optic deflectors and a digital micromirror device,” in Proceedings of the IEEE Conference on Engineering in Medicine and Biology Society (Institute of Electrical and Electronics Engineers, 2003), pp. 17-21.

B. E. A. Saleh and M. C. Teich, Fundamental of Photonics (Wiley, 1991), Chap. 3.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the programmable point-source DIH.

Fig. 2
Fig. 2

Diffraction pattern from 10 × 10 DMD elements.

Fig. 3
Fig. 3

Holograms and reconstructions of 9 μm spheres deposited on a microscope glass slide: (a), (e) Holograms. (b), (f) Contrast holograms generated from the subtraction of the background intensity from the hologram. (c), (g) Digitally reconstructed images. (d), (f) Image obtained from compound bright-field microscope. Green laser; 2.2 μm point source; S = 1.7 mm ; D = 4.3 cm ; NA = 0.103 .

Fig. 4
Fig. 4

Bright-field image and reconstructions of 9 μm spheres deposited on a microscope glass slide: (a) Image obtained from compound bright-field microscope. (b)–(d) Reconstructed images at distance S = 1.875 mm , 4.7 mm , and 7.3 mm from the point source, respectively. Green laser; 2.2 μm point source; D = 4.3 cm ; NA = 0.103 .

Fig. 5
Fig. 5

Relationship between object magnification and the estimated FOV in DIHM using 2.2 μm size point source. Green laser; D = 4.3 cm .

Fig. 6
Fig. 6

Relationship between translation in the DMD and reconstruction plane.

Fig. 7
Fig. 7

Holograms, contrast holograms, and reconstructed images for “ON” DMD mirror element positions P 3 ( ξ o , η o ) , P 2 ( ξ o 5 T ξ , η o ) , P 4 ( ξ o + 5 T ξ , η o ) , P 6 ( ξ o , η o 5 T η ) , and P 7 ( ξ o , η o + 5 T η ) . Holograms are captured at camera exposures of 12 ms at P 3 and 18 ms at P 2 , P 4 , P 6 , and P 7 mirror element positions. S = 1.875 mm ; green laser; 2.2 μm point source; D = 4.3 cm .

Fig. 8
Fig. 8

(a) Single image with wider FOV generated from combination of all reconstructed images with new objects in the initial FOV using a 2.2 μm point source. (b) Bright-field compound microscope of the microspheres showing initial FOV 0.3 mm (in broken circle) and enhanced FOV 0.79 mm (mapped out in solid black line).

Tables (1)

Tables Icon

Table 1 Estimated Translation Distance in the Digital Micromirror Device and Reconstruction Plane

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

T dmd T holo = M L ,
R ( x , y ) = A R ( x , y ) e i ϕ R ( x , y ) , O ( x , y ) = A o ( x , y ) e i ϕ o ( x , y ) ,
H ( x , y ) = R ( x , y ) + O ( x , y ) = e i ϕ R ( x , y ) ( A R + A o e i ( ϕ o ( x , y ) ϕ R ( x , y ) ) ) .
W ( x , y ) = | H ( x , y ) | 2 = Re [ A R 2 + A o 2 + 2 A R A o e i ( ϕ o ( x , y ) ϕ R ( x , y ) ) ] .
U ( X , Y ) = i λ W ( x , y ) R ( x , y ) e i 2 π λ β β ( 1 2 + 1 2 cos ψ ) d x d y ,
β = ( x X ) 2 + ( y Y ) 2 + d 2 ,
U ( X , Y , d ) = W ( x , y ) R ( x , y ) G ( X x , Y y , d ) d x d y ,
G ( X x , Y y , d ) = i λ e i 2 π λ β β .
R ( x , y ) = A R ( x , y ) e i 2 π λ D e i ϕ R ( x , y , D ) ,
O ( x , y ) = A o ( x , y ) e i 2 π λ d e i ϕ o ( x , y , d ) ,
ϕ R ( x , y , D ) = 2 π λ ( x 2 + y 2 ) 2 D ,
ϕ o ( x , y , d ) = 2 π λ ( x 2 + y 2 ) 2 d
Δ ϕ ( x , y , D ) = ϕ o ( x , y , d ) ϕ R ( x , y , D ) = 2 π λ ( x 2 + y 2 ) 2 d ^ ,
d ^ = m × d .
m = D D d = D s .
U ( X , Y , d ) = W ( x , y ) G ( X x , Y y , d ^ ) d x d y ,
G ( X x , Y y , d ^ ) = i λ e i 2 π λ β ^ β ^ ,
β ^ = ( x X ) 2 + ( y Y ) 2 + d ^ 2 .
I ( X , Y ) = | U ( X , Y ) | 2 , Φ ( X , Y ) = tan 1 ( Im ( U ( X , Y ) ) Re ( U ( X , Y ) ) ) .
W o = Δ dmd M d ,
θ = λ π W o .
R θ Z .
FOV 2 R .

Metrics