Abstract

We report on a tunable color filter with surface plasmon resonance (SPR), excited by a photorefractive (PR) diffraction grating. When a white light was incident at the diffraction grating formed by a PR effect, the SPR generated at a metal–dielectric material interface was absorbed, and the reflected light showed a complementary color. When the period of the PR diffraction grating was modified by alteration of the optic configuration, the wavelength at which the SPR excitation led to a reflection minimum changed and the spectrum of the reflected light also changed. A well-known equation was used to help us understand the experimental results. All experimental results are in good agreement with the calculation predictions. This result could lead to a new type of tunable color filter.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lammel, S. Schweizer, and Ph. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Actuators, A 92, 52-59 (2001).
    [CrossRef]
  2. G. D. Sharp, K. M. Johnson, and D. Doroski, “Continuously tunable smectic A* liquid-crystal color filter,” Opt. Lett. 15, 523-525 (1990).
    [CrossRef] [PubMed]
  3. J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532-2548 (2002).
    [CrossRef]
  4. J. M. Weissman, H. B. Sunkara, A. S. Tse, and S. A. Asher, “Thermally switchable periodicities and diffraction from mesoscopically ordered materials,” Science 274, 959-963 (1996).
    [CrossRef] [PubMed]
  5. P. J. Kajenski, “Tunable optical filter using long-range surface plasmons,” Opt. Eng. 36, 1537-1541 (1997).
    [CrossRef]
  6. S. Massenot, R. Chevallier, J. -L. De Bougrenet de la Tocnaye, and O. Parriaux, “Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material,” Opt. Commun. 275, 318-323 (2007).
    [CrossRef]
  7. O. Telezhnikova and J. Homola, “New approach to spectroscopy of surface plasmons,” Opt. Lett. 31, 3339-3341 (2006).
    [CrossRef] [PubMed]
  8. A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982).
  9. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  10. G. Fu, K. -M. Wang, X. -L. Wang, H. -J. Zhang, X. -G. Xu, H. -L. Song, and H.-J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87, 289-292 (2007).
    [CrossRef]
  11. D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
    [CrossRef]
  12. D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16, 9222-9238 (2008).
    [CrossRef] [PubMed]
  13. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Photon. 1, 402-406 (2007).
    [CrossRef]
  14. Y. Wang, “Voltage-induced color-selective absorption with surface plasmons,” Appl. Phys. Lett. 67, 2759-2761 (1995).
    [CrossRef]
  15. J.-W. Oh, C. Lee C, and N. Kim, “Influence of chromophore content on the steady-state space charge formation of poly[methyl-3-(9-carbazoly) propylsiloxane]-based polymeric photorefractive composites,” J. Appl. Phys. 104, 073709(2008).
    [CrossRef]
  16. J.-W. Oh and N. Kim, “Temperature dependence of photo-charge generation of polymeric photorefractive composite in the glass transition region,” Chem. Phys. Lett. 460, 482-485 (2008).
    [CrossRef]
  17. S. H. Lee, W. S. Jahng, K. H. Park, N. Kim, W.-J. Joo, and D. H. Choi, “Synthesis and characterization of a new photoconducting poly(siloxane) having pendant diphenylhydrazone for photorefractive applications,” Macromol. Res. 11, 431-436(2003).
    [CrossRef]
  18. W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863-9866 (2001).
    [CrossRef]
  19. J. -W. Oh and N. Kim, “Chromophore concentration effect on photorefractive performance of organic photorefractive composites,” Mol. Cryst. Liq. Cryst. 491, 53-57 (2008).
    [CrossRef]
  20. C. Fuentes-Hernandez, D. J. Suh, B. Kippelen, and S. R. Marder, “High-performance photorefractive polymers sensitized by cadmium selenide nanoparticles,” Appl. Phys. Lett. 85, 534-536 (2004).
    [CrossRef]
  21. J.-W. Oh, W.-J. I. K. Moon, C.-S. Choi, and N. Kim, “Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite,” J. Phys. Chem. B 113, 1592-1597 (2009).
    [CrossRef] [PubMed]
  22. M. A. Diaz-Garcia, D. Wright, B. Smith, E. Glazer, W. E. Moerner, I. Sukhomlinova, and R. J. Twieg, “Photorefractive Properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784-1791 (1999).
    [CrossRef]
  23. S. J. Zilker and U. Hofmann “Organic photorefractive glass with infrared sensitivity and fast response,” Appl. Opt. 39, 2287-2290 (2000).
    [CrossRef]
  24. J. -W. Oh, I. K. Moon, and N. Kim, “The influence of photosensitizers on the photorefractivity in poly[methyl-3-(9-carbazolyl)propylsiloxane]-based composites,” J. Photochem. Photobiol. A 201, 222-227 (2009).
    [CrossRef]
  25. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16-24 (1999).
    [CrossRef]
  26. A. K. Hassan, J. Greenway, A. K. Ray, and A. V. Nabok, “In situ optical study of ozone interaction with polyphenylsulfide thin films,” J. Phys. D: Appl. Phys. 36, 2130-2133(2003).
    [CrossRef]

2009 (2)

J.-W. Oh, W.-J. I. K. Moon, C.-S. Choi, and N. Kim, “Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite,” J. Phys. Chem. B 113, 1592-1597 (2009).
[CrossRef] [PubMed]

J. -W. Oh, I. K. Moon, and N. Kim, “The influence of photosensitizers on the photorefractivity in poly[methyl-3-(9-carbazolyl)propylsiloxane]-based composites,” J. Photochem. Photobiol. A 201, 222-227 (2009).
[CrossRef]

2008 (5)

D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16, 9222-9238 (2008).
[CrossRef] [PubMed]

J. -W. Oh and N. Kim, “Chromophore concentration effect on photorefractive performance of organic photorefractive composites,” Mol. Cryst. Liq. Cryst. 491, 53-57 (2008).
[CrossRef]

J.-W. Oh, C. Lee C, and N. Kim, “Influence of chromophore content on the steady-state space charge formation of poly[methyl-3-(9-carbazoly) propylsiloxane]-based polymeric photorefractive composites,” J. Appl. Phys. 104, 073709(2008).
[CrossRef]

J.-W. Oh and N. Kim, “Temperature dependence of photo-charge generation of polymeric photorefractive composite in the glass transition region,” Chem. Phys. Lett. 460, 482-485 (2008).
[CrossRef]

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

2007 (3)

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Photon. 1, 402-406 (2007).
[CrossRef]

G. Fu, K. -M. Wang, X. -L. Wang, H. -J. Zhang, X. -G. Xu, H. -L. Song, and H.-J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87, 289-292 (2007).
[CrossRef]

S. Massenot, R. Chevallier, J. -L. De Bougrenet de la Tocnaye, and O. Parriaux, “Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material,” Opt. Commun. 275, 318-323 (2007).
[CrossRef]

2006 (1)

2004 (1)

C. Fuentes-Hernandez, D. J. Suh, B. Kippelen, and S. R. Marder, “High-performance photorefractive polymers sensitized by cadmium selenide nanoparticles,” Appl. Phys. Lett. 85, 534-536 (2004).
[CrossRef]

2003 (2)

S. H. Lee, W. S. Jahng, K. H. Park, N. Kim, W.-J. Joo, and D. H. Choi, “Synthesis and characterization of a new photoconducting poly(siloxane) having pendant diphenylhydrazone for photorefractive applications,” Macromol. Res. 11, 431-436(2003).
[CrossRef]

A. K. Hassan, J. Greenway, A. K. Ray, and A. V. Nabok, “In situ optical study of ozone interaction with polyphenylsulfide thin films,” J. Phys. D: Appl. Phys. 36, 2130-2133(2003).
[CrossRef]

2002 (1)

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532-2548 (2002).
[CrossRef]

2001 (2)

G. Lammel, S. Schweizer, and Ph. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Actuators, A 92, 52-59 (2001).
[CrossRef]

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863-9866 (2001).
[CrossRef]

2000 (1)

1999 (2)

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16-24 (1999).
[CrossRef]

M. A. Diaz-Garcia, D. Wright, B. Smith, E. Glazer, W. E. Moerner, I. Sukhomlinova, and R. J. Twieg, “Photorefractive Properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784-1791 (1999).
[CrossRef]

1997 (1)

P. J. Kajenski, “Tunable optical filter using long-range surface plasmons,” Opt. Eng. 36, 1537-1541 (1997).
[CrossRef]

1996 (1)

J. M. Weissman, H. B. Sunkara, A. S. Tse, and S. A. Asher, “Thermally switchable periodicities and diffraction from mesoscopically ordered materials,” Science 274, 959-963 (1996).
[CrossRef] [PubMed]

1995 (1)

Y. Wang, “Voltage-induced color-selective absorption with surface plasmons,” Appl. Phys. Lett. 67, 2759-2761 (1995).
[CrossRef]

1990 (1)

Asher, S. A.

J. M. Weissman, H. B. Sunkara, A. S. Tse, and S. A. Asher, “Thermally switchable periodicities and diffraction from mesoscopically ordered materials,” Science 274, 959-963 (1996).
[CrossRef] [PubMed]

Atwater, H. A.

D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16, 9222-9238 (2008).
[CrossRef] [PubMed]

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Photon. 1, 402-406 (2007).
[CrossRef]

Boardman, A. D.

A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982).

Brettel, H.

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532-2548 (2002).
[CrossRef]

Chevallier, R.

S. Massenot, R. Chevallier, J. -L. De Bougrenet de la Tocnaye, and O. Parriaux, “Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material,” Opt. Commun. 275, 318-323 (2007).
[CrossRef]

Choi, C.-S.

J.-W. Oh, W.-J. I. K. Moon, C.-S. Choi, and N. Kim, “Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite,” J. Phys. Chem. B 113, 1592-1597 (2009).
[CrossRef] [PubMed]

Choi, D. H.

S. H. Lee, W. S. Jahng, K. H. Park, N. Kim, W.-J. Joo, and D. H. Choi, “Synthesis and characterization of a new photoconducting poly(siloxane) having pendant diphenylhydrazone for photorefractive applications,” Macromol. Res. 11, 431-436(2003).
[CrossRef]

Chun, H.

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863-9866 (2001).
[CrossRef]

De Bougrenet de la Tocnaye, J. -L.

S. Massenot, R. Chevallier, J. -L. De Bougrenet de la Tocnaye, and O. Parriaux, “Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material,” Opt. Commun. 275, 318-323 (2007).
[CrossRef]

Diaz-Garcia, M. A.

M. A. Diaz-Garcia, D. Wright, B. Smith, E. Glazer, W. E. Moerner, I. Sukhomlinova, and R. J. Twieg, “Photorefractive Properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784-1791 (1999).
[CrossRef]

Doroski, D.

Fu, G.

G. Fu, K. -M. Wang, X. -L. Wang, H. -J. Zhang, X. -G. Xu, H. -L. Song, and H.-J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87, 289-292 (2007).
[CrossRef]

Fuentes-Hernandez, C.

C. Fuentes-Hernandez, D. J. Suh, B. Kippelen, and S. R. Marder, “High-performance photorefractive polymers sensitized by cadmium selenide nanoparticles,” Appl. Phys. Lett. 85, 534-536 (2004).
[CrossRef]

Glazer, E.

M. A. Diaz-Garcia, D. Wright, B. Smith, E. Glazer, W. E. Moerner, I. Sukhomlinova, and R. J. Twieg, “Photorefractive Properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784-1791 (1999).
[CrossRef]

Greenway, J.

A. K. Hassan, J. Greenway, A. K. Ray, and A. V. Nabok, “In situ optical study of ozone interaction with polyphenylsulfide thin films,” J. Phys. D: Appl. Phys. 36, 2130-2133(2003).
[CrossRef]

Hardeberg, J. Y.

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532-2548 (2002).
[CrossRef]

Hassan, A. K.

A. K. Hassan, J. Greenway, A. K. Ray, and A. V. Nabok, “In situ optical study of ozone interaction with polyphenylsulfide thin films,” J. Phys. D: Appl. Phys. 36, 2130-2133(2003).
[CrossRef]

Hofmann, U.

Homola, J.

O. Telezhnikova and J. Homola, “New approach to spectroscopy of surface plasmons,” Opt. Lett. 31, 3339-3341 (2006).
[CrossRef] [PubMed]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16-24 (1999).
[CrossRef]

Jahng, W. S.

S. H. Lee, W. S. Jahng, K. H. Park, N. Kim, W.-J. Joo, and D. H. Choi, “Synthesis and characterization of a new photoconducting poly(siloxane) having pendant diphenylhydrazone for photorefractive applications,” Macromol. Res. 11, 431-436(2003).
[CrossRef]

Johnson, K. M.

Joo, W.-J.

S. H. Lee, W. S. Jahng, K. H. Park, N. Kim, W.-J. Joo, and D. H. Choi, “Synthesis and characterization of a new photoconducting poly(siloxane) having pendant diphenylhydrazone for photorefractive applications,” Macromol. Res. 11, 431-436(2003).
[CrossRef]

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863-9866 (2001).
[CrossRef]

Kajenski, P. J.

P. J. Kajenski, “Tunable optical filter using long-range surface plasmons,” Opt. Eng. 36, 1537-1541 (1997).
[CrossRef]

Kim, N.

J.-W. Oh, W.-J. I. K. Moon, C.-S. Choi, and N. Kim, “Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite,” J. Phys. Chem. B 113, 1592-1597 (2009).
[CrossRef] [PubMed]

J.-W. Oh, C. Lee C, and N. Kim, “Influence of chromophore content on the steady-state space charge formation of poly[methyl-3-(9-carbazoly) propylsiloxane]-based polymeric photorefractive composites,” J. Appl. Phys. 104, 073709(2008).
[CrossRef]

J.-W. Oh and N. Kim, “Temperature dependence of photo-charge generation of polymeric photorefractive composite in the glass transition region,” Chem. Phys. Lett. 460, 482-485 (2008).
[CrossRef]

J. -W. Oh and N. Kim, “Chromophore concentration effect on photorefractive performance of organic photorefractive composites,” Mol. Cryst. Liq. Cryst. 491, 53-57 (2008).
[CrossRef]

S. H. Lee, W. S. Jahng, K. H. Park, N. Kim, W.-J. Joo, and D. H. Choi, “Synthesis and characterization of a new photoconducting poly(siloxane) having pendant diphenylhydrazone for photorefractive applications,” Macromol. Res. 11, 431-436(2003).
[CrossRef]

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863-9866 (2001).
[CrossRef]

Kim, N.-J.

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863-9866 (2001).
[CrossRef]

Kim,, N.

J. -W. Oh, I. K. Moon, and N. Kim, “The influence of photosensitizers on the photorefractivity in poly[methyl-3-(9-carbazolyl)propylsiloxane]-based composites,” J. Photochem. Photobiol. A 201, 222-227 (2009).
[CrossRef]

Kippelen, B.

C. Fuentes-Hernandez, D. J. Suh, B. Kippelen, and S. R. Marder, “High-performance photorefractive polymers sensitized by cadmium selenide nanoparticles,” Appl. Phys. Lett. 85, 534-536 (2004).
[CrossRef]

Koudela, I.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16-24 (1999).
[CrossRef]

Lammel, G.

G. Lammel, S. Schweizer, and Ph. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Actuators, A 92, 52-59 (2001).
[CrossRef]

Lee, S. H.

S. H. Lee, W. S. Jahng, K. H. Park, N. Kim, W.-J. Joo, and D. H. Choi, “Synthesis and characterization of a new photoconducting poly(siloxane) having pendant diphenylhydrazone for photorefractive applications,” Macromol. Res. 11, 431-436(2003).
[CrossRef]

Lee C, C.

J.-W. Oh, C. Lee C, and N. Kim, “Influence of chromophore content on the steady-state space charge formation of poly[methyl-3-(9-carbazoly) propylsiloxane]-based polymeric photorefractive composites,” J. Appl. Phys. 104, 073709(2008).
[CrossRef]

Lezec, H. J.

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16, 9222-9238 (2008).
[CrossRef] [PubMed]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Photon. 1, 402-406 (2007).
[CrossRef]

Ma, H.-J.

G. Fu, K. -M. Wang, X. -L. Wang, H. -J. Zhang, X. -G. Xu, H. -L. Song, and H.-J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87, 289-292 (2007).
[CrossRef]

Marder, S. R.

C. Fuentes-Hernandez, D. J. Suh, B. Kippelen, and S. R. Marder, “High-performance photorefractive polymers sensitized by cadmium selenide nanoparticles,” Appl. Phys. Lett. 85, 534-536 (2004).
[CrossRef]

Massenot, S.

S. Massenot, R. Chevallier, J. -L. De Bougrenet de la Tocnaye, and O. Parriaux, “Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material,” Opt. Commun. 275, 318-323 (2007).
[CrossRef]

Moerner, W. E.

M. A. Diaz-Garcia, D. Wright, B. Smith, E. Glazer, W. E. Moerner, I. Sukhomlinova, and R. J. Twieg, “Photorefractive Properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784-1791 (1999).
[CrossRef]

Moon, I. K.

J. -W. Oh, I. K. Moon, and N. Kim, “The influence of photosensitizers on the photorefractivity in poly[methyl-3-(9-carbazolyl)propylsiloxane]-based composites,” J. Photochem. Photobiol. A 201, 222-227 (2009).
[CrossRef]

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863-9866 (2001).
[CrossRef]

Moon, W.-J. I. K.

J.-W. Oh, W.-J. I. K. Moon, C.-S. Choi, and N. Kim, “Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite,” J. Phys. Chem. B 113, 1592-1597 (2009).
[CrossRef] [PubMed]

Nabok, A. V.

A. K. Hassan, J. Greenway, A. K. Ray, and A. V. Nabok, “In situ optical study of ozone interaction with polyphenylsulfide thin films,” J. Phys. D: Appl. Phys. 36, 2130-2133(2003).
[CrossRef]

Oh, J. -W.

J. -W. Oh, I. K. Moon, and N. Kim, “The influence of photosensitizers on the photorefractivity in poly[methyl-3-(9-carbazolyl)propylsiloxane]-based composites,” J. Photochem. Photobiol. A 201, 222-227 (2009).
[CrossRef]

J. -W. Oh and N. Kim, “Chromophore concentration effect on photorefractive performance of organic photorefractive composites,” Mol. Cryst. Liq. Cryst. 491, 53-57 (2008).
[CrossRef]

Oh, J.-W.

J.-W. Oh, W.-J. I. K. Moon, C.-S. Choi, and N. Kim, “Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite,” J. Phys. Chem. B 113, 1592-1597 (2009).
[CrossRef] [PubMed]

J.-W. Oh, C. Lee C, and N. Kim, “Influence of chromophore content on the steady-state space charge formation of poly[methyl-3-(9-carbazoly) propylsiloxane]-based polymeric photorefractive composites,” J. Appl. Phys. 104, 073709(2008).
[CrossRef]

J.-W. Oh and N. Kim, “Temperature dependence of photo-charge generation of polymeric photorefractive composite in the glass transition region,” Chem. Phys. Lett. 460, 482-485 (2008).
[CrossRef]

Pacifici, D.

D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16, 9222-9238 (2008).
[CrossRef] [PubMed]

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Photon. 1, 402-406 (2007).
[CrossRef]

Park, K. H.

S. H. Lee, W. S. Jahng, K. H. Park, N. Kim, W.-J. Joo, and D. H. Choi, “Synthesis and characterization of a new photoconducting poly(siloxane) having pendant diphenylhydrazone for photorefractive applications,” Macromol. Res. 11, 431-436(2003).
[CrossRef]

Parriaux, O.

S. Massenot, R. Chevallier, J. -L. De Bougrenet de la Tocnaye, and O. Parriaux, “Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material,” Opt. Commun. 275, 318-323 (2007).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Ray, A. K.

A. K. Hassan, J. Greenway, A. K. Ray, and A. V. Nabok, “In situ optical study of ozone interaction with polyphenylsulfide thin films,” J. Phys. D: Appl. Phys. 36, 2130-2133(2003).
[CrossRef]

Renaud, Ph.

G. Lammel, S. Schweizer, and Ph. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Actuators, A 92, 52-59 (2001).
[CrossRef]

Schmitt, F.

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532-2548 (2002).
[CrossRef]

Schweizer, S.

G. Lammel, S. Schweizer, and Ph. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Actuators, A 92, 52-59 (2001).
[CrossRef]

Sharp, G. D.

Smith, B.

M. A. Diaz-Garcia, D. Wright, B. Smith, E. Glazer, W. E. Moerner, I. Sukhomlinova, and R. J. Twieg, “Photorefractive Properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784-1791 (1999).
[CrossRef]

Song, H. -L.

G. Fu, K. -M. Wang, X. -L. Wang, H. -J. Zhang, X. -G. Xu, H. -L. Song, and H.-J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87, 289-292 (2007).
[CrossRef]

Suh, D. J.

C. Fuentes-Hernandez, D. J. Suh, B. Kippelen, and S. R. Marder, “High-performance photorefractive polymers sensitized by cadmium selenide nanoparticles,” Appl. Phys. Lett. 85, 534-536 (2004).
[CrossRef]

Sukhomlinova, I.

M. A. Diaz-Garcia, D. Wright, B. Smith, E. Glazer, W. E. Moerner, I. Sukhomlinova, and R. J. Twieg, “Photorefractive Properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784-1791 (1999).
[CrossRef]

Sunkara, H. B.

J. M. Weissman, H. B. Sunkara, A. S. Tse, and S. A. Asher, “Thermally switchable periodicities and diffraction from mesoscopically ordered materials,” Science 274, 959-963 (1996).
[CrossRef] [PubMed]

Sweatlock, L. A.

Telezhnikova, O.

Tse, A. S.

J. M. Weissman, H. B. Sunkara, A. S. Tse, and S. A. Asher, “Thermally switchable periodicities and diffraction from mesoscopically ordered materials,” Science 274, 959-963 (1996).
[CrossRef] [PubMed]

Twieg, R. J.

M. A. Diaz-Garcia, D. Wright, B. Smith, E. Glazer, W. E. Moerner, I. Sukhomlinova, and R. J. Twieg, “Photorefractive Properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784-1791 (1999).
[CrossRef]

Walters, R. J.

Wang, K. -M.

G. Fu, K. -M. Wang, X. -L. Wang, H. -J. Zhang, X. -G. Xu, H. -L. Song, and H.-J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87, 289-292 (2007).
[CrossRef]

Wang, X. -L.

G. Fu, K. -M. Wang, X. -L. Wang, H. -J. Zhang, X. -G. Xu, H. -L. Song, and H.-J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87, 289-292 (2007).
[CrossRef]

Wang, Y.

Y. Wang, “Voltage-induced color-selective absorption with surface plasmons,” Appl. Phys. Lett. 67, 2759-2761 (1995).
[CrossRef]

Weiner, J.

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

Weissman, J. M.

J. M. Weissman, H. B. Sunkara, A. S. Tse, and S. A. Asher, “Thermally switchable periodicities and diffraction from mesoscopically ordered materials,” Science 274, 959-963 (1996).
[CrossRef] [PubMed]

Wright, D.

M. A. Diaz-Garcia, D. Wright, B. Smith, E. Glazer, W. E. Moerner, I. Sukhomlinova, and R. J. Twieg, “Photorefractive Properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784-1791 (1999).
[CrossRef]

Xu, X. -G.

G. Fu, K. -M. Wang, X. -L. Wang, H. -J. Zhang, X. -G. Xu, H. -L. Song, and H.-J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87, 289-292 (2007).
[CrossRef]

Yee, S. S.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16-24 (1999).
[CrossRef]

Zhang, H. -J.

G. Fu, K. -M. Wang, X. -L. Wang, H. -J. Zhang, X. -G. Xu, H. -L. Song, and H.-J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87, 289-292 (2007).
[CrossRef]

Zilker, S. J.

Appl. Opt. (1)

Appl. Phys. B (1)

G. Fu, K. -M. Wang, X. -L. Wang, H. -J. Zhang, X. -G. Xu, H. -L. Song, and H.-J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87, 289-292 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Wang, “Voltage-induced color-selective absorption with surface plasmons,” Appl. Phys. Lett. 67, 2759-2761 (1995).
[CrossRef]

C. Fuentes-Hernandez, D. J. Suh, B. Kippelen, and S. R. Marder, “High-performance photorefractive polymers sensitized by cadmium selenide nanoparticles,” Appl. Phys. Lett. 85, 534-536 (2004).
[CrossRef]

Chem. Mater. (1)

M. A. Diaz-Garcia, D. Wright, B. Smith, E. Glazer, W. E. Moerner, I. Sukhomlinova, and R. J. Twieg, “Photorefractive Properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784-1791 (1999).
[CrossRef]

Chem. Phys. Lett. (1)

J.-W. Oh and N. Kim, “Temperature dependence of photo-charge generation of polymeric photorefractive composite in the glass transition region,” Chem. Phys. Lett. 460, 482-485 (2008).
[CrossRef]

J. Appl. Phys. (1)

J.-W. Oh, C. Lee C, and N. Kim, “Influence of chromophore content on the steady-state space charge formation of poly[methyl-3-(9-carbazoly) propylsiloxane]-based polymeric photorefractive composites,” J. Appl. Phys. 104, 073709(2008).
[CrossRef]

J. Photochem. Photobiol. A (1)

J. -W. Oh, I. K. Moon, and N. Kim, “The influence of photosensitizers on the photorefractivity in poly[methyl-3-(9-carbazolyl)propylsiloxane]-based composites,” J. Photochem. Photobiol. A 201, 222-227 (2009).
[CrossRef]

J. Phys. Chem. B (1)

J.-W. Oh, W.-J. I. K. Moon, C.-S. Choi, and N. Kim, “Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite,” J. Phys. Chem. B 113, 1592-1597 (2009).
[CrossRef] [PubMed]

J. Phys. D: Appl. Phys. (1)

A. K. Hassan, J. Greenway, A. K. Ray, and A. V. Nabok, “In situ optical study of ozone interaction with polyphenylsulfide thin films,” J. Phys. D: Appl. Phys. 36, 2130-2133(2003).
[CrossRef]

Macromol. Res. (1)

S. H. Lee, W. S. Jahng, K. H. Park, N. Kim, W.-J. Joo, and D. H. Choi, “Synthesis and characterization of a new photoconducting poly(siloxane) having pendant diphenylhydrazone for photorefractive applications,” Macromol. Res. 11, 431-436(2003).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

J. -W. Oh and N. Kim, “Chromophore concentration effect on photorefractive performance of organic photorefractive composites,” Mol. Cryst. Liq. Cryst. 491, 53-57 (2008).
[CrossRef]

Nature Photon. (1)

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Photon. 1, 402-406 (2007).
[CrossRef]

Opt. Commun. (1)

S. Massenot, R. Chevallier, J. -L. De Bougrenet de la Tocnaye, and O. Parriaux, “Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material,” Opt. Commun. 275, 318-323 (2007).
[CrossRef]

Opt. Eng. (2)

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532-2548 (2002).
[CrossRef]

P. J. Kajenski, “Tunable optical filter using long-range surface plasmons,” Opt. Eng. 36, 1537-1541 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

Polymer (1)

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863-9866 (2001).
[CrossRef]

Science (1)

J. M. Weissman, H. B. Sunkara, A. S. Tse, and S. A. Asher, “Thermally switchable periodicities and diffraction from mesoscopically ordered materials,” Science 274, 959-963 (1996).
[CrossRef] [PubMed]

Sens. Actuators B (1)

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16-24 (1999).
[CrossRef]

Sens. Actuators, A (1)

G. Lammel, S. Schweizer, and Ph. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Actuators, A 92, 52-59 (2001).
[CrossRef]

Other (2)

A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Chemical structure of components in the photorefractive composite: (a) PSX-Hz, (b) TNF, (c) DB-IP-DC, and (d) BBP.

Fig. 2
Fig. 2

Experimental arrangement: k 0 is the modulus of the wave vector in vacuum ( k o = 2 π λ ), k sp is the propagation constant of the plasmon wave ( k sp = k 0 ε 1 ε 2 / ε 1 + ε 2 ), θ i is the angle of incidence of the probe beam ( θ i = 40 ° ), θ is the semi-included angle between the two interfering beams, and Λ is the period of the Bragg diffraction grating.

Fig. 3
Fig. 3

Photorefractive diffraction efficiency as a function of time. The inset shows the correlation between the semi-included angle between the two interfering beams (θ) and the period of diffraction grating (Λ). The line is a guide to the eye.

Fig. 4
Fig. 4

SPR wavelength shift with the period of diffraction grating.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Λ = λ 2 n sin θ ,
ε 1 sin θ i + m λ SPR Λ = ε 1 ε 2 ε 1 + ε 2 .

Metrics