Abstract

We report on a tunable color filter with surface plasmon resonance (SPR), excited by a photorefractive (PR) diffraction grating. When a white light was incident at the diffraction grating formed by a PR effect, the SPR generated at a metal–dielectric material interface was absorbed, and the reflected light showed a complementary color. When the period of the PR diffraction grating was modified by alteration of the optic configuration, the wavelength at which the SPR excitation led to a reflection minimum changed and the spectrum of the reflected light also changed. A well-known equation was used to help us understand the experimental results. All experimental results are in good agreement with the calculation predictions. This result could lead to a new type of tunable color filter.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lammel, S. Schweizer, and Ph. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Actuators, A 92, 52-59 (2001).
    [CrossRef]
  2. G. D. Sharp, K. M. Johnson, and D. Doroski, “Continuously tunable smectic A* liquid-crystal color filter,” Opt. Lett. 15, 523-525 (1990).
    [CrossRef] [PubMed]
  3. J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532-2548 (2002).
    [CrossRef]
  4. J. M. Weissman, H. B. Sunkara, A. S. Tse, and S. A. Asher, “Thermally switchable periodicities and diffraction from mesoscopically ordered materials,” Science 274, 959-963 (1996).
    [CrossRef] [PubMed]
  5. P. J. Kajenski, “Tunable optical filter using long-range surface plasmons,” Opt. Eng. 36, 1537-1541 (1997).
    [CrossRef]
  6. S. Massenot, R. Chevallier, J. -L. De Bougrenet de la Tocnaye, and O. Parriaux, “Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material,” Opt. Commun. 275, 318-323 (2007).
    [CrossRef]
  7. O. Telezhnikova and J. Homola, “New approach to spectroscopy of surface plasmons,” Opt. Lett. 31, 3339-3341 (2006).
    [CrossRef] [PubMed]
  8. A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982).
  9. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  10. G. Fu, K. -M. Wang, X. -L. Wang, H. -J. Zhang, X. -G. Xu, H. -L. Song, and H.-J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87, 289-292 (2007).
    [CrossRef]
  11. D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
    [CrossRef]
  12. D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16, 9222-9238 (2008).
    [CrossRef] [PubMed]
  13. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Photon. 1, 402-406 (2007).
    [CrossRef]
  14. Y. Wang, “Voltage-induced color-selective absorption with surface plasmons,” Appl. Phys. Lett. 67, 2759-2761 (1995).
    [CrossRef]
  15. J.-W. Oh, C. Lee C, and N. Kim, “Influence of chromophore content on the steady-state space charge formation of poly[methyl-3-(9-carbazoly) propylsiloxane]-based polymeric photorefractive composites,” J. Appl. Phys. 104, 073709(2008).
    [CrossRef]
  16. J.-W. Oh and N. Kim, “Temperature dependence of photo-charge generation of polymeric photorefractive composite in the glass transition region,” Chem. Phys. Lett. 460, 482-485 (2008).
    [CrossRef]
  17. S. H. Lee, W. S. Jahng, K. H. Park, N. Kim, W.-J. Joo, and D. H. Choi, “Synthesis and characterization of a new photoconducting poly(siloxane) having pendant diphenylhydrazone for photorefractive applications,” Macromol. Res. 11, 431-436(2003).
    [CrossRef]
  18. W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863-9866 (2001).
    [CrossRef]
  19. J. -W. Oh and N. Kim, “Chromophore concentration effect on photorefractive performance of organic photorefractive composites,” Mol. Cryst. Liq. Cryst. 491, 53-57 (2008).
    [CrossRef]
  20. C. Fuentes-Hernandez, D. J. Suh, B. Kippelen, and S. R. Marder, “High-performance photorefractive polymers sensitized by cadmium selenide nanoparticles,” Appl. Phys. Lett. 85, 534-536 (2004).
    [CrossRef]
  21. J.-W. Oh, W.-J. I. K. Moon, C.-S. Choi, and N. Kim, “Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite,” J. Phys. Chem. B 113, 1592-1597 (2009).
    [CrossRef] [PubMed]
  22. M. A. Diaz-Garcia, D. Wright, B. Smith, E. Glazer, W. E. Moerner, I. Sukhomlinova, and R. J. Twieg, “Photorefractive Properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784-1791 (1999).
    [CrossRef]
  23. S. J. Zilker and U. Hofmann “Organic photorefractive glass with infrared sensitivity and fast response,” Appl. Opt. 39, 2287-2290 (2000).
    [CrossRef]
  24. J. -W. Oh, I. K. Moon, and N. Kim, “The influence of photosensitizers on the photorefractivity in poly[methyl-3-(9-carbazolyl)propylsiloxane]-based composites,” J. Photochem. Photobiol. A 201, 222-227 (2009).
    [CrossRef]
  25. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16-24 (1999).
    [CrossRef]
  26. A. K. Hassan, J. Greenway, A. K. Ray, and A. V. Nabok, “In situ optical study of ozone interaction with polyphenylsulfide thin films,” J. Phys. D: Appl. Phys. 36, 2130-2133(2003).
    [CrossRef]

2009 (2)

J.-W. Oh, W.-J. I. K. Moon, C.-S. Choi, and N. Kim, “Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite,” J. Phys. Chem. B 113, 1592-1597 (2009).
[CrossRef] [PubMed]

J. -W. Oh, I. K. Moon, and N. Kim, “The influence of photosensitizers on the photorefractivity in poly[methyl-3-(9-carbazolyl)propylsiloxane]-based composites,” J. Photochem. Photobiol. A 201, 222-227 (2009).
[CrossRef]

2008 (5)

J. -W. Oh and N. Kim, “Chromophore concentration effect on photorefractive performance of organic photorefractive composites,” Mol. Cryst. Liq. Cryst. 491, 53-57 (2008).
[CrossRef]

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16, 9222-9238 (2008).
[CrossRef] [PubMed]

J.-W. Oh, C. Lee C, and N. Kim, “Influence of chromophore content on the steady-state space charge formation of poly[methyl-3-(9-carbazoly) propylsiloxane]-based polymeric photorefractive composites,” J. Appl. Phys. 104, 073709(2008).
[CrossRef]

J.-W. Oh and N. Kim, “Temperature dependence of photo-charge generation of polymeric photorefractive composite in the glass transition region,” Chem. Phys. Lett. 460, 482-485 (2008).
[CrossRef]

2007 (3)

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Photon. 1, 402-406 (2007).
[CrossRef]

S. Massenot, R. Chevallier, J. -L. De Bougrenet de la Tocnaye, and O. Parriaux, “Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material,” Opt. Commun. 275, 318-323 (2007).
[CrossRef]

G. Fu, K. -M. Wang, X. -L. Wang, H. -J. Zhang, X. -G. Xu, H. -L. Song, and H.-J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87, 289-292 (2007).
[CrossRef]

2006 (1)

2004 (1)

C. Fuentes-Hernandez, D. J. Suh, B. Kippelen, and S. R. Marder, “High-performance photorefractive polymers sensitized by cadmium selenide nanoparticles,” Appl. Phys. Lett. 85, 534-536 (2004).
[CrossRef]

2003 (2)

A. K. Hassan, J. Greenway, A. K. Ray, and A. V. Nabok, “In situ optical study of ozone interaction with polyphenylsulfide thin films,” J. Phys. D: Appl. Phys. 36, 2130-2133(2003).
[CrossRef]

S. H. Lee, W. S. Jahng, K. H. Park, N. Kim, W.-J. Joo, and D. H. Choi, “Synthesis and characterization of a new photoconducting poly(siloxane) having pendant diphenylhydrazone for photorefractive applications,” Macromol. Res. 11, 431-436(2003).
[CrossRef]

2002 (1)

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532-2548 (2002).
[CrossRef]

2001 (2)

G. Lammel, S. Schweizer, and Ph. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Actuators, A 92, 52-59 (2001).
[CrossRef]

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863-9866 (2001).
[CrossRef]

2000 (1)

1999 (2)

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16-24 (1999).
[CrossRef]

M. A. Diaz-Garcia, D. Wright, B. Smith, E. Glazer, W. E. Moerner, I. Sukhomlinova, and R. J. Twieg, “Photorefractive Properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784-1791 (1999).
[CrossRef]

1997 (1)

P. J. Kajenski, “Tunable optical filter using long-range surface plasmons,” Opt. Eng. 36, 1537-1541 (1997).
[CrossRef]

1996 (1)

J. M. Weissman, H. B. Sunkara, A. S. Tse, and S. A. Asher, “Thermally switchable periodicities and diffraction from mesoscopically ordered materials,” Science 274, 959-963 (1996).
[CrossRef] [PubMed]

1995 (1)

Y. Wang, “Voltage-induced color-selective absorption with surface plasmons,” Appl. Phys. Lett. 67, 2759-2761 (1995).
[CrossRef]

1990 (1)

Asher, S. A.

J. M. Weissman, H. B. Sunkara, A. S. Tse, and S. A. Asher, “Thermally switchable periodicities and diffraction from mesoscopically ordered materials,” Science 274, 959-963 (1996).
[CrossRef] [PubMed]

Atwater, H. A.

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16, 9222-9238 (2008).
[CrossRef] [PubMed]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Photon. 1, 402-406 (2007).
[CrossRef]

Boardman, A. D.

A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982).

Brettel, H.

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532-2548 (2002).
[CrossRef]

Chevallier, R.

S. Massenot, R. Chevallier, J. -L. De Bougrenet de la Tocnaye, and O. Parriaux, “Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material,” Opt. Commun. 275, 318-323 (2007).
[CrossRef]

Choi, C.-S.

J.-W. Oh, W.-J. I. K. Moon, C.-S. Choi, and N. Kim, “Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite,” J. Phys. Chem. B 113, 1592-1597 (2009).
[CrossRef] [PubMed]

Choi, D. H.

S. H. Lee, W. S. Jahng, K. H. Park, N. Kim, W.-J. Joo, and D. H. Choi, “Synthesis and characterization of a new photoconducting poly(siloxane) having pendant diphenylhydrazone for photorefractive applications,” Macromol. Res. 11, 431-436(2003).
[CrossRef]

Chun, H.

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863-9866 (2001).
[CrossRef]

De Bougrenet de la Tocnaye, J. -L.

S. Massenot, R. Chevallier, J. -L. De Bougrenet de la Tocnaye, and O. Parriaux, “Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material,” Opt. Commun. 275, 318-323 (2007).
[CrossRef]

Diaz-Garcia, M. A.

M. A. Diaz-Garcia, D. Wright, B. Smith, E. Glazer, W. E. Moerner, I. Sukhomlinova, and R. J. Twieg, “Photorefractive Properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784-1791 (1999).
[CrossRef]

Doroski, D.

Fu, G.

G. Fu, K. -M. Wang, X. -L. Wang, H. -J. Zhang, X. -G. Xu, H. -L. Song, and H.-J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87, 289-292 (2007).
[CrossRef]

Fuentes-Hernandez, C.

C. Fuentes-Hernandez, D. J. Suh, B. Kippelen, and S. R. Marder, “High-performance photorefractive polymers sensitized by cadmium selenide nanoparticles,” Appl. Phys. Lett. 85, 534-536 (2004).
[CrossRef]

Glazer, E.

M. A. Diaz-Garcia, D. Wright, B. Smith, E. Glazer, W. E. Moerner, I. Sukhomlinova, and R. J. Twieg, “Photorefractive Properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784-1791 (1999).
[CrossRef]

Greenway, J.

A. K. Hassan, J. Greenway, A. K. Ray, and A. V. Nabok, “In situ optical study of ozone interaction with polyphenylsulfide thin films,” J. Phys. D: Appl. Phys. 36, 2130-2133(2003).
[CrossRef]

Hardeberg, J. Y.

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532-2548 (2002).
[CrossRef]

Hassan, A. K.

A. K. Hassan, J. Greenway, A. K. Ray, and A. V. Nabok, “In situ optical study of ozone interaction with polyphenylsulfide thin films,” J. Phys. D: Appl. Phys. 36, 2130-2133(2003).
[CrossRef]

Hofmann, U.

Homola, J.

O. Telezhnikova and J. Homola, “New approach to spectroscopy of surface plasmons,” Opt. Lett. 31, 3339-3341 (2006).
[CrossRef] [PubMed]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16-24 (1999).
[CrossRef]

Jahng, W. S.

S. H. Lee, W. S. Jahng, K. H. Park, N. Kim, W.-J. Joo, and D. H. Choi, “Synthesis and characterization of a new photoconducting poly(siloxane) having pendant diphenylhydrazone for photorefractive applications,” Macromol. Res. 11, 431-436(2003).
[CrossRef]

Johnson, K. M.

Joo, W.-J.

S. H. Lee, W. S. Jahng, K. H. Park, N. Kim, W.-J. Joo, and D. H. Choi, “Synthesis and characterization of a new photoconducting poly(siloxane) having pendant diphenylhydrazone for photorefractive applications,” Macromol. Res. 11, 431-436(2003).
[CrossRef]

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863-9866 (2001).
[CrossRef]

Kajenski, P. J.

P. J. Kajenski, “Tunable optical filter using long-range surface plasmons,” Opt. Eng. 36, 1537-1541 (1997).
[CrossRef]

Kim, N.

J.-W. Oh, W.-J. I. K. Moon, C.-S. Choi, and N. Kim, “Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite,” J. Phys. Chem. B 113, 1592-1597 (2009).
[CrossRef] [PubMed]

J. -W. Oh and N. Kim, “Chromophore concentration effect on photorefractive performance of organic photorefractive composites,” Mol. Cryst. Liq. Cryst. 491, 53-57 (2008).
[CrossRef]

J.-W. Oh, C. Lee C, and N. Kim, “Influence of chromophore content on the steady-state space charge formation of poly[methyl-3-(9-carbazoly) propylsiloxane]-based polymeric photorefractive composites,” J. Appl. Phys. 104, 073709(2008).
[CrossRef]

J.-W. Oh and N. Kim, “Temperature dependence of photo-charge generation of polymeric photorefractive composite in the glass transition region,” Chem. Phys. Lett. 460, 482-485 (2008).
[CrossRef]

S. H. Lee, W. S. Jahng, K. H. Park, N. Kim, W.-J. Joo, and D. H. Choi, “Synthesis and characterization of a new photoconducting poly(siloxane) having pendant diphenylhydrazone for photorefractive applications,” Macromol. Res. 11, 431-436(2003).
[CrossRef]

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863-9866 (2001).
[CrossRef]

Kim, N.-J.

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863-9866 (2001).
[CrossRef]

Kim,, N.

J. -W. Oh, I. K. Moon, and N. Kim, “The influence of photosensitizers on the photorefractivity in poly[methyl-3-(9-carbazolyl)propylsiloxane]-based composites,” J. Photochem. Photobiol. A 201, 222-227 (2009).
[CrossRef]

Kippelen, B.

C. Fuentes-Hernandez, D. J. Suh, B. Kippelen, and S. R. Marder, “High-performance photorefractive polymers sensitized by cadmium selenide nanoparticles,” Appl. Phys. Lett. 85, 534-536 (2004).
[CrossRef]

Koudela, I.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16-24 (1999).
[CrossRef]

Lammel, G.

G. Lammel, S. Schweizer, and Ph. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Actuators, A 92, 52-59 (2001).
[CrossRef]

Lee, S. H.

S. H. Lee, W. S. Jahng, K. H. Park, N. Kim, W.-J. Joo, and D. H. Choi, “Synthesis and characterization of a new photoconducting poly(siloxane) having pendant diphenylhydrazone for photorefractive applications,” Macromol. Res. 11, 431-436(2003).
[CrossRef]

Lee C, C.

J.-W. Oh, C. Lee C, and N. Kim, “Influence of chromophore content on the steady-state space charge formation of poly[methyl-3-(9-carbazoly) propylsiloxane]-based polymeric photorefractive composites,” J. Appl. Phys. 104, 073709(2008).
[CrossRef]

Lezec, H. J.

D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16, 9222-9238 (2008).
[CrossRef] [PubMed]

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Photon. 1, 402-406 (2007).
[CrossRef]

Ma, H.-J.

G. Fu, K. -M. Wang, X. -L. Wang, H. -J. Zhang, X. -G. Xu, H. -L. Song, and H.-J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87, 289-292 (2007).
[CrossRef]

Marder, S. R.

C. Fuentes-Hernandez, D. J. Suh, B. Kippelen, and S. R. Marder, “High-performance photorefractive polymers sensitized by cadmium selenide nanoparticles,” Appl. Phys. Lett. 85, 534-536 (2004).
[CrossRef]

Massenot, S.

S. Massenot, R. Chevallier, J. -L. De Bougrenet de la Tocnaye, and O. Parriaux, “Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material,” Opt. Commun. 275, 318-323 (2007).
[CrossRef]

Moerner, W. E.

M. A. Diaz-Garcia, D. Wright, B. Smith, E. Glazer, W. E. Moerner, I. Sukhomlinova, and R. J. Twieg, “Photorefractive Properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784-1791 (1999).
[CrossRef]

Moon, I. K.

J. -W. Oh, I. K. Moon, and N. Kim, “The influence of photosensitizers on the photorefractivity in poly[methyl-3-(9-carbazolyl)propylsiloxane]-based composites,” J. Photochem. Photobiol. A 201, 222-227 (2009).
[CrossRef]

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863-9866 (2001).
[CrossRef]

Moon, W.-J. I. K.

J.-W. Oh, W.-J. I. K. Moon, C.-S. Choi, and N. Kim, “Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite,” J. Phys. Chem. B 113, 1592-1597 (2009).
[CrossRef] [PubMed]

Nabok, A. V.

A. K. Hassan, J. Greenway, A. K. Ray, and A. V. Nabok, “In situ optical study of ozone interaction with polyphenylsulfide thin films,” J. Phys. D: Appl. Phys. 36, 2130-2133(2003).
[CrossRef]

Oh, J. -W.

J. -W. Oh, I. K. Moon, and N. Kim, “The influence of photosensitizers on the photorefractivity in poly[methyl-3-(9-carbazolyl)propylsiloxane]-based composites,” J. Photochem. Photobiol. A 201, 222-227 (2009).
[CrossRef]

J. -W. Oh and N. Kim, “Chromophore concentration effect on photorefractive performance of organic photorefractive composites,” Mol. Cryst. Liq. Cryst. 491, 53-57 (2008).
[CrossRef]

Oh, J.-W.

J.-W. Oh, W.-J. I. K. Moon, C.-S. Choi, and N. Kim, “Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite,” J. Phys. Chem. B 113, 1592-1597 (2009).
[CrossRef] [PubMed]

J.-W. Oh, C. Lee C, and N. Kim, “Influence of chromophore content on the steady-state space charge formation of poly[methyl-3-(9-carbazoly) propylsiloxane]-based polymeric photorefractive composites,” J. Appl. Phys. 104, 073709(2008).
[CrossRef]

J.-W. Oh and N. Kim, “Temperature dependence of photo-charge generation of polymeric photorefractive composite in the glass transition region,” Chem. Phys. Lett. 460, 482-485 (2008).
[CrossRef]

Pacifici, D.

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

D. Pacifici, H. J. Lezec, L. A. Sweatlock, R. J. Walters, and H. A. Atwater, “Universal optical transmission features in periodic and quasiperiodic hole arrays,” Opt. Express 16, 9222-9238 (2008).
[CrossRef] [PubMed]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Photon. 1, 402-406 (2007).
[CrossRef]

Park, K. H.

S. H. Lee, W. S. Jahng, K. H. Park, N. Kim, W.-J. Joo, and D. H. Choi, “Synthesis and characterization of a new photoconducting poly(siloxane) having pendant diphenylhydrazone for photorefractive applications,” Macromol. Res. 11, 431-436(2003).
[CrossRef]

Parriaux, O.

S. Massenot, R. Chevallier, J. -L. De Bougrenet de la Tocnaye, and O. Parriaux, “Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material,” Opt. Commun. 275, 318-323 (2007).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Ray, A. K.

A. K. Hassan, J. Greenway, A. K. Ray, and A. V. Nabok, “In situ optical study of ozone interaction with polyphenylsulfide thin films,” J. Phys. D: Appl. Phys. 36, 2130-2133(2003).
[CrossRef]

Renaud, Ph.

G. Lammel, S. Schweizer, and Ph. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Actuators, A 92, 52-59 (2001).
[CrossRef]

Schmitt, F.

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532-2548 (2002).
[CrossRef]

Schweizer, S.

G. Lammel, S. Schweizer, and Ph. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Actuators, A 92, 52-59 (2001).
[CrossRef]

Sharp, G. D.

Smith, B.

M. A. Diaz-Garcia, D. Wright, B. Smith, E. Glazer, W. E. Moerner, I. Sukhomlinova, and R. J. Twieg, “Photorefractive Properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784-1791 (1999).
[CrossRef]

Song, H. -L.

G. Fu, K. -M. Wang, X. -L. Wang, H. -J. Zhang, X. -G. Xu, H. -L. Song, and H.-J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87, 289-292 (2007).
[CrossRef]

Suh, D. J.

C. Fuentes-Hernandez, D. J. Suh, B. Kippelen, and S. R. Marder, “High-performance photorefractive polymers sensitized by cadmium selenide nanoparticles,” Appl. Phys. Lett. 85, 534-536 (2004).
[CrossRef]

Sukhomlinova, I.

M. A. Diaz-Garcia, D. Wright, B. Smith, E. Glazer, W. E. Moerner, I. Sukhomlinova, and R. J. Twieg, “Photorefractive Properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784-1791 (1999).
[CrossRef]

Sunkara, H. B.

J. M. Weissman, H. B. Sunkara, A. S. Tse, and S. A. Asher, “Thermally switchable periodicities and diffraction from mesoscopically ordered materials,” Science 274, 959-963 (1996).
[CrossRef] [PubMed]

Sweatlock, L. A.

Telezhnikova, O.

Tse, A. S.

J. M. Weissman, H. B. Sunkara, A. S. Tse, and S. A. Asher, “Thermally switchable periodicities and diffraction from mesoscopically ordered materials,” Science 274, 959-963 (1996).
[CrossRef] [PubMed]

Twieg, R. J.

M. A. Diaz-Garcia, D. Wright, B. Smith, E. Glazer, W. E. Moerner, I. Sukhomlinova, and R. J. Twieg, “Photorefractive Properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784-1791 (1999).
[CrossRef]

Walters, R. J.

Wang, K. -M.

G. Fu, K. -M. Wang, X. -L. Wang, H. -J. Zhang, X. -G. Xu, H. -L. Song, and H.-J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87, 289-292 (2007).
[CrossRef]

Wang, X. -L.

G. Fu, K. -M. Wang, X. -L. Wang, H. -J. Zhang, X. -G. Xu, H. -L. Song, and H.-J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87, 289-292 (2007).
[CrossRef]

Wang, Y.

Y. Wang, “Voltage-induced color-selective absorption with surface plasmons,” Appl. Phys. Lett. 67, 2759-2761 (1995).
[CrossRef]

Weiner, J.

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

Weissman, J. M.

J. M. Weissman, H. B. Sunkara, A. S. Tse, and S. A. Asher, “Thermally switchable periodicities and diffraction from mesoscopically ordered materials,” Science 274, 959-963 (1996).
[CrossRef] [PubMed]

Wright, D.

M. A. Diaz-Garcia, D. Wright, B. Smith, E. Glazer, W. E. Moerner, I. Sukhomlinova, and R. J. Twieg, “Photorefractive Properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784-1791 (1999).
[CrossRef]

Xu, X. -G.

G. Fu, K. -M. Wang, X. -L. Wang, H. -J. Zhang, X. -G. Xu, H. -L. Song, and H.-J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87, 289-292 (2007).
[CrossRef]

Yee, S. S.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16-24 (1999).
[CrossRef]

Zhang, H. -J.

G. Fu, K. -M. Wang, X. -L. Wang, H. -J. Zhang, X. -G. Xu, H. -L. Song, and H.-J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87, 289-292 (2007).
[CrossRef]

Zilker, S. J.

Appl. Opt. (1)

Appl. Phys. B (1)

G. Fu, K. -M. Wang, X. -L. Wang, H. -J. Zhang, X. -G. Xu, H. -L. Song, and H.-J. Ma, “Planar waveguides in calcium barium niobate fabricated by MeV He ion implantation,” Appl. Phys. B 87, 289-292 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Wang, “Voltage-induced color-selective absorption with surface plasmons,” Appl. Phys. Lett. 67, 2759-2761 (1995).
[CrossRef]

C. Fuentes-Hernandez, D. J. Suh, B. Kippelen, and S. R. Marder, “High-performance photorefractive polymers sensitized by cadmium selenide nanoparticles,” Appl. Phys. Lett. 85, 534-536 (2004).
[CrossRef]

Chem. Mater. (1)

M. A. Diaz-Garcia, D. Wright, B. Smith, E. Glazer, W. E. Moerner, I. Sukhomlinova, and R. J. Twieg, “Photorefractive Properties of poly(N-vinyl carbazole)-based composites for high-speed applications,” Chem. Mater. 11, 1784-1791 (1999).
[CrossRef]

Chem. Phys. Lett. (1)

J.-W. Oh and N. Kim, “Temperature dependence of photo-charge generation of polymeric photorefractive composite in the glass transition region,” Chem. Phys. Lett. 460, 482-485 (2008).
[CrossRef]

J. Appl. Phys. (1)

J.-W. Oh, C. Lee C, and N. Kim, “Influence of chromophore content on the steady-state space charge formation of poly[methyl-3-(9-carbazoly) propylsiloxane]-based polymeric photorefractive composites,” J. Appl. Phys. 104, 073709(2008).
[CrossRef]

J. Photochem. Photobiol. A (1)

J. -W. Oh, I. K. Moon, and N. Kim, “The influence of photosensitizers on the photorefractivity in poly[methyl-3-(9-carbazolyl)propylsiloxane]-based composites,” J. Photochem. Photobiol. A 201, 222-227 (2009).
[CrossRef]

J. Phys. Chem. B (1)

J.-W. Oh, W.-J. I. K. Moon, C.-S. Choi, and N. Kim, “Temperature dependence on the grating formation in a low-Tg polymeric photorefractive composite,” J. Phys. Chem. B 113, 1592-1597 (2009).
[CrossRef] [PubMed]

J. Phys. D: Appl. Phys. (1)

A. K. Hassan, J. Greenway, A. K. Ray, and A. V. Nabok, “In situ optical study of ozone interaction with polyphenylsulfide thin films,” J. Phys. D: Appl. Phys. 36, 2130-2133(2003).
[CrossRef]

Macromol. Res. (1)

S. H. Lee, W. S. Jahng, K. H. Park, N. Kim, W.-J. Joo, and D. H. Choi, “Synthesis and characterization of a new photoconducting poly(siloxane) having pendant diphenylhydrazone for photorefractive applications,” Macromol. Res. 11, 431-436(2003).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

J. -W. Oh and N. Kim, “Chromophore concentration effect on photorefractive performance of organic photorefractive composites,” Mol. Cryst. Liq. Cryst. 491, 53-57 (2008).
[CrossRef]

Nature Photon. (1)

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Photon. 1, 402-406 (2007).
[CrossRef]

Opt. Commun. (1)

S. Massenot, R. Chevallier, J. -L. De Bougrenet de la Tocnaye, and O. Parriaux, “Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material,” Opt. Commun. 275, 318-323 (2007).
[CrossRef]

Opt. Eng. (2)

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532-2548 (2002).
[CrossRef]

P. J. Kajenski, “Tunable optical filter using long-range surface plasmons,” Opt. Eng. 36, 1537-1541 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

Polymer (1)

W.-J. Joo, N.-J. Kim, H. Chun, I. K. Moon, and N. Kim, “Polymeric photorefractive composite for holographic applications,” Polymer 42, 9863-9866 (2001).
[CrossRef]

Science (1)

J. M. Weissman, H. B. Sunkara, A. S. Tse, and S. A. Asher, “Thermally switchable periodicities and diffraction from mesoscopically ordered materials,” Science 274, 959-963 (1996).
[CrossRef] [PubMed]

Sens. Actuators B (1)

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16-24 (1999).
[CrossRef]

Sens. Actuators, A (1)

G. Lammel, S. Schweizer, and Ph. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Actuators, A 92, 52-59 (2001).
[CrossRef]

Other (2)

A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Chemical structure of components in the photorefractive composite: (a) PSX-Hz, (b) TNF, (c) DB-IP-DC, and (d) BBP.

Fig. 2
Fig. 2

Experimental arrangement: k 0 is the modulus of the wave vector in vacuum ( k o = 2 π λ ), k sp is the propagation constant of the plasmon wave ( k sp = k 0 ε 1 ε 2 / ε 1 + ε 2 ), θ i is the angle of incidence of the probe beam ( θ i = 40 ° ), θ is the semi-included angle between the two interfering beams, and Λ is the period of the Bragg diffraction grating.

Fig. 3
Fig. 3

Photorefractive diffraction efficiency as a function of time. The inset shows the correlation between the semi-included angle between the two interfering beams (θ) and the period of diffraction grating (Λ). The line is a guide to the eye.

Fig. 4
Fig. 4

SPR wavelength shift with the period of diffraction grating.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Λ = λ 2 n sin θ ,
ε 1 sin θ i + m λ SPR Λ = ε 1 ε 2 ε 1 + ε 2 .

Metrics