Abstract

Scattering by a sphere with a different internal structure has drawn attention. The forward scattering light of a water droplet containing multiple different size carbon inclusions is calculated by the finite-difference time-domain method. Herein, distribution of these carbon inclusions conforms to Apollonian packing in a droplet. The space left over between carbon inclusions constructs a fractal, of which the fractal dimension D is expressed as D1.305684. The incident wave is in the y-direction polarization. The results show that the amplitude of the intensity fluctuations is not associated with the fractal dimension. Carbon inclusions only decrease the component y of electric field intensity at the place of inclusions. For a droplet containing multiple concentrated inclusions with different sizes, the amplitude of the intensity fluctuations is related with every space between inclusions. And the far field light intensity approaches the intensity caused by one carbon inclusion as space between inclusions becomes less and less. In order to know the effect of polarization direction, transmissibility versus θ(angle between the polarization direction of the incident wave used and the y-axis direction) is finally obtained. It can be seen that the transmissibility changes with θ conformably and reaches a minimum when θ=30°. Transmissibility is equal for θ=90° and θ=0°.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Videen, W. Sun, and Q. Fu, “Light scattering from irregular tetrahedral aggregates,” Opt. Commun. 156, 5-9 (1998).
    [CrossRef]
  2. E. Zubko, D. Petrov, Y. Shkuratov, and G. Videen, “Discrete dipole approximation simulations of scattering by particles with hierarchical structure,” Appl. Opt. 44, 6479-6485 (2005).
    [CrossRef]
  3. D. S. Wang and P. W. Barber, “Scattering by inhomogeneous nonspherical objects,” Appl. Opt. 18, 1190-1197 (1979).
    [CrossRef]
  4. D. S. Wang, “Light scattering by nonspherical multilayered particles,” Ph.D. dissertation (University of Utah, 1979).
  5. D. Q. Chowdhury, S. C. Hill, and P. W. Barber, “Morphology-dependent resonances in radially inhomogeneous spheres,” J. Opt. Soc. Am. A 8, 1702-1705 (1991).
    [CrossRef]
  6. P. Chylek, V. Srivastava, R. G. Pinnick, and R. T. Wang, “Scattering of electromagnetic waves by composite spherical particles: experiment and effective medium approximations,” Appl. Opt. 27, 2396-2404 (1988).
    [CrossRef]
  7. V. P. Drachev, W.-T. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49, 645-662 (2002).
    [CrossRef]
  8. K. A. Fuller, “Scattering of light by coated spheres,” Opt. Lett. 18, 257-259 (1993).
    [CrossRef]
  9. K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. III. Spheres containing arbitrarily located spherical inhomogeneities,” J. Opt. Soc. Am. A 12, 893-904 (1995).
    [CrossRef]
  10. D. W. Mackowski and P. D. Jones, “Theoretical investigation of particles having a directionally dependent absorption cross section,” J. Thermophys. Heat Transfer 9, 193-201 (1995).
    [CrossRef]
  11. J. G. Fikioris and N. K. Uzunoglu, “Scattering from an eccentrically stratified dielectric sphere,” J. Opt. Soc. Am. 69, 1359-1366 (1979).
    [CrossRef]
  12. F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing a spherical eccentric inclusion,” J. Opt. Soc. Am. A 9, 1327-1335 (1992).
    [CrossRef]
  13. G. Videen, D. Ngo, P. Chylek, and R. G. Pinnick, “Light scattering from a sphere with an irregular inclusion,” J. Opt. Soc. Am. A 12, 922-928 (1995).
    [CrossRef]
  14. G. Videen, D. R. Prabhu, M. Davies, F. González, and F. Moreno, “Light scattering fluctuations of a soft spherical particle containing an inclusion,” Appl. Opt. 40, 4054-4057 (2001).
    [CrossRef]
  15. G. Videen, P. Pellegrino, D. Ngo, J. S. Videen, and R. G. Pinnick, “Light-scattering intensity fluctuations in microdroplets containing inclusions,” Appl. Opt. 36, 6115-6118 (1997).
    [CrossRef]
  16. F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing several spherical inclusions,” Appl. Opt. 33, 484-493 (1994).
    [CrossRef]
  17. S. S. Mana and H. J. Herrmann, “Precise determination of the fractal dimensions of Apollonian packing and space-filling bearings,” J. Phys. A Math. Nucl. Gen. 24, L481-L490 (1991).
    [CrossRef]
  18. R. Descartes, Oeuvres de Descartes, C. Adam and P. Tannery, eds. (Cerf, 1901), Vol. IV, pp. 45-50.
  19. J. C. Lagarias, C. L. Mallows, and A. Wilks, “Beyond the Descartes circle theorem,” Am. Math. Monthly 109, 338-361(2002).
    [CrossRef]
  20. Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).
    [CrossRef]
  21. B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988).
    [CrossRef]
  22. B. T. Draine and P. J. Flatau, “User guide to the discrete dipole approximation code DDSCAT 6.1” (2004), http://arxiv.org/abs/astro-ph/0409262.
  23. H. Okamoto, “Light scattering by clusters: the A1-term method,” Opt. Rev. 2, 407-412 (1995).
    [CrossRef]
  24. H. Okamoto and Y. Xu, “Light scattering by irregular interplanetary dust particles,” Earth Planets Space 50, 577-585(1998).
  25. D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266-2278 (1996).
    [CrossRef]
  26. M. I. Mishchenko and D. W. Mackowski, “Electromagnetic scattering by randomly oriented bispheres: comparison of theory and experiment and benchmark calculations,” J. Quant. Spectrosc. Radiat. Transfer 55, 683-694 (1996).
    [CrossRef]
  27. W. Sun, N. G. Loeb, and Q. Fu, “Finite-difference time-domain solution of light scattering and absorption by particles in an absorbing medium,” Appl. Opt. 41, 5728-5743 (2002).
    [CrossRef]
  28. W. Sun, N. G. Loeb, G. Videen, and Q. Fu, “Examination of surface roughness on light scattering by long ice columns by use of a two-dimensional finite-difference time-domain algorithm,” Appl. Opt. 43, 1957-1964 (2004).
    [CrossRef]
  29. P. Yang and K. N. Liou, “Finite difference time domain method for light scattering by nonspherical and inhomogeneous particles,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and J. D. Travis, eds. (Academic, 2000). pp. 173-221.
  30. T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).
  31. P. Chylek and V. Srivastava, “Dielectric constant of a composite inhomogeneous medium,” Phys. Rev. B 27, 5098-106(1983).
    [CrossRef]
  32. A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780-2788 (1993).
    [CrossRef]
  33. K. Muinonen, T. Nousiainen, P. Fast, K. Lumme, and J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577-601 (1996).
    [CrossRef]
  34. Y. Okada, A. M. Nakamura, and T. Mukai, “Light scattering by particulate media of irregularly shaped particles: laboratory measurements and numerical simulations,” J. Quant. Spectrosc. Radiat. Transfer 100, 295-304 (2006).
    [CrossRef]
  35. T. Mukai and Y. Okada, “Optical properties of large aggregates,” in Dust in Planetary Systems Workshop, H. Kruger and A. Graps, eds. (ESA Publications, 2007), paper SP-643.
  36. M. J. Wolff, G. C.Clayton, P. G. Martin, and R. E. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. 423, 412-425 (1994).
    [CrossRef]
  37. M. J. Wolff, G. C. Clayton, and S. J.Gibson, “Modeling composite and fluffy grain. II. Porosity and phase functions,” Astrophys. J. 503, 815-830 (1998).
    [CrossRef]
  38. N. V. Voshchinnikov and S. S.Mathis, “Calculating cross sections of composite interstellar grains,” Astrophys. J. 526, 257-264 (1999).
    [CrossRef]
  39. N. V. Voshchinnikov, V. B. Il'in , and Th. Henning, “Modelling the optical properties of composite and porous interstellar grains,” Astron. Astrophys. 429, 371-381 (2005).
    [CrossRef]
  40. N. V. Voshchinnikov, V. B. Il'in , Th. Henning, and D. N. Dubkova, “Dust extinction and absorption: the challenge of porous grains,” Astron. Astrophys. 445, 167-177(2006).
    [CrossRef]
  41. M. Koehler and I. Mann, “Light-scattering models applied to circumstellar dust properties,” J. Quant. Spectrosc. Radiat. Transfer 89, 453-460 (2004).
    [CrossRef]
  42. J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385-420(1904).
    [CrossRef]
  43. D. Bruggeman, “Calculation of various physics constants in heterogeneous substances. I. Dielectricity constants and conductivity of mixed bodies from isotropic substances,” Ann. Phys. 24, 636-664 (1935).
    [CrossRef]
  44. G. A. Niklaason, C. G. Granqvist, and O. Hunderi, “Effective medium models for the optical properties of inhomogeneous materials,” Appl. Opt. 20, 26-30 (1981).
    [CrossRef]
  45. M. Kocifaj and G. Videen, “Optical behavior of composite carbonaceous aerosols: DDA and EMT approaches,” J. Quant. Spectrosc. Radiat. Transfer 109, 1404-1416 (2008).
    [CrossRef]
  46. L. Kolokolova and B. Å. S. Gustafsonm, “Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories,” J. Quant. Spectrosc. Radiat. Transfer 70, 611-625 (2001).
    [CrossRef]
  47. A. Taflove and S. C.Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method , Artech House Antennas and Propagation Library Series (Artech House, 2005).
  48. Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).
    [CrossRef]
  49. M. A. Yurkin, A. G. Hoekstral, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method,” Opt. Express 15, 17902-17911 (2007).
    [CrossRef]
  50. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558-589 (2007).
    [CrossRef]
  51. W. Sun and Q. Fu, “Finite-difference time-domain solution of light scattering by dielectric particles with large complex refractive indices,” Appl. Opt. 39, 5569-5578 (2000).
    [CrossRef]
  52. W. Sun, Q. Fu, and Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition,” Appl. Opt. 38, 3141-3151 (1999).
    [CrossRef]
  53. M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Analysis of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method,” in Proceedings of 6th International Conference on Transparent Optical Networks 2004 (IEEE, 2004), Vol. B2.3, pp.109-112.
  54. R. Jaenicke, “Properties of atmospheric aerosols,” in Landold-Bornstein: Numerical Data and Functional Relationships in Science and Technology (Springer, 1988). Vol. 4b, p. 417.

2008

M. Kocifaj and G. Videen, “Optical behavior of composite carbonaceous aerosols: DDA and EMT approaches,” J. Quant. Spectrosc. Radiat. Transfer 109, 1404-1416 (2008).
[CrossRef]

2007

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).
[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558-589 (2007).
[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).
[CrossRef]

M. A. Yurkin, A. G. Hoekstral, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method,” Opt. Express 15, 17902-17911 (2007).
[CrossRef]

2006

Y. Okada, A. M. Nakamura, and T. Mukai, “Light scattering by particulate media of irregularly shaped particles: laboratory measurements and numerical simulations,” J. Quant. Spectrosc. Radiat. Transfer 100, 295-304 (2006).
[CrossRef]

N. V. Voshchinnikov, V. B. Il'in , Th. Henning, and D. N. Dubkova, “Dust extinction and absorption: the challenge of porous grains,” Astron. Astrophys. 445, 167-177(2006).
[CrossRef]

2005

N. V. Voshchinnikov, V. B. Il'in , and Th. Henning, “Modelling the optical properties of composite and porous interstellar grains,” Astron. Astrophys. 429, 371-381 (2005).
[CrossRef]

E. Zubko, D. Petrov, Y. Shkuratov, and G. Videen, “Discrete dipole approximation simulations of scattering by particles with hierarchical structure,” Appl. Opt. 44, 6479-6485 (2005).
[CrossRef]

2004

2002

V. P. Drachev, W.-T. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49, 645-662 (2002).
[CrossRef]

J. C. Lagarias, C. L. Mallows, and A. Wilks, “Beyond the Descartes circle theorem,” Am. Math. Monthly 109, 338-361(2002).
[CrossRef]

W. Sun, N. G. Loeb, and Q. Fu, “Finite-difference time-domain solution of light scattering and absorption by particles in an absorbing medium,” Appl. Opt. 41, 5728-5743 (2002).
[CrossRef]

2001

G. Videen, D. R. Prabhu, M. Davies, F. González, and F. Moreno, “Light scattering fluctuations of a soft spherical particle containing an inclusion,” Appl. Opt. 40, 4054-4057 (2001).
[CrossRef]

L. Kolokolova and B. Å. S. Gustafsonm, “Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories,” J. Quant. Spectrosc. Radiat. Transfer 70, 611-625 (2001).
[CrossRef]

2000

1999

1998

M. J. Wolff, G. C. Clayton, and S. J.Gibson, “Modeling composite and fluffy grain. II. Porosity and phase functions,” Astrophys. J. 503, 815-830 (1998).
[CrossRef]

G. Videen, W. Sun, and Q. Fu, “Light scattering from irregular tetrahedral aggregates,” Opt. Commun. 156, 5-9 (1998).
[CrossRef]

H. Okamoto and Y. Xu, “Light scattering by irregular interplanetary dust particles,” Earth Planets Space 50, 577-585(1998).

1997

1996

D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266-2278 (1996).
[CrossRef]

M. I. Mishchenko and D. W. Mackowski, “Electromagnetic scattering by randomly oriented bispheres: comparison of theory and experiment and benchmark calculations,” J. Quant. Spectrosc. Radiat. Transfer 55, 683-694 (1996).
[CrossRef]

K. Muinonen, T. Nousiainen, P. Fast, K. Lumme, and J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577-601 (1996).
[CrossRef]

1995

D. W. Mackowski and P. D. Jones, “Theoretical investigation of particles having a directionally dependent absorption cross section,” J. Thermophys. Heat Transfer 9, 193-201 (1995).
[CrossRef]

H. Okamoto, “Light scattering by clusters: the A1-term method,” Opt. Rev. 2, 407-412 (1995).
[CrossRef]

K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. III. Spheres containing arbitrarily located spherical inhomogeneities,” J. Opt. Soc. Am. A 12, 893-904 (1995).
[CrossRef]

G. Videen, D. Ngo, P. Chylek, and R. G. Pinnick, “Light scattering from a sphere with an irregular inclusion,” J. Opt. Soc. Am. A 12, 922-928 (1995).
[CrossRef]

1994

M. J. Wolff, G. C.Clayton, P. G. Martin, and R. E. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. 423, 412-425 (1994).
[CrossRef]

F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing several spherical inclusions,” Appl. Opt. 33, 484-493 (1994).
[CrossRef]

1993

1992

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).

F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing a spherical eccentric inclusion,” J. Opt. Soc. Am. A 9, 1327-1335 (1992).
[CrossRef]

1991

D. Q. Chowdhury, S. C. Hill, and P. W. Barber, “Morphology-dependent resonances in radially inhomogeneous spheres,” J. Opt. Soc. Am. A 8, 1702-1705 (1991).
[CrossRef]

S. S. Mana and H. J. Herrmann, “Precise determination of the fractal dimensions of Apollonian packing and space-filling bearings,” J. Phys. A Math. Nucl. Gen. 24, L481-L490 (1991).
[CrossRef]

1988

1983

P. Chylek and V. Srivastava, “Dielectric constant of a composite inhomogeneous medium,” Phys. Rev. B 27, 5098-106(1983).
[CrossRef]

1981

1979

1935

D. Bruggeman, “Calculation of various physics constants in heterogeneous substances. I. Dielectricity constants and conductivity of mixed bodies from isotropic substances,” Ann. Phys. 24, 636-664 (1935).
[CrossRef]

1904

J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385-420(1904).
[CrossRef]

Draine, B. T.

B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988).
[CrossRef]

Dubkova, D. N.

N. V. Voshchinnikov, V. B. Il'in , Th. Henning, and D. N. Dubkova, “Dust extinction and absorption: the challenge of porous grains,” Astron. Astrophys. 445, 167-177(2006).
[CrossRef]

Il'in, V. B.

N. V. Voshchinnikov, V. B. Il'in , Th. Henning, and D. N. Dubkova, “Dust extinction and absorption: the challenge of porous grains,” Astron. Astrophys. 445, 167-177(2006).
[CrossRef]

N. V. Voshchinnikov, V. B. Il'in , and Th. Henning, “Modelling the optical properties of composite and porous interstellar grains,” Astron. Astrophys. 429, 371-381 (2005).
[CrossRef]

Mackowski, D. W.

Maxwell-Garnett, J. C.

J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385-420(1904).
[CrossRef]

Mishchenko, M.

Mishchenko, M. I.

M. I. Mishchenko and D. W. Mackowski, “Electromagnetic scattering by randomly oriented bispheres: comparison of theory and experiment and benchmark calculations,” J. Quant. Spectrosc. Radiat. Transfer 55, 683-694 (1996).
[CrossRef]

Niklaason, G. A.

Schulte-Ladbeck, R.

M. J. Wolff, G. C.Clayton, P. G. Martin, and R. E. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. 423, 412-425 (1994).
[CrossRef]

Voshchinnikov, N. V.

N. V. Voshchinnikov, V. B. Il'in , Th. Henning, and D. N. Dubkova, “Dust extinction and absorption: the challenge of porous grains,” Astron. Astrophys. 445, 167-177(2006).
[CrossRef]

Armstrong, R. L.

V. P. Drachev, W.-T. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49, 645-662 (2002).
[CrossRef]

Barber, P. W.

Blum, J.

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).

Borghese, F.

Brock, R. S.

Bruggeman, D.

D. Bruggeman, “Calculation of various physics constants in heterogeneous substances. I. Dielectricity constants and conductivity of mixed bodies from isotropic substances,” Ann. Phys. 24, 636-664 (1935).
[CrossRef]

Chen, Z.

Chowdhury, D. Q.

Chylek, P.

Clayton, G. .

M. J. Wolff, G. C.Clayton, P. G. Martin, and R. E. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. 423, 412-425 (1994).
[CrossRef]

Clayton, G. C.

M. J. Wolff, G. C. Clayton, and S. J.Gibson, “Modeling composite and fluffy grain. II. Porosity and phase functions,” Astrophys. J. 503, 815-830 (1998).
[CrossRef]

Craddock, I. J.

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Analysis of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method,” in Proceedings of 6th International Conference on Transparent Optical Networks 2004 (IEEE, 2004), Vol. B2.3, pp.109-112.

Cryan, M. J.

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Analysis of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method,” in Proceedings of 6th International Conference on Transparent Optical Networks 2004 (IEEE, 2004), Vol. B2.3, pp.109-112.

Davies, M.

Denti, P.

Descartes, R.

R. Descartes, Oeuvres de Descartes, C. Adam and P. Tannery, eds. (Cerf, 1901), Vol. IV, pp. 45-50.

Drachev, V. P.

V. P. Drachev, W.-T. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49, 645-662 (2002).
[CrossRef]

Draine, B. T.

B. T. Draine and P. J. Flatau, “User guide to the discrete dipole approximation code DDSCAT 6.1” (2004), http://arxiv.org/abs/astro-ph/0409262.

Fast, P.

K. Muinonen, T. Nousiainen, P. Fast, K. Lumme, and J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577-601 (1996).
[CrossRef]

Fikioris, J. G.

Flatau, P. J.

B. T. Draine and P. J. Flatau, “User guide to the discrete dipole approximation code DDSCAT 6.1” (2004), http://arxiv.org/abs/astro-ph/0409262.

Fu, Q.

Fuller, K. A.

Gibson, S.

M. J. Wolff, G. C. Clayton, and S. J.Gibson, “Modeling composite and fluffy grain. II. Porosity and phase functions,” Astrophys. J. 503, 815-830 (1998).
[CrossRef]

González, F.

Granqvist, C. G.

Greenberg, J. M.

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).

Gustafsonm, B. Å. S.

L. Kolokolova and B. Å. S. Gustafsonm, “Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories,” J. Quant. Spectrosc. Radiat. Transfer 70, 611-625 (2001).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C.Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method , Artech House Antennas and Propagation Library Series (Artech House, 2005).

Henning, Th.

N. V. Voshchinnikov, V. B. Il'in , Th. Henning, and D. N. Dubkova, “Dust extinction and absorption: the challenge of porous grains,” Astron. Astrophys. 445, 167-177(2006).
[CrossRef]

N. V. Voshchinnikov, V. B. Il'in , and Th. Henning, “Modelling the optical properties of composite and porous interstellar grains,” Astron. Astrophys. 429, 371-381 (2005).
[CrossRef]

Herrmann, H. J.

S. S. Mana and H. J. Herrmann, “Precise determination of the fractal dimensions of Apollonian packing and space-filling bearings,” J. Phys. A Math. Nucl. Gen. 24, L481-L490 (1991).
[CrossRef]

Hill, S. C.

Hoekstra, A. G.

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558-589 (2007).
[CrossRef]

Hoekstral, A. G.

Hunderi, O.

Ishimoto, H.

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).

Jaenicke, R.

R. Jaenicke, “Properties of atmospheric aerosols,” in Landold-Bornstein: Numerical Data and Functional Relationships in Science and Technology (Springer, 1988). Vol. 4b, p. 417.

Jones, P. D.

D. W. Mackowski and P. D. Jones, “Theoretical investigation of particles having a directionally dependent absorption cross section,” J. Thermophys. Heat Transfer 9, 193-201 (1995).
[CrossRef]

Khaliullin, E. N.

V. P. Drachev, W.-T. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49, 645-662 (2002).
[CrossRef]

Kim, W.-T.

V. P. Drachev, W.-T. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49, 645-662 (2002).
[CrossRef]

Kocifaj, M.

M. Kocifaj and G. Videen, “Optical behavior of composite carbonaceous aerosols: DDA and EMT approaches,” J. Quant. Spectrosc. Radiat. Transfer 109, 1404-1416 (2008).
[CrossRef]

Koehler, M.

M. Koehler and I. Mann, “Light-scattering models applied to circumstellar dust properties,” J. Quant. Spectrosc. Radiat. Transfer 89, 453-460 (2004).
[CrossRef]

Kolokolova, L.

L. Kolokolova and B. Å. S. Gustafsonm, “Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories,” J. Quant. Spectrosc. Radiat. Transfer 70, 611-625 (2001).
[CrossRef]

Kozasa, T.

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).

Lagarias, J. C.

J. C. Lagarias, C. L. Mallows, and A. Wilks, “Beyond the Descartes circle theorem,” Am. Math. Monthly 109, 338-361(2002).
[CrossRef]

Liou, K. N.

P. Yang and K. N. Liou, “Finite difference time domain method for light scattering by nonspherical and inhomogeneous particles,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and J. D. Travis, eds. (Academic, 2000). pp. 173-221.

Loeb, N. G.

Lu, J. Q.

Lumme, K.

K. Muinonen, T. Nousiainen, P. Fast, K. Lumme, and J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577-601 (1996).
[CrossRef]

Macke, A.

Mackowski, D. W.

M. I. Mishchenko and D. W. Mackowski, “Electromagnetic scattering by randomly oriented bispheres: comparison of theory and experiment and benchmark calculations,” J. Quant. Spectrosc. Radiat. Transfer 55, 683-694 (1996).
[CrossRef]

D. W. Mackowski and P. D. Jones, “Theoretical investigation of particles having a directionally dependent absorption cross section,” J. Thermophys. Heat Transfer 9, 193-201 (1995).
[CrossRef]

Mallows, C. L.

J. C. Lagarias, C. L. Mallows, and A. Wilks, “Beyond the Descartes circle theorem,” Am. Math. Monthly 109, 338-361(2002).
[CrossRef]

Mana, S. S.

S. S. Mana and H. J. Herrmann, “Precise determination of the fractal dimensions of Apollonian packing and space-filling bearings,” J. Phys. A Math. Nucl. Gen. 24, L481-L490 (1991).
[CrossRef]

Mann, I.

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).
[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).
[CrossRef]

M. Koehler and I. Mann, “Light-scattering models applied to circumstellar dust properties,” J. Quant. Spectrosc. Radiat. Transfer 89, 453-460 (2004).
[CrossRef]

Martin, P. G.

M. J. Wolff, G. C.Clayton, P. G. Martin, and R. E. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. 423, 412-425 (1994).
[CrossRef]

Mathis, S. S.

N. V. Voshchinnikov and S. S.Mathis, “Calculating cross sections of composite interstellar grains,” Astrophys. J. 526, 257-264 (1999).
[CrossRef]

Moreno, F.

Muinonen, K.

K. Muinonen, T. Nousiainen, P. Fast, K. Lumme, and J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577-601 (1996).
[CrossRef]

Mukai, S.

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).
[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).
[CrossRef]

Mukai, T.

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).
[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).
[CrossRef]

Y. Okada, A. M. Nakamura, and T. Mukai, “Light scattering by particulate media of irregularly shaped particles: laboratory measurements and numerical simulations,” J. Quant. Spectrosc. Radiat. Transfer 100, 295-304 (2006).
[CrossRef]

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).

T. Mukai and Y. Okada, “Optical properties of large aggregates,” in Dust in Planetary Systems Workshop, H. Kruger and A. Graps, eds. (ESA Publications, 2007), paper SP-643.

Nakamura, A. M.

Y. Okada, A. M. Nakamura, and T. Mukai, “Light scattering by particulate media of irregularly shaped particles: laboratory measurements and numerical simulations,” J. Quant. Spectrosc. Radiat. Transfer 100, 295-304 (2006).
[CrossRef]

Ngo, D.

Nomura, H.

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).
[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).
[CrossRef]

Nousiainen, T.

K. Muinonen, T. Nousiainen, P. Fast, K. Lumme, and J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577-601 (1996).
[CrossRef]

Okada, Y.

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).
[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).
[CrossRef]

Y. Okada, A. M. Nakamura, and T. Mukai, “Light scattering by particulate media of irregularly shaped particles: laboratory measurements and numerical simulations,” J. Quant. Spectrosc. Radiat. Transfer 100, 295-304 (2006).
[CrossRef]

T. Mukai and Y. Okada, “Optical properties of large aggregates,” in Dust in Planetary Systems Workshop, H. Kruger and A. Graps, eds. (ESA Publications, 2007), paper SP-643.

Okamoto, H.

H. Okamoto and Y. Xu, “Light scattering by irregular interplanetary dust particles,” Earth Planets Space 50, 577-585(1998).

H. Okamoto, “Light scattering by clusters: the A1-term method,” Opt. Rev. 2, 407-412 (1995).
[CrossRef]

Pellegrino, P.

Peltoniemi, J. I.

K. Muinonen, T. Nousiainen, P. Fast, K. Lumme, and J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577-601 (1996).
[CrossRef]

Petrov, D.

Pinnick, R. G.

Podolskiy, V. A.

V. P. Drachev, W.-T. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49, 645-662 (2002).
[CrossRef]

Prabhu, D. R.

Railton, C. J.

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Analysis of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method,” in Proceedings of 6th International Conference on Transparent Optical Networks 2004 (IEEE, 2004), Vol. B2.3, pp.109-112.

Rorison, J.

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Analysis of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method,” in Proceedings of 6th International Conference on Transparent Optical Networks 2004 (IEEE, 2004), Vol. B2.3, pp.109-112.

Safonov, V. P.

V. P. Drachev, W.-T. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49, 645-662 (2002).
[CrossRef]

Saija, R.

Sano, I.

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).
[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).
[CrossRef]

Shalaev, V. M.

V. P. Drachev, W.-T. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49, 645-662 (2002).
[CrossRef]

Shkuratov, Y.

Srivastava, V.

Sun, W.

Taflove, A.

A. Taflove and S. C.Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method , Artech House Antennas and Propagation Library Series (Artech House, 2005).

Takeuchi, T.

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).
[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).
[CrossRef]

Uzunoglu, N. K.

Videen, G.

Videen, J. S.

Voshchinnikov, N. V.

N. V. Voshchinnikov, V. B. Il'in , and Th. Henning, “Modelling the optical properties of composite and porous interstellar grains,” Astron. Astrophys. 429, 371-381 (2005).
[CrossRef]

N. V. Voshchinnikov and S. S.Mathis, “Calculating cross sections of composite interstellar grains,” Astrophys. J. 526, 257-264 (1999).
[CrossRef]

Wang, D. S.

D. S. Wang and P. W. Barber, “Scattering by inhomogeneous nonspherical objects,” Appl. Opt. 18, 1190-1197 (1979).
[CrossRef]

D. S. Wang, “Light scattering by nonspherical multilayered particles,” Ph.D. dissertation (University of Utah, 1979).

Wang, R. T.

Wilks, A.

J. C. Lagarias, C. L. Mallows, and A. Wilks, “Beyond the Descartes circle theorem,” Am. Math. Monthly 109, 338-361(2002).
[CrossRef]

Wolff, M. J.

M. J. Wolff, G. C. Clayton, and S. J.Gibson, “Modeling composite and fluffy grain. II. Porosity and phase functions,” Astrophys. J. 503, 815-830 (1998).
[CrossRef]

M. J. Wolff, G. C.Clayton, P. G. Martin, and R. E. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. 423, 412-425 (1994).
[CrossRef]

Wong, D. C. L.

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Analysis of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method,” in Proceedings of 6th International Conference on Transparent Optical Networks 2004 (IEEE, 2004), Vol. B2.3, pp.109-112.

Xu, Y.

H. Okamoto and Y. Xu, “Light scattering by irregular interplanetary dust particles,” Earth Planets Space 50, 577-585(1998).

Yang, P.

P. Yang and K. N. Liou, “Finite difference time domain method for light scattering by nonspherical and inhomogeneous particles,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and J. D. Travis, eds. (Academic, 2000). pp. 173-221.

Yu, S.

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Analysis of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method,” in Proceedings of 6th International Conference on Transparent Optical Networks 2004 (IEEE, 2004), Vol. B2.3, pp.109-112.

Yurkin, M. A.

M. A. Yurkin, A. G. Hoekstral, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method,” Opt. Express 15, 17902-17911 (2007).
[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558-589 (2007).
[CrossRef]

Zakovryashin, N. S.

V. P. Drachev, W.-T. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49, 645-662 (2002).
[CrossRef]

Zubko, E.

Am. Math. Monthly

J. C. Lagarias, C. L. Mallows, and A. Wilks, “Beyond the Descartes circle theorem,” Am. Math. Monthly 109, 338-361(2002).
[CrossRef]

Ann. Phys.

D. Bruggeman, “Calculation of various physics constants in heterogeneous substances. I. Dielectricity constants and conductivity of mixed bodies from isotropic substances,” Ann. Phys. 24, 636-664 (1935).
[CrossRef]

Appl. Opt.

A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780-2788 (1993).
[CrossRef]

F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing several spherical inclusions,” Appl. Opt. 33, 484-493 (1994).
[CrossRef]

W. Sun, Q. Fu, and Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition,” Appl. Opt. 38, 3141-3151 (1999).
[CrossRef]

G. Videen, P. Pellegrino, D. Ngo, J. S. Videen, and R. G. Pinnick, “Light-scattering intensity fluctuations in microdroplets containing inclusions,” Appl. Opt. 36, 6115-6118 (1997).
[CrossRef]

P. Chylek, V. Srivastava, R. G. Pinnick, and R. T. Wang, “Scattering of electromagnetic waves by composite spherical particles: experiment and effective medium approximations,” Appl. Opt. 27, 2396-2404 (1988).
[CrossRef]

W. Sun and Q. Fu, “Finite-difference time-domain solution of light scattering by dielectric particles with large complex refractive indices,” Appl. Opt. 39, 5569-5578 (2000).
[CrossRef]

G. Videen, D. R. Prabhu, M. Davies, F. González, and F. Moreno, “Light scattering fluctuations of a soft spherical particle containing an inclusion,” Appl. Opt. 40, 4054-4057 (2001).
[CrossRef]

W. Sun, N. G. Loeb, and Q. Fu, “Finite-difference time-domain solution of light scattering and absorption by particles in an absorbing medium,” Appl. Opt. 41, 5728-5743 (2002).
[CrossRef]

D. S. Wang and P. W. Barber, “Scattering by inhomogeneous nonspherical objects,” Appl. Opt. 18, 1190-1197 (1979).
[CrossRef]

G. A. Niklaason, C. G. Granqvist, and O. Hunderi, “Effective medium models for the optical properties of inhomogeneous materials,” Appl. Opt. 20, 26-30 (1981).
[CrossRef]

W. Sun, N. G. Loeb, G. Videen, and Q. Fu, “Examination of surface roughness on light scattering by long ice columns by use of a two-dimensional finite-difference time-domain algorithm,” Appl. Opt. 43, 1957-1964 (2004).
[CrossRef]

E. Zubko, D. Petrov, Y. Shkuratov, and G. Videen, “Discrete dipole approximation simulations of scattering by particles with hierarchical structure,” Appl. Opt. 44, 6479-6485 (2005).
[CrossRef]

Astron. Astrophys.

N. V. Voshchinnikov, V. B. Il'in , and Th. Henning, “Modelling the optical properties of composite and porous interstellar grains,” Astron. Astrophys. 429, 371-381 (2005).
[CrossRef]

N. V. Voshchinnikov, V. B. Il'in , Th. Henning, and D. N. Dubkova, “Dust extinction and absorption: the challenge of porous grains,” Astron. Astrophys. 445, 167-177(2006).
[CrossRef]

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).

Astrophys. J.

B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988).
[CrossRef]

M. J. Wolff, G. C.Clayton, P. G. Martin, and R. E. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. 423, 412-425 (1994).
[CrossRef]

M. J. Wolff, G. C. Clayton, and S. J.Gibson, “Modeling composite and fluffy grain. II. Porosity and phase functions,” Astrophys. J. 503, 815-830 (1998).
[CrossRef]

N. V. Voshchinnikov and S. S.Mathis, “Calculating cross sections of composite interstellar grains,” Astrophys. J. 526, 257-264 (1999).
[CrossRef]

Earth Planets Space

H. Okamoto and Y. Xu, “Light scattering by irregular interplanetary dust particles,” Earth Planets Space 50, 577-585(1998).

J. Mod. Opt.

V. P. Drachev, W.-T. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49, 645-662 (2002).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Phys. A Math. Nucl. Gen.

S. S. Mana and H. J. Herrmann, “Precise determination of the fractal dimensions of Apollonian packing and space-filling bearings,” J. Phys. A Math. Nucl. Gen. 24, L481-L490 (1991).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).
[CrossRef]

K. Muinonen, T. Nousiainen, P. Fast, K. Lumme, and J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577-601 (1996).
[CrossRef]

Y. Okada, A. M. Nakamura, and T. Mukai, “Light scattering by particulate media of irregularly shaped particles: laboratory measurements and numerical simulations,” J. Quant. Spectrosc. Radiat. Transfer 100, 295-304 (2006).
[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).
[CrossRef]

M. I. Mishchenko and D. W. Mackowski, “Electromagnetic scattering by randomly oriented bispheres: comparison of theory and experiment and benchmark calculations,” J. Quant. Spectrosc. Radiat. Transfer 55, 683-694 (1996).
[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558-589 (2007).
[CrossRef]

M. Koehler and I. Mann, “Light-scattering models applied to circumstellar dust properties,” J. Quant. Spectrosc. Radiat. Transfer 89, 453-460 (2004).
[CrossRef]

M. Kocifaj and G. Videen, “Optical behavior of composite carbonaceous aerosols: DDA and EMT approaches,” J. Quant. Spectrosc. Radiat. Transfer 109, 1404-1416 (2008).
[CrossRef]

L. Kolokolova and B. Å. S. Gustafsonm, “Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories,” J. Quant. Spectrosc. Radiat. Transfer 70, 611-625 (2001).
[CrossRef]

J. Thermophys. Heat Transfer

D. W. Mackowski and P. D. Jones, “Theoretical investigation of particles having a directionally dependent absorption cross section,” J. Thermophys. Heat Transfer 9, 193-201 (1995).
[CrossRef]

Opt. Commun.

G. Videen, W. Sun, and Q. Fu, “Light scattering from irregular tetrahedral aggregates,” Opt. Commun. 156, 5-9 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Rev.

H. Okamoto, “Light scattering by clusters: the A1-term method,” Opt. Rev. 2, 407-412 (1995).
[CrossRef]

Philos. Trans. R. Soc. London

J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385-420(1904).
[CrossRef]

Phys. Rev. B

P. Chylek and V. Srivastava, “Dielectric constant of a composite inhomogeneous medium,” Phys. Rev. B 27, 5098-106(1983).
[CrossRef]

Other

T. Mukai and Y. Okada, “Optical properties of large aggregates,” in Dust in Planetary Systems Workshop, H. Kruger and A. Graps, eds. (ESA Publications, 2007), paper SP-643.

P. Yang and K. N. Liou, “Finite difference time domain method for light scattering by nonspherical and inhomogeneous particles,” in Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and J. D. Travis, eds. (Academic, 2000). pp. 173-221.

B. T. Draine and P. J. Flatau, “User guide to the discrete dipole approximation code DDSCAT 6.1” (2004), http://arxiv.org/abs/astro-ph/0409262.

D. S. Wang, “Light scattering by nonspherical multilayered particles,” Ph.D. dissertation (University of Utah, 1979).

R. Descartes, Oeuvres de Descartes, C. Adam and P. Tannery, eds. (Cerf, 1901), Vol. IV, pp. 45-50.

A. Taflove and S. C.Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method , Artech House Antennas and Propagation Library Series (Artech House, 2005).

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Analysis of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method,” in Proceedings of 6th International Conference on Transparent Optical Networks 2004 (IEEE, 2004), Vol. B2.3, pp.109-112.

R. Jaenicke, “Properties of atmospheric aerosols,” in Landold-Bornstein: Numerical Data and Functional Relationships in Science and Technology (Springer, 1988). Vol. 4b, p. 417.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Initialized two-circle configuration.

Fig. 2
Fig. 2

Initialized three-circle configuration.

Fig. 3
Fig. 3

Initialized four-circle configuration.

Fig. 4
Fig. 4

Initialized seven-circle configuration.

Fig. 5
Fig. 5

E y and far field intensity distribution for initial 2.

Fig. 6
Fig. 6

E y and far field intensity distribution for initial 3.

Fig. 7
Fig. 7

E y and far field intensity distribution for initial 4.

Fig. 8
Fig. 8

E y and far field intensity distribution for initial 7.

Fig. 9
Fig. 9

E y and far field intensity distribution for one carbon.

Fig. 10
Fig. 10

Transmissibility versus angle (θ) between the polarization direction of the incident wave used and the y-axis direction.

Tables (1)

Tables Icon

Table 1 Iterative Result

Metrics