M. Kocifaj and G. Videen, “Optical behavior of composite carbonaceous aerosols: DDA and EMT approaches,” J. Quant. Spectrosc. Radiat. Transfer 109, 1404-1416 (2008).

[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).

[CrossRef]

M. A. Yurkin, A. G. Hoekstral, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method,” Opt. Express 15, 17902-17911 (2007).

[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558-589 (2007).

[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).

[CrossRef]

Y. Okada, A. M. Nakamura, and T. Mukai, “Light scattering by particulate media of irregularly shaped particles: laboratory measurements and numerical simulations,” J. Quant. Spectrosc. Radiat. Transfer 100, 295-304 (2006).

[CrossRef]

N. V. Voshchinnikov, V. B. Il'in , Th. Henning, and D. N. Dubkova, “Dust extinction and absorption: the challenge of porous grains,” Astron. Astrophys. 445, 167-177(2006).

[CrossRef]

E. Zubko, D. Petrov, Y. Shkuratov, and G. Videen, “Discrete dipole approximation simulations of scattering by particles with hierarchical structure,” Appl. Opt. 44, 6479-6485 (2005).

[CrossRef]

N. V. Voshchinnikov, V. B. Il'in , and Th. Henning, “Modelling the optical properties of composite and porous interstellar grains,” Astron. Astrophys. 429, 371-381 (2005).

[CrossRef]

W. Sun, N. G. Loeb, and Q. Fu, “Finite-difference time-domain solution of light scattering and absorption by particles in an absorbing medium,” Appl. Opt. 41, 5728-5743 (2002).

[CrossRef]

V. P. Drachev, W.-T. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49, 645-662 (2002).

[CrossRef]

J. C. Lagarias, C. L. Mallows, and A. Wilks, “Beyond the Descartes circle theorem,” Am. Math. Monthly 109, 338-361(2002).

[CrossRef]

G. Videen, D. R. Prabhu, M. Davies, F. González, and F. Moreno, “Light scattering fluctuations of a soft spherical particle containing an inclusion,” Appl. Opt. 40, 4054-4057 (2001).

[CrossRef]

L. Kolokolova and B. Å. S. Gustafsonm, “Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories,” J. Quant. Spectrosc. Radiat. Transfer 70, 611-625 (2001).

[CrossRef]

M. J. Wolff, G. C. Clayton, and S. J.Gibson, “Modeling composite and fluffy grain. II. Porosity and phase functions,” Astrophys. J. 503, 815-830 (1998).

[CrossRef]

H. Okamoto and Y. Xu, “Light scattering by irregular interplanetary dust particles,” Earth Planets Space 50, 577-585(1998).

G. Videen, W. Sun, and Q. Fu, “Light scattering from irregular tetrahedral aggregates,” Opt. Commun. 156, 5-9 (1998).

[CrossRef]

D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266-2278 (1996).

[CrossRef]

M. I. Mishchenko and D. W. Mackowski, “Electromagnetic scattering by randomly oriented bispheres: comparison of theory and experiment and benchmark calculations,” J. Quant. Spectrosc. Radiat. Transfer 55, 683-694 (1996).

[CrossRef]

K. Muinonen, T. Nousiainen, P. Fast, K. Lumme, and J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577-601 (1996).

[CrossRef]

H. Okamoto, “Light scattering by clusters: the A1-term method,” Opt. Rev. 2, 407-412 (1995).

[CrossRef]

G. Videen, D. Ngo, P. Chylek, and R. G. Pinnick, “Light scattering from a sphere with an irregular inclusion,” J. Opt. Soc. Am. A 12, 922-928 (1995).

[CrossRef]

K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. III. Spheres containing arbitrarily located spherical inhomogeneities,” J. Opt. Soc. Am. A 12, 893-904 (1995).

[CrossRef]

D. W. Mackowski and P. D. Jones, “Theoretical investigation of particles having a directionally dependent absorption cross section,” J. Thermophys. Heat Transfer 9, 193-201 (1995).

[CrossRef]

F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing several spherical inclusions,” Appl. Opt. 33, 484-493 (1994).

[CrossRef]

M. J. Wolff, G. C.Clayton, P. G. Martin, and R. E. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. 423, 412-425 (1994).

[CrossRef]

F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing a spherical eccentric inclusion,” J. Opt. Soc. Am. A 9, 1327-1335 (1992).

[CrossRef]

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).

P. Chylek and V. Srivastava, “Dielectric constant of a composite inhomogeneous medium,” Phys. Rev. B 27, 5098-106(1983).

[CrossRef]

D. Bruggeman, “Calculation of various physics constants in heterogeneous substances. I. Dielectricity constants and conductivity of mixed bodies from isotropic substances,” Ann. Phys. 24, 636-664 (1935).

[CrossRef]

J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385-420(1904).

[CrossRef]

B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988).

[CrossRef]

N. V. Voshchinnikov, V. B. Il'in , Th. Henning, and D. N. Dubkova, “Dust extinction and absorption: the challenge of porous grains,” Astron. Astrophys. 445, 167-177(2006).

[CrossRef]

N. V. Voshchinnikov, V. B. Il'in , Th. Henning, and D. N. Dubkova, “Dust extinction and absorption: the challenge of porous grains,” Astron. Astrophys. 445, 167-177(2006).

[CrossRef]

N. V. Voshchinnikov, V. B. Il'in , and Th. Henning, “Modelling the optical properties of composite and porous interstellar grains,” Astron. Astrophys. 429, 371-381 (2005).

[CrossRef]

J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385-420(1904).

[CrossRef]

M. I. Mishchenko and D. W. Mackowski, “Electromagnetic scattering by randomly oriented bispheres: comparison of theory and experiment and benchmark calculations,” J. Quant. Spectrosc. Radiat. Transfer 55, 683-694 (1996).

[CrossRef]

M. J. Wolff, G. C.Clayton, P. G. Martin, and R. E. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. 423, 412-425 (1994).

[CrossRef]

N. V. Voshchinnikov, V. B. Il'in , Th. Henning, and D. N. Dubkova, “Dust extinction and absorption: the challenge of porous grains,” Astron. Astrophys. 445, 167-177(2006).

[CrossRef]

V. P. Drachev, W.-T. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49, 645-662 (2002).

[CrossRef]

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).

F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing several spherical inclusions,” Appl. Opt. 33, 484-493 (1994).

[CrossRef]

F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing a spherical eccentric inclusion,” J. Opt. Soc. Am. A 9, 1327-1335 (1992).

[CrossRef]

D. Bruggeman, “Calculation of various physics constants in heterogeneous substances. I. Dielectricity constants and conductivity of mixed bodies from isotropic substances,” Ann. Phys. 24, 636-664 (1935).

[CrossRef]

G. Videen, D. Ngo, P. Chylek, and R. G. Pinnick, “Light scattering from a sphere with an irregular inclusion,” J. Opt. Soc. Am. A 12, 922-928 (1995).

[CrossRef]

P. Chylek, V. Srivastava, R. G. Pinnick, and R. T. Wang, “Scattering of electromagnetic waves by composite spherical particles: experiment and effective medium approximations,” Appl. Opt. 27, 2396-2404 (1988).

[CrossRef]

P. Chylek and V. Srivastava, “Dielectric constant of a composite inhomogeneous medium,” Phys. Rev. B 27, 5098-106(1983).

[CrossRef]

M. J. Wolff, G. C.Clayton, P. G. Martin, and R. E. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. 423, 412-425 (1994).

[CrossRef]

M. J. Wolff, G. C. Clayton, and S. J.Gibson, “Modeling composite and fluffy grain. II. Porosity and phase functions,” Astrophys. J. 503, 815-830 (1998).

[CrossRef]

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Analysis of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method,” in Proceedings of 6th International Conference on Transparent Optical Networks 2004 (IEEE, 2004), Vol. B2.3, pp.109-112.

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Analysis of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method,” in Proceedings of 6th International Conference on Transparent Optical Networks 2004 (IEEE, 2004), Vol. B2.3, pp.109-112.

F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing several spherical inclusions,” Appl. Opt. 33, 484-493 (1994).

[CrossRef]

F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing a spherical eccentric inclusion,” J. Opt. Soc. Am. A 9, 1327-1335 (1992).

[CrossRef]

R. Descartes, *Oeuvres de Descartes*, C. Adam and P. Tannery, eds. (Cerf, 1901), Vol. IV, pp. 45-50.

V. P. Drachev, W.-T. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49, 645-662 (2002).

[CrossRef]

B. T. Draine and P. J. Flatau, “User guide to the discrete dipole approximation code DDSCAT 6.1” (2004), http://arxiv.org/abs/astro-ph/0409262.

K. Muinonen, T. Nousiainen, P. Fast, K. Lumme, and J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577-601 (1996).

[CrossRef]

B. T. Draine and P. J. Flatau, “User guide to the discrete dipole approximation code DDSCAT 6.1” (2004), http://arxiv.org/abs/astro-ph/0409262.

W. Sun, N. G. Loeb, G. Videen, and Q. Fu, “Examination of surface roughness on light scattering by long ice columns by use of a two-dimensional finite-difference time-domain algorithm,” Appl. Opt. 43, 1957-1964 (2004).

[CrossRef]

W. Sun, N. G. Loeb, and Q. Fu, “Finite-difference time-domain solution of light scattering and absorption by particles in an absorbing medium,” Appl. Opt. 41, 5728-5743 (2002).

[CrossRef]

W. Sun and Q. Fu, “Finite-difference time-domain solution of light scattering by dielectric particles with large complex refractive indices,” Appl. Opt. 39, 5569-5578 (2000).

[CrossRef]

W. Sun, Q. Fu, and Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition,” Appl. Opt. 38, 3141-3151 (1999).

[CrossRef]

G. Videen, W. Sun, and Q. Fu, “Light scattering from irregular tetrahedral aggregates,” Opt. Commun. 156, 5-9 (1998).

[CrossRef]

M. J. Wolff, G. C. Clayton, and S. J.Gibson, “Modeling composite and fluffy grain. II. Porosity and phase functions,” Astrophys. J. 503, 815-830 (1998).

[CrossRef]

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).

L. Kolokolova and B. Å. S. Gustafsonm, “Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories,” J. Quant. Spectrosc. Radiat. Transfer 70, 611-625 (2001).

[CrossRef]

A. Taflove and S. C.Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method , Artech House Antennas and Propagation Library Series (Artech House, 2005).

N. V. Voshchinnikov, V. B. Il'in , Th. Henning, and D. N. Dubkova, “Dust extinction and absorption: the challenge of porous grains,” Astron. Astrophys. 445, 167-177(2006).

[CrossRef]

N. V. Voshchinnikov, V. B. Il'in , and Th. Henning, “Modelling the optical properties of composite and porous interstellar grains,” Astron. Astrophys. 429, 371-381 (2005).

[CrossRef]

S. S. Mana and H. J. Herrmann, “Precise determination of the fractal dimensions of Apollonian packing and space-filling bearings,” J. Phys. A Math. Nucl. Gen. 24, L481-L490 (1991).

[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558-589 (2007).

[CrossRef]

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).

R. Jaenicke, “Properties of atmospheric aerosols,” in Landold-Bornstein: Numerical Data and Functional Relationships in Science and Technology (Springer, 1988). Vol. 4b, p. 417.

D. W. Mackowski and P. D. Jones, “Theoretical investigation of particles having a directionally dependent absorption cross section,” J. Thermophys. Heat Transfer 9, 193-201 (1995).

[CrossRef]

V. P. Drachev, W.-T. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49, 645-662 (2002).

[CrossRef]

V. P. Drachev, W.-T. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49, 645-662 (2002).

[CrossRef]

M. Kocifaj and G. Videen, “Optical behavior of composite carbonaceous aerosols: DDA and EMT approaches,” J. Quant. Spectrosc. Radiat. Transfer 109, 1404-1416 (2008).

[CrossRef]

M. Koehler and I. Mann, “Light-scattering models applied to circumstellar dust properties,” J. Quant. Spectrosc. Radiat. Transfer 89, 453-460 (2004).

[CrossRef]

L. Kolokolova and B. Å. S. Gustafsonm, “Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories,” J. Quant. Spectrosc. Radiat. Transfer 70, 611-625 (2001).

[CrossRef]

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).

J. C. Lagarias, C. L. Mallows, and A. Wilks, “Beyond the Descartes circle theorem,” Am. Math. Monthly 109, 338-361(2002).

[CrossRef]

P. Yang and K. N. Liou, “Finite difference time domain method for light scattering by nonspherical and inhomogeneous particles,” in *Light Scattering by Nonspherical Particles*, M. I. Mishchenko, J. W. Hovenier, and J. D. Travis, eds. (Academic, 2000). pp. 173-221.

W. Sun, N. G. Loeb, G. Videen, and Q. Fu, “Examination of surface roughness on light scattering by long ice columns by use of a two-dimensional finite-difference time-domain algorithm,” Appl. Opt. 43, 1957-1964 (2004).

[CrossRef]

W. Sun, N. G. Loeb, and Q. Fu, “Finite-difference time-domain solution of light scattering and absorption by particles in an absorbing medium,” Appl. Opt. 41, 5728-5743 (2002).

[CrossRef]

K. Muinonen, T. Nousiainen, P. Fast, K. Lumme, and J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577-601 (1996).

[CrossRef]

M. I. Mishchenko and D. W. Mackowski, “Electromagnetic scattering by randomly oriented bispheres: comparison of theory and experiment and benchmark calculations,” J. Quant. Spectrosc. Radiat. Transfer 55, 683-694 (1996).

[CrossRef]

D. W. Mackowski and P. D. Jones, “Theoretical investigation of particles having a directionally dependent absorption cross section,” J. Thermophys. Heat Transfer 9, 193-201 (1995).

[CrossRef]

J. C. Lagarias, C. L. Mallows, and A. Wilks, “Beyond the Descartes circle theorem,” Am. Math. Monthly 109, 338-361(2002).

[CrossRef]

S. S. Mana and H. J. Herrmann, “Precise determination of the fractal dimensions of Apollonian packing and space-filling bearings,” J. Phys. A Math. Nucl. Gen. 24, L481-L490 (1991).

[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).

[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).

[CrossRef]

M. Koehler and I. Mann, “Light-scattering models applied to circumstellar dust properties,” J. Quant. Spectrosc. Radiat. Transfer 89, 453-460 (2004).

[CrossRef]

M. J. Wolff, G. C.Clayton, P. G. Martin, and R. E. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. 423, 412-425 (1994).

[CrossRef]

N. V. Voshchinnikov and S. S.Mathis, “Calculating cross sections of composite interstellar grains,” Astrophys. J. 526, 257-264 (1999).

[CrossRef]

K. Muinonen, T. Nousiainen, P. Fast, K. Lumme, and J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577-601 (1996).

[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).

[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).

[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).

[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).

[CrossRef]

Y. Okada, A. M. Nakamura, and T. Mukai, “Light scattering by particulate media of irregularly shaped particles: laboratory measurements and numerical simulations,” J. Quant. Spectrosc. Radiat. Transfer 100, 295-304 (2006).

[CrossRef]

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).

T. Mukai and Y. Okada, “Optical properties of large aggregates,” in *Dust in Planetary Systems Workshop*, H. Kruger and A. Graps, eds. (ESA Publications, 2007), paper SP-643.

Y. Okada, A. M. Nakamura, and T. Mukai, “Light scattering by particulate media of irregularly shaped particles: laboratory measurements and numerical simulations,” J. Quant. Spectrosc. Radiat. Transfer 100, 295-304 (2006).

[CrossRef]

G. Videen, P. Pellegrino, D. Ngo, J. S. Videen, and R. G. Pinnick, “Light-scattering intensity fluctuations in microdroplets containing inclusions,” Appl. Opt. 36, 6115-6118 (1997).

[CrossRef]

G. Videen, D. Ngo, P. Chylek, and R. G. Pinnick, “Light scattering from a sphere with an irregular inclusion,” J. Opt. Soc. Am. A 12, 922-928 (1995).

[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).

[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).

[CrossRef]

K. Muinonen, T. Nousiainen, P. Fast, K. Lumme, and J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577-601 (1996).

[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).

[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).

[CrossRef]

Y. Okada, A. M. Nakamura, and T. Mukai, “Light scattering by particulate media of irregularly shaped particles: laboratory measurements and numerical simulations,” J. Quant. Spectrosc. Radiat. Transfer 100, 295-304 (2006).

[CrossRef]

T. Mukai and Y. Okada, “Optical properties of large aggregates,” in *Dust in Planetary Systems Workshop*, H. Kruger and A. Graps, eds. (ESA Publications, 2007), paper SP-643.

H. Okamoto and Y. Xu, “Light scattering by irregular interplanetary dust particles,” Earth Planets Space 50, 577-585(1998).

H. Okamoto, “Light scattering by clusters: the A1-term method,” Opt. Rev. 2, 407-412 (1995).

[CrossRef]

K. Muinonen, T. Nousiainen, P. Fast, K. Lumme, and J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577-601 (1996).

[CrossRef]

G. Videen, P. Pellegrino, D. Ngo, J. S. Videen, and R. G. Pinnick, “Light-scattering intensity fluctuations in microdroplets containing inclusions,” Appl. Opt. 36, 6115-6118 (1997).

[CrossRef]

G. Videen, D. Ngo, P. Chylek, and R. G. Pinnick, “Light scattering from a sphere with an irregular inclusion,” J. Opt. Soc. Am. A 12, 922-928 (1995).

[CrossRef]

P. Chylek, V. Srivastava, R. G. Pinnick, and R. T. Wang, “Scattering of electromagnetic waves by composite spherical particles: experiment and effective medium approximations,” Appl. Opt. 27, 2396-2404 (1988).

[CrossRef]

V. P. Drachev, W.-T. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49, 645-662 (2002).

[CrossRef]

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Analysis of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method,” in Proceedings of 6th International Conference on Transparent Optical Networks 2004 (IEEE, 2004), Vol. B2.3, pp.109-112.

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Analysis of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method,” in Proceedings of 6th International Conference on Transparent Optical Networks 2004 (IEEE, 2004), Vol. B2.3, pp.109-112.

V. P. Drachev, W.-T. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49, 645-662 (2002).

[CrossRef]

F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing several spherical inclusions,” Appl. Opt. 33, 484-493 (1994).

[CrossRef]

F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing a spherical eccentric inclusion,” J. Opt. Soc. Am. A 9, 1327-1335 (1992).

[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).

[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).

[CrossRef]

V. P. Drachev, W.-T. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49, 645-662 (2002).

[CrossRef]

W. Sun, N. G. Loeb, G. Videen, and Q. Fu, “Examination of surface roughness on light scattering by long ice columns by use of a two-dimensional finite-difference time-domain algorithm,” Appl. Opt. 43, 1957-1964 (2004).

[CrossRef]

W. Sun, N. G. Loeb, and Q. Fu, “Finite-difference time-domain solution of light scattering and absorption by particles in an absorbing medium,” Appl. Opt. 41, 5728-5743 (2002).

[CrossRef]

W. Sun and Q. Fu, “Finite-difference time-domain solution of light scattering by dielectric particles with large complex refractive indices,” Appl. Opt. 39, 5569-5578 (2000).

[CrossRef]

W. Sun, Q. Fu, and Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition,” Appl. Opt. 38, 3141-3151 (1999).

[CrossRef]

G. Videen, W. Sun, and Q. Fu, “Light scattering from irregular tetrahedral aggregates,” Opt. Commun. 156, 5-9 (1998).

[CrossRef]

A. Taflove and S. C.Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method , Artech House Antennas and Propagation Library Series (Artech House, 2005).

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).

[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).

[CrossRef]

M. Kocifaj and G. Videen, “Optical behavior of composite carbonaceous aerosols: DDA and EMT approaches,” J. Quant. Spectrosc. Radiat. Transfer 109, 1404-1416 (2008).

[CrossRef]

E. Zubko, D. Petrov, Y. Shkuratov, and G. Videen, “Discrete dipole approximation simulations of scattering by particles with hierarchical structure,” Appl. Opt. 44, 6479-6485 (2005).

[CrossRef]

W. Sun, N. G. Loeb, G. Videen, and Q. Fu, “Examination of surface roughness on light scattering by long ice columns by use of a two-dimensional finite-difference time-domain algorithm,” Appl. Opt. 43, 1957-1964 (2004).

[CrossRef]

G. Videen, D. R. Prabhu, M. Davies, F. González, and F. Moreno, “Light scattering fluctuations of a soft spherical particle containing an inclusion,” Appl. Opt. 40, 4054-4057 (2001).

[CrossRef]

G. Videen, W. Sun, and Q. Fu, “Light scattering from irregular tetrahedral aggregates,” Opt. Commun. 156, 5-9 (1998).

[CrossRef]

G. Videen, P. Pellegrino, D. Ngo, J. S. Videen, and R. G. Pinnick, “Light-scattering intensity fluctuations in microdroplets containing inclusions,” Appl. Opt. 36, 6115-6118 (1997).

[CrossRef]

G. Videen, D. Ngo, P. Chylek, and R. G. Pinnick, “Light scattering from a sphere with an irregular inclusion,” J. Opt. Soc. Am. A 12, 922-928 (1995).

[CrossRef]

N. V. Voshchinnikov, V. B. Il'in , and Th. Henning, “Modelling the optical properties of composite and porous interstellar grains,” Astron. Astrophys. 429, 371-381 (2005).

[CrossRef]

N. V. Voshchinnikov and S. S.Mathis, “Calculating cross sections of composite interstellar grains,” Astrophys. J. 526, 257-264 (1999).

[CrossRef]

J. C. Lagarias, C. L. Mallows, and A. Wilks, “Beyond the Descartes circle theorem,” Am. Math. Monthly 109, 338-361(2002).

[CrossRef]

M. J. Wolff, G. C. Clayton, and S. J.Gibson, “Modeling composite and fluffy grain. II. Porosity and phase functions,” Astrophys. J. 503, 815-830 (1998).

[CrossRef]

M. J. Wolff, G. C.Clayton, P. G. Martin, and R. E. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. 423, 412-425 (1994).

[CrossRef]

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Analysis of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method,” in Proceedings of 6th International Conference on Transparent Optical Networks 2004 (IEEE, 2004), Vol. B2.3, pp.109-112.

H. Okamoto and Y. Xu, “Light scattering by irregular interplanetary dust particles,” Earth Planets Space 50, 577-585(1998).

P. Yang and K. N. Liou, “Finite difference time domain method for light scattering by nonspherical and inhomogeneous particles,” in *Light Scattering by Nonspherical Particles*, M. I. Mishchenko, J. W. Hovenier, and J. D. Travis, eds. (Academic, 2000). pp. 173-221.

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Analysis of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method,” in Proceedings of 6th International Conference on Transparent Optical Networks 2004 (IEEE, 2004), Vol. B2.3, pp.109-112.

V. P. Drachev, W.-T. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49, 645-662 (2002).

[CrossRef]

J. C. Lagarias, C. L. Mallows, and A. Wilks, “Beyond the Descartes circle theorem,” Am. Math. Monthly 109, 338-361(2002).

[CrossRef]

D. Bruggeman, “Calculation of various physics constants in heterogeneous substances. I. Dielectricity constants and conductivity of mixed bodies from isotropic substances,” Ann. Phys. 24, 636-664 (1935).

[CrossRef]

G. A. Niklaason, C. G. Granqvist, and O. Hunderi, “Effective medium models for the optical properties of inhomogeneous materials,” Appl. Opt. 20, 26-30 (1981).

[CrossRef]

W. Sun and Q. Fu, “Finite-difference time-domain solution of light scattering by dielectric particles with large complex refractive indices,” Appl. Opt. 39, 5569-5578 (2000).

[CrossRef]

W. Sun, Q. Fu, and Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition,” Appl. Opt. 38, 3141-3151 (1999).

[CrossRef]

G. Videen, D. R. Prabhu, M. Davies, F. González, and F. Moreno, “Light scattering fluctuations of a soft spherical particle containing an inclusion,” Appl. Opt. 40, 4054-4057 (2001).

[CrossRef]

G. Videen, P. Pellegrino, D. Ngo, J. S. Videen, and R. G. Pinnick, “Light-scattering intensity fluctuations in microdroplets containing inclusions,” Appl. Opt. 36, 6115-6118 (1997).

[CrossRef]

F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing several spherical inclusions,” Appl. Opt. 33, 484-493 (1994).

[CrossRef]

E. Zubko, D. Petrov, Y. Shkuratov, and G. Videen, “Discrete dipole approximation simulations of scattering by particles with hierarchical structure,” Appl. Opt. 44, 6479-6485 (2005).

[CrossRef]

D. S. Wang and P. W. Barber, “Scattering by inhomogeneous nonspherical objects,” Appl. Opt. 18, 1190-1197 (1979).

[CrossRef]

P. Chylek, V. Srivastava, R. G. Pinnick, and R. T. Wang, “Scattering of electromagnetic waves by composite spherical particles: experiment and effective medium approximations,” Appl. Opt. 27, 2396-2404 (1988).

[CrossRef]

W. Sun, N. G. Loeb, and Q. Fu, “Finite-difference time-domain solution of light scattering and absorption by particles in an absorbing medium,” Appl. Opt. 41, 5728-5743 (2002).

[CrossRef]

W. Sun, N. G. Loeb, G. Videen, and Q. Fu, “Examination of surface roughness on light scattering by long ice columns by use of a two-dimensional finite-difference time-domain algorithm,” Appl. Opt. 43, 1957-1964 (2004).

[CrossRef]

A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780-2788 (1993).

[CrossRef]

N. V. Voshchinnikov, V. B. Il'in , and Th. Henning, “Modelling the optical properties of composite and porous interstellar grains,” Astron. Astrophys. 429, 371-381 (2005).

[CrossRef]

N. V. Voshchinnikov, V. B. Il'in , Th. Henning, and D. N. Dubkova, “Dust extinction and absorption: the challenge of porous grains,” Astron. Astrophys. 445, 167-177(2006).

[CrossRef]

T. Mukai, H. Ishimoto, T. Kozasa, J. Blum, and J. M. Greenberg, “Radiation pressure forces of fluffy porous grains,” Astron. Astrophys. 262, 315-320 (1992).

B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988).

[CrossRef]

M. J. Wolff, G. C.Clayton, P. G. Martin, and R. E. Schulte-Ladbeck, “Modeling composite and fluffy grains: the effects of porosity,” Astrophys. J. 423, 412-425 (1994).

[CrossRef]

M. J. Wolff, G. C. Clayton, and S. J.Gibson, “Modeling composite and fluffy grain. II. Porosity and phase functions,” Astrophys. J. 503, 815-830 (1998).

[CrossRef]

N. V. Voshchinnikov and S. S.Mathis, “Calculating cross sections of composite interstellar grains,” Astrophys. J. 526, 257-264 (1999).

[CrossRef]

H. Okamoto and Y. Xu, “Light scattering by irregular interplanetary dust particles,” Earth Planets Space 50, 577-585(1998).

V. P. Drachev, W.-T. Kim, V. P. Safonov, V. A. Podolskiy, N. S. Zakovryashin, E. N. Khaliullin, V. M. Shalaev, and R. L. Armstrong, “Low-threshold lasing and broad-band multiphoton-excited light emission from Ag aggregate-adsorbate complexes in microcavity,” J. Mod. Opt. 49, 645-662 (2002).

[CrossRef]

F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing a spherical eccentric inclusion,” J. Opt. Soc. Am. A 9, 1327-1335 (1992).

[CrossRef]

G. Videen, D. Ngo, P. Chylek, and R. G. Pinnick, “Light scattering from a sphere with an irregular inclusion,” J. Opt. Soc. Am. A 12, 922-928 (1995).

[CrossRef]

K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. III. Spheres containing arbitrarily located spherical inhomogeneities,” J. Opt. Soc. Am. A 12, 893-904 (1995).

[CrossRef]

D. Q. Chowdhury, S. C. Hill, and P. W. Barber, “Morphology-dependent resonances in radially inhomogeneous spheres,” J. Opt. Soc. Am. A 8, 1702-1705 (1991).

[CrossRef]

D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266-2278 (1996).

[CrossRef]

S. S. Mana and H. J. Herrmann, “Precise determination of the fractal dimensions of Apollonian packing and space-filling bearings,” J. Phys. A Math. Nucl. Gen. 24, L481-L490 (1991).

[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).

[CrossRef]

M. I. Mishchenko and D. W. Mackowski, “Electromagnetic scattering by randomly oriented bispheres: comparison of theory and experiment and benchmark calculations,” J. Quant. Spectrosc. Radiat. Transfer 55, 683-694 (1996).

[CrossRef]

M. Koehler and I. Mann, “Light-scattering models applied to circumstellar dust properties,” J. Quant. Spectrosc. Radiat. Transfer 89, 453-460 (2004).

[CrossRef]

K. Muinonen, T. Nousiainen, P. Fast, K. Lumme, and J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577-601 (1996).

[CrossRef]

Y. Okada, A. M. Nakamura, and T. Mukai, “Light scattering by particulate media of irregularly shaped particles: laboratory measurements and numerical simulations,” J. Quant. Spectrosc. Radiat. Transfer 100, 295-304 (2006).

[CrossRef]

Y. Okada, T. Mukai, I. Mann, H. Nomura, T. Takeuchi, I. Sano, and S. Mukai, “Grouping and adding method for calculating light scattering by large fluffy aggregates,” J. Quant. Spectrosc. Radiat. Transfer 108, 65-80 (2007).

[CrossRef]

M. Kocifaj and G. Videen, “Optical behavior of composite carbonaceous aerosols: DDA and EMT approaches,” J. Quant. Spectrosc. Radiat. Transfer 109, 1404-1416 (2008).

[CrossRef]

L. Kolokolova and B. Å. S. Gustafsonm, “Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories,” J. Quant. Spectrosc. Radiat. Transfer 70, 611-625 (2001).

[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558-589 (2007).

[CrossRef]

D. W. Mackowski and P. D. Jones, “Theoretical investigation of particles having a directionally dependent absorption cross section,” J. Thermophys. Heat Transfer 9, 193-201 (1995).

[CrossRef]

G. Videen, W. Sun, and Q. Fu, “Light scattering from irregular tetrahedral aggregates,” Opt. Commun. 156, 5-9 (1998).

[CrossRef]

H. Okamoto, “Light scattering by clusters: the A1-term method,” Opt. Rev. 2, 407-412 (1995).

[CrossRef]

J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385-420(1904).

[CrossRef]

P. Chylek and V. Srivastava, “Dielectric constant of a composite inhomogeneous medium,” Phys. Rev. B 27, 5098-106(1983).

[CrossRef]

P. Yang and K. N. Liou, “Finite difference time domain method for light scattering by nonspherical and inhomogeneous particles,” in *Light Scattering by Nonspherical Particles*, M. I. Mishchenko, J. W. Hovenier, and J. D. Travis, eds. (Academic, 2000). pp. 173-221.

B. T. Draine and P. J. Flatau, “User guide to the discrete dipole approximation code DDSCAT 6.1” (2004), http://arxiv.org/abs/astro-ph/0409262.

T. Mukai and Y. Okada, “Optical properties of large aggregates,” in *Dust in Planetary Systems Workshop*, H. Kruger and A. Graps, eds. (ESA Publications, 2007), paper SP-643.

D. S. Wang, “Light scattering by nonspherical multilayered particles,” Ph.D. dissertation (University of Utah, 1979).

R. Descartes, *Oeuvres de Descartes*, C. Adam and P. Tannery, eds. (Cerf, 1901), Vol. IV, pp. 45-50.

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Analysis of losses in 2D photonic crystal membrane waveguides using the 3D FDTD method,” in Proceedings of 6th International Conference on Transparent Optical Networks 2004 (IEEE, 2004), Vol. B2.3, pp.109-112.

R. Jaenicke, “Properties of atmospheric aerosols,” in Landold-Bornstein: Numerical Data and Functional Relationships in Science and Technology (Springer, 1988). Vol. 4b, p. 417.

A. Taflove and S. C.Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method , Artech House Antennas and Propagation Library Series (Artech House, 2005).