Abstract

We present experimental and theoretical results obtained from the study of the effects of optical feedback in low-cost Fabry–Perot laser diodes due to the presence of an external cavity created by an external reflective or diffusive vibrating target. Experimental results show that a change in the length of the external cavity produces the well-known amplitude modulation of the optical output power and, depending on the amount of optical feedback, a subperiodicity appears in the amplitude modulation of the output power. The experiments show that the subperiodicity appears independently of the length of the external cavity and is due to mode hopping between different longitudinal laser modes. Numerical analysis focused on the effects observed support that the mode hop occurs between modes whose round-trip phase delay along the external cavity is out of phase, thus producing a subperiodicity of the total amplitude modulation.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. García-Souto y H. Lamela, “High resolution (<1 nm) interferometric fiber-optic sensor of vibrations in high-power transformers,” Opt. Express 14, 9679-9686(2006).
    [CrossRef] [PubMed]
  2. C. Morgan, M. Bordovski, I. White, and R. Griffiths, “Non contact vibration sensors based on current modulated external cavity semiconductor lasers,” IEE Proc. Optoelectron. 147, 413-416(2000).
    [CrossRef]
  3. S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacement without ambiguity,” IEEE J. Quantum Electron. 31, 113-119 (1995).
    [CrossRef]
  4. P. Nerin, P. Besesty, P. Labeye, P. Puget, and G. Ghartier, “Absolute distance and velocity measurements by the FMCW technique and self-mixing interference effect inside a single-mode Nd:YAG-LiTaO3 microchip laser,” J. Opt. 29, 162-167 (1998).
    [CrossRef]
  5. D. Guo and M. Wang, “Self-mixing interferometry based on a double-modulation technique for absolute distance measurement,” Appl. Opt. 46, 1486-1491 (2007).
    [CrossRef] [PubMed]
  6. N. Servagent, T. Bosch, and M. Lescure, “Design of a phase-shifting optical feedback interferometer using an electrooptic modulator,” IEEE J. Sel. Top. Quantum Electron. 6, 798-802 (2000).
    [CrossRef]
  7. G. Giuliani, S. Donati, M. Passerini, and T. Bosch, “Angle measurements by injection detection in a laser diode,” Opt. Eng. 40, 95-99 (2001).
    [CrossRef]
  8. R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5 μm distributed feedback lasers,” J. Lightwave Technol. 4, 1655-1661 (1986).
    [CrossRef]
  9. P. Besnard, B. Meziane, and G. M. Stéphan, “Feedback phenomena in a semiconductor laser induced by distant reflectors,” IEEE J. Quantum Electron. 29, 1271-1284(1993).
    [CrossRef]
  10. W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577-1587 (1994).
    [CrossRef]
  11. K. Petermann, in Laser Diode Modulation and Noise (Kluwer Academic, 1988), Chap. 3, pp 57-77, and Chap. 9, pp 250-290.
  12. P. J. de Groot, “Range-dependent optical feedback effects on the multimode spectrum of laser diodes,” J. Mod. Opt. 37,1199-1214 (1990).
    [CrossRef]
  13. L. Lu, H. Gui, J. Xie, T. Zhao, X. Chen, A. Wang, F. Li, D. He, J. Xu, and H. Ming, “Effect of external cavity length on self-mixing signals in a multilongitudinal-mode Fabry-Perot laser diode,” Appl. Opt. 44, 568-571 (2005).
    [CrossRef]
  14. Y. Tan and S. Zhang, “Influence of external cavity length on multimode hopping in microchip Nd:YAG lasers,” Appl. Opt. 47, 1697-1704 (2008).
    [CrossRef] [PubMed]

2008 (1)

2007 (1)

2006 (1)

2005 (1)

2001 (1)

G. Giuliani, S. Donati, M. Passerini, and T. Bosch, “Angle measurements by injection detection in a laser diode,” Opt. Eng. 40, 95-99 (2001).
[CrossRef]

2000 (2)

N. Servagent, T. Bosch, and M. Lescure, “Design of a phase-shifting optical feedback interferometer using an electrooptic modulator,” IEEE J. Sel. Top. Quantum Electron. 6, 798-802 (2000).
[CrossRef]

C. Morgan, M. Bordovski, I. White, and R. Griffiths, “Non contact vibration sensors based on current modulated external cavity semiconductor lasers,” IEE Proc. Optoelectron. 147, 413-416(2000).
[CrossRef]

1998 (1)

P. Nerin, P. Besesty, P. Labeye, P. Puget, and G. Ghartier, “Absolute distance and velocity measurements by the FMCW technique and self-mixing interference effect inside a single-mode Nd:YAG-LiTaO3 microchip laser,” J. Opt. 29, 162-167 (1998).
[CrossRef]

1995 (1)

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacement without ambiguity,” IEEE J. Quantum Electron. 31, 113-119 (1995).
[CrossRef]

1994 (1)

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

1993 (1)

P. Besnard, B. Meziane, and G. M. Stéphan, “Feedback phenomena in a semiconductor laser induced by distant reflectors,” IEEE J. Quantum Electron. 29, 1271-1284(1993).
[CrossRef]

1990 (1)

P. J. de Groot, “Range-dependent optical feedback effects on the multimode spectrum of laser diodes,” J. Mod. Opt. 37,1199-1214 (1990).
[CrossRef]

1986 (1)

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5 μm distributed feedback lasers,” J. Lightwave Technol. 4, 1655-1661 (1986).
[CrossRef]

Besesty, P.

P. Nerin, P. Besesty, P. Labeye, P. Puget, and G. Ghartier, “Absolute distance and velocity measurements by the FMCW technique and self-mixing interference effect inside a single-mode Nd:YAG-LiTaO3 microchip laser,” J. Opt. 29, 162-167 (1998).
[CrossRef]

Besnard, P.

P. Besnard, B. Meziane, and G. M. Stéphan, “Feedback phenomena in a semiconductor laser induced by distant reflectors,” IEEE J. Quantum Electron. 29, 1271-1284(1993).
[CrossRef]

Bordovski, M.

C. Morgan, M. Bordovski, I. White, and R. Griffiths, “Non contact vibration sensors based on current modulated external cavity semiconductor lasers,” IEE Proc. Optoelectron. 147, 413-416(2000).
[CrossRef]

Bosch, T.

G. Giuliani, S. Donati, M. Passerini, and T. Bosch, “Angle measurements by injection detection in a laser diode,” Opt. Eng. 40, 95-99 (2001).
[CrossRef]

N. Servagent, T. Bosch, and M. Lescure, “Design of a phase-shifting optical feedback interferometer using an electrooptic modulator,” IEEE J. Sel. Top. Quantum Electron. 6, 798-802 (2000).
[CrossRef]

Boyle, W. J. O.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

Chen, X.

Chraplyvy, A. R.

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5 μm distributed feedback lasers,” J. Lightwave Technol. 4, 1655-1661 (1986).
[CrossRef]

de Groot, P. J.

P. J. de Groot, “Range-dependent optical feedback effects on the multimode spectrum of laser diodes,” J. Mod. Opt. 37,1199-1214 (1990).
[CrossRef]

Donati, S.

G. Giuliani, S. Donati, M. Passerini, and T. Bosch, “Angle measurements by injection detection in a laser diode,” Opt. Eng. 40, 95-99 (2001).
[CrossRef]

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacement without ambiguity,” IEEE J. Quantum Electron. 31, 113-119 (1995).
[CrossRef]

García-Souto, J. A.

Ghartier, G.

P. Nerin, P. Besesty, P. Labeye, P. Puget, and G. Ghartier, “Absolute distance and velocity measurements by the FMCW technique and self-mixing interference effect inside a single-mode Nd:YAG-LiTaO3 microchip laser,” J. Opt. 29, 162-167 (1998).
[CrossRef]

Giuliani, G.

G. Giuliani, S. Donati, M. Passerini, and T. Bosch, “Angle measurements by injection detection in a laser diode,” Opt. Eng. 40, 95-99 (2001).
[CrossRef]

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacement without ambiguity,” IEEE J. Quantum Electron. 31, 113-119 (1995).
[CrossRef]

Grattan, K. T. V.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

Griffiths, R.

C. Morgan, M. Bordovski, I. White, and R. Griffiths, “Non contact vibration sensors based on current modulated external cavity semiconductor lasers,” IEE Proc. Optoelectron. 147, 413-416(2000).
[CrossRef]

Gui, H.

Guo, D.

He, D.

Labeye, P.

P. Nerin, P. Besesty, P. Labeye, P. Puget, and G. Ghartier, “Absolute distance and velocity measurements by the FMCW technique and self-mixing interference effect inside a single-mode Nd:YAG-LiTaO3 microchip laser,” J. Opt. 29, 162-167 (1998).
[CrossRef]

Lamela, H.

Lescure, M.

N. Servagent, T. Bosch, and M. Lescure, “Design of a phase-shifting optical feedback interferometer using an electrooptic modulator,” IEEE J. Sel. Top. Quantum Electron. 6, 798-802 (2000).
[CrossRef]

Li, F.

Lu, L.

Merlo, S.

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacement without ambiguity,” IEEE J. Quantum Electron. 31, 113-119 (1995).
[CrossRef]

Meziane, B.

P. Besnard, B. Meziane, and G. M. Stéphan, “Feedback phenomena in a semiconductor laser induced by distant reflectors,” IEEE J. Quantum Electron. 29, 1271-1284(1993).
[CrossRef]

Ming, H.

Morgan, C.

C. Morgan, M. Bordovski, I. White, and R. Griffiths, “Non contact vibration sensors based on current modulated external cavity semiconductor lasers,” IEE Proc. Optoelectron. 147, 413-416(2000).
[CrossRef]

Nerin, P.

P. Nerin, P. Besesty, P. Labeye, P. Puget, and G. Ghartier, “Absolute distance and velocity measurements by the FMCW technique and self-mixing interference effect inside a single-mode Nd:YAG-LiTaO3 microchip laser,” J. Opt. 29, 162-167 (1998).
[CrossRef]

Palmer, A. W.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

Passerini, M.

G. Giuliani, S. Donati, M. Passerini, and T. Bosch, “Angle measurements by injection detection in a laser diode,” Opt. Eng. 40, 95-99 (2001).
[CrossRef]

Petermann, K.

K. Petermann, in Laser Diode Modulation and Noise (Kluwer Academic, 1988), Chap. 3, pp 57-77, and Chap. 9, pp 250-290.

Puget, P.

P. Nerin, P. Besesty, P. Labeye, P. Puget, and G. Ghartier, “Absolute distance and velocity measurements by the FMCW technique and self-mixing interference effect inside a single-mode Nd:YAG-LiTaO3 microchip laser,” J. Opt. 29, 162-167 (1998).
[CrossRef]

Servagent, N.

N. Servagent, T. Bosch, and M. Lescure, “Design of a phase-shifting optical feedback interferometer using an electrooptic modulator,” IEEE J. Sel. Top. Quantum Electron. 6, 798-802 (2000).
[CrossRef]

Stéphan, G.

P. Besnard, B. Meziane, and G. M. Stéphan, “Feedback phenomena in a semiconductor laser induced by distant reflectors,” IEEE J. Quantum Electron. 29, 1271-1284(1993).
[CrossRef]

Tan, Y.

Tkach, R. W.

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5 μm distributed feedback lasers,” J. Lightwave Technol. 4, 1655-1661 (1986).
[CrossRef]

Wang, A.

Wang, M.

Wang, W. M.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

White, I.

C. Morgan, M. Bordovski, I. White, and R. Griffiths, “Non contact vibration sensors based on current modulated external cavity semiconductor lasers,” IEE Proc. Optoelectron. 147, 413-416(2000).
[CrossRef]

Xie, J.

Xu, J.

Zhang, S.

Zhao, T.

Appl. Opt. (3)

IEE Proc. Optoelectron. (1)

C. Morgan, M. Bordovski, I. White, and R. Griffiths, “Non contact vibration sensors based on current modulated external cavity semiconductor lasers,” IEE Proc. Optoelectron. 147, 413-416(2000).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacement without ambiguity,” IEEE J. Quantum Electron. 31, 113-119 (1995).
[CrossRef]

P. Besnard, B. Meziane, and G. M. Stéphan, “Feedback phenomena in a semiconductor laser induced by distant reflectors,” IEEE J. Quantum Electron. 29, 1271-1284(1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

N. Servagent, T. Bosch, and M. Lescure, “Design of a phase-shifting optical feedback interferometer using an electrooptic modulator,” IEEE J. Sel. Top. Quantum Electron. 6, 798-802 (2000).
[CrossRef]

J. Lightwave Technol. (2)

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5 μm distributed feedback lasers,” J. Lightwave Technol. 4, 1655-1661 (1986).
[CrossRef]

J. Mod. Opt. (1)

P. J. de Groot, “Range-dependent optical feedback effects on the multimode spectrum of laser diodes,” J. Mod. Opt. 37,1199-1214 (1990).
[CrossRef]

J. Opt. (1)

P. Nerin, P. Besesty, P. Labeye, P. Puget, and G. Ghartier, “Absolute distance and velocity measurements by the FMCW technique and self-mixing interference effect inside a single-mode Nd:YAG-LiTaO3 microchip laser,” J. Opt. 29, 162-167 (1998).
[CrossRef]

Opt. Eng. (1)

G. Giuliani, S. Donati, M. Passerini, and T. Bosch, “Angle measurements by injection detection in a laser diode,” Opt. Eng. 40, 95-99 (2001).
[CrossRef]

Opt. Express (1)

Other (1)

K. Petermann, in Laser Diode Modulation and Noise (Kluwer Academic, 1988), Chap. 3, pp 57-77, and Chap. 9, pp 250-290.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Basic self-mixing interferometer. PD, photodiode.

Fig. 2
Fig. 2

Self-mixing signals for ML1412 laser diode with I b = 55 mA : when optical feedback is increased double and triple periodicity appear.

Fig. 3
Fig. 3

Examples of self-mixing signals with double periodicity for a (a) Sanyo DL-5032-001 infrared laser diode ( λ = 830 nm ), I b = 35 mA , L ext = 12 cm , Δ L ext = 1.5 μm ; (b) Sanyo DL-3038-033 red laser diode ( λ = 635 nm ) I b = 35 mA , L ext = 30 cm , Δ L ext = 1 μm . In this case the target is a coin.

Fig. 4
Fig. 4

Setup for the characterization of the effects of optical feedback. LD, laser diode.

Fig. 5
Fig. 5

Measured emission spectra of Mitsubishi ML1412 laser diode for different injection currents: (a)  45 mA , (b)  55 mA , (c)  57 mA , (d)  60 mA , (e)  70 mA

Fig. 6
Fig. 6

Simultaneous measurement of emission spectrum through a monochromator and CCD camera (a) and intensity modulation through a monitor photodiode (b). Double periodicity is related to the presence of two laser modes.

Fig. 7
Fig. 7

Simultaneous measurement of emission spectrum through a monochromator and CCD camera (a) and intensity modulation through a monitor photodiode (b). Triple periodicity is related to the presence of three laser modes.

Fig. 8
Fig. 8

Laser modes for injection current 50 mA (a) without optical feedback and (b) with optical feedback, measured through a monochromator and CCD camera.

Fig. 9
Fig. 9

Amplitude of Mode A (channel 1—DC coupled) versus total amplitude modulation (channel 2—AC coupled)

Fig. 10
Fig. 10

Amplitude of Mode B (channel 1—DC coupled) versus total amplitude modulation (channel 2—AC coupled)

Fig. 11
Fig. 11

Simulation of a laser diode under optical feedback with mode hopping between two laser modes separated by N cavity modes: (a) with L ext = 12 cm results N = 12 and (b) with L ext = 15 cm results N = 10 .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

g c = g th k ext L ext cos ( 2 π ν τ ext ) = g th k ext L ext cos ( ϕ ext ) ,
Δ ϕ L = 2 π τ L ( ν ν th ) + τ L τ ext C sin ( 2 π ν τ ext + arctan α ) ,
C = τ ext τ L k ext 1 + α 2 ,
k ext = r 2 ext r 2 ( 1 | r 2 | 2 ) .
P ( Δ L ext ) = P 0 [ 1 + m F ( ϕ ext ) ] = P 0 [ 1 + m cos ( 2 π ν 2 L ext c ) ] = P 0 [ 1 + m cos ( 2 π 2 L ext λ ) ] ,
Δ ϕ ext = Δ ϕ ext ( Δ L ext ) + Δ ϕ ext ( Δ υ ) = 2 π 2 ν c Δ L ext + 2 π 2 L ext c Δ ν ,
Δ ϕ ext ( Δ υ ) = 2 π 2 L ext n L N .
ν B ν A = N / τ L .

Metrics