Abstract

A balanced homodyne detection scheme with nanosecond time resolution and sub-shot-noise sensitivity has been developed and successfully tested yielding an efficient detection scheme for high-speed quantum-optical measurements and communication protocols, for example, quantum cryptography. The parameters of the detector and its precise balancing allow complete characterization of quantum states created by femtosecond light pulses that include the measurement of photon number, optical phase, and statistical properties with a high signal-to-noise ratio for the whole bandwidth from DC to several tens of megahertz. The electronic part of the detector is based on a commercially available amplifier that provides ease of construction and use while yielding good performance.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. P. Yuen and V. W. S. Chan, “Noise in homodyne and heterodyne detection,” Opt. Lett. 8, 177-179 (1983).
    [CrossRef] [PubMed]
  2. G. L. Abbas, V. W. S. Chan, and S. T. Yee, “Local-oscillator excess-noise suppression for homodyne and heterodyne detection,” Opt. Lett. 8, 419-421 (1983).
    [CrossRef] [PubMed]
  3. H. A. Haus, Electromagnetic Noise and Quantum Optical Measurements (Springer-Verlag, 2000).
  4. U. Leonhardt, Measuring the Quantum State of Light (Cambridge U. Press, 1997).
  5. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409-2412 (1985).
    [CrossRef] [PubMed]
  6. G. Breitenbach, S. Schiller, and J. Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471-475 (1997).
    [CrossRef]
  7. D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244-1247 (1993).
    [CrossRef] [PubMed]
  8. H. Hansen, T. Aichele, C. Hettich, P. Lodahl, A. I. Lvovsky, J. Mlynek, and S. Schiller, “Ultrasensitive pulsed, balanced homodyne detector: application to time-domain quantum measurements,” Opt. Lett. 26, 1714-1716 (2001).
    [CrossRef]
  9. J. Wenger, R. Tualle-Brouri, and P. Grangier, “Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification,” Opt. Lett. 29, 1267-1269 (2004).
    [CrossRef] [PubMed]
  10. J. Wenger, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Time-resolved homodyne characterization of individual quadrature-entangled pulses,” Eur. Phys. J. D 32, 391-396 (2005).
    [CrossRef]
  11. A. Zavatta, M. Bellini, P. L. Ramazza, F. Marin, and F. T. Arecchi, “Time-domain analysis of quantum states of light: noise characterization and homodyne tomography,” J. Opt. Soc. Am. B 19, 1189-1194 (2002).
    [CrossRef]
  12. A. Zavatta, S. Viciani, and M. Bellini, “Tomographic reconstruction of the single-photon Fock state by high-frequency homodyne detection,” Phys. Rev. A 70, 053821 (2004).
    [CrossRef]
  13. A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402 (2001).
    [CrossRef] [PubMed]
  14. A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Quantum homodyne tomography of a two-photon Fock state,” Phys. Rev. Lett. 96, 213601 (2006).
    [CrossRef] [PubMed]
  15. A. Zavatta, S. Viciani, M. Bellini, “Quantum-to-classical transition with single-photon-added coherent states of light,” Science 306, 660-662 (2004).
    [CrossRef] [PubMed]
  16. A. Zavatta, S. Viciani, and M. Bellini, “Single-photon excitation of a coherent state: catching the elementary step of stimulated light emission,” Phys. Rev. A 72, 023820(2005).
    [CrossRef]
  17. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science 312, 83-86 (2006).
    [CrossRef] [PubMed]
  18. A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and P. Grangier, “Increasing entanglement between Gaussian states by coherent photon subtraction,” Phys. Rev. Lett. 98, 030502 (2007).
    [CrossRef] [PubMed]
  19. A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, “Generation of optical “Schrödinger cats” from photon number states,” Nature 448, 784-786 (2007).
    [CrossRef] [PubMed]
  20. V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890-1893 (2007).
    [CrossRef] [PubMed]
  21. F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using Gaussian-modulated coherent states,” Nature 421, 238-241 (2003).
    [CrossRef] [PubMed]
  22. J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
    [CrossRef]
  23. J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303(R) (2005).
    [CrossRef]
  24. J. Lodewyck, T. Debuisschert, R. Garcia-Patron, R. Tualle-Brouri, N. J. Cerf, and P. Grangier, “Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system,” Phys. Rev. Lett. 98, 030503 (2007).
    [CrossRef] [PubMed]
  25. R. Okubo, M. Hirano, Y. Zhang, and T. Hirano, “Pulse-resolved measurement of quadrature phase amplitudes of squeezed pulse trains at a repetition rate of 76 MHz,” Opt. Lett. 33, 1458-1460 (2008).
    [CrossRef] [PubMed]

2008 (1)

2007 (5)

J. Lodewyck, T. Debuisschert, R. Garcia-Patron, R. Tualle-Brouri, N. J. Cerf, and P. Grangier, “Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system,” Phys. Rev. Lett. 98, 030503 (2007).
[CrossRef] [PubMed]

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and P. Grangier, “Increasing entanglement between Gaussian states by coherent photon subtraction,” Phys. Rev. Lett. 98, 030502 (2007).
[CrossRef] [PubMed]

A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, “Generation of optical “Schrödinger cats” from photon number states,” Nature 448, 784-786 (2007).
[CrossRef] [PubMed]

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890-1893 (2007).
[CrossRef] [PubMed]

2006 (2)

A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Quantum homodyne tomography of a two-photon Fock state,” Phys. Rev. Lett. 96, 213601 (2006).
[CrossRef] [PubMed]

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science 312, 83-86 (2006).
[CrossRef] [PubMed]

2005 (3)

J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303(R) (2005).
[CrossRef]

A. Zavatta, S. Viciani, and M. Bellini, “Single-photon excitation of a coherent state: catching the elementary step of stimulated light emission,” Phys. Rev. A 72, 023820(2005).
[CrossRef]

J. Wenger, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Time-resolved homodyne characterization of individual quadrature-entangled pulses,” Eur. Phys. J. D 32, 391-396 (2005).
[CrossRef]

2004 (3)

A. Zavatta, S. Viciani, M. Bellini, “Quantum-to-classical transition with single-photon-added coherent states of light,” Science 306, 660-662 (2004).
[CrossRef] [PubMed]

A. Zavatta, S. Viciani, and M. Bellini, “Tomographic reconstruction of the single-photon Fock state by high-frequency homodyne detection,” Phys. Rev. A 70, 053821 (2004).
[CrossRef]

J. Wenger, R. Tualle-Brouri, and P. Grangier, “Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification,” Opt. Lett. 29, 1267-1269 (2004).
[CrossRef] [PubMed]

2003 (1)

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using Gaussian-modulated coherent states,” Nature 421, 238-241 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (2)

H. Hansen, T. Aichele, C. Hettich, P. Lodahl, A. I. Lvovsky, J. Mlynek, and S. Schiller, “Ultrasensitive pulsed, balanced homodyne detector: application to time-domain quantum measurements,” Opt. Lett. 26, 1714-1716 (2001).
[CrossRef]

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402 (2001).
[CrossRef] [PubMed]

1997 (1)

G. Breitenbach, S. Schiller, and J. Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471-475 (1997).
[CrossRef]

1993 (1)

D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244-1247 (1993).
[CrossRef] [PubMed]

1985 (1)

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409-2412 (1985).
[CrossRef] [PubMed]

1983 (2)

Abbas, G. L.

Aichele, T.

H. Hansen, T. Aichele, C. Hettich, P. Lodahl, A. I. Lvovsky, J. Mlynek, and S. Schiller, “Ultrasensitive pulsed, balanced homodyne detector: application to time-domain quantum measurements,” Opt. Lett. 26, 1714-1716 (2001).
[CrossRef]

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402 (2001).
[CrossRef] [PubMed]

Arecchi, F. T.

Beck, M.

D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244-1247 (1993).
[CrossRef] [PubMed]

Bellini, M.

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890-1893 (2007).
[CrossRef] [PubMed]

A. Zavatta, S. Viciani, and M. Bellini, “Single-photon excitation of a coherent state: catching the elementary step of stimulated light emission,” Phys. Rev. A 72, 023820(2005).
[CrossRef]

A. Zavatta, S. Viciani, and M. Bellini, “Tomographic reconstruction of the single-photon Fock state by high-frequency homodyne detection,” Phys. Rev. A 70, 053821 (2004).
[CrossRef]

A. Zavatta, S. Viciani, M. Bellini, “Quantum-to-classical transition with single-photon-added coherent states of light,” Science 306, 660-662 (2004).
[CrossRef] [PubMed]

A. Zavatta, M. Bellini, P. L. Ramazza, F. Marin, and F. T. Arecchi, “Time-domain analysis of quantum states of light: noise characterization and homodyne tomography,” J. Opt. Soc. Am. B 19, 1189-1194 (2002).
[CrossRef]

Benson, O.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402 (2001).
[CrossRef] [PubMed]

Bloch, M.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

Breitenbach, G.

G. Breitenbach, S. Schiller, and J. Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471-475 (1997).
[CrossRef]

Brouri, R.

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using Gaussian-modulated coherent states,” Nature 421, 238-241 (2003).
[CrossRef] [PubMed]

Cerf, N. J.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

J. Lodewyck, T. Debuisschert, R. Garcia-Patron, R. Tualle-Brouri, N. J. Cerf, and P. Grangier, “Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system,” Phys. Rev. Lett. 98, 030503 (2007).
[CrossRef] [PubMed]

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using Gaussian-modulated coherent states,” Nature 421, 238-241 (2003).
[CrossRef] [PubMed]

Chan, V. W. S.

Dantan, A.

A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and P. Grangier, “Increasing entanglement between Gaussian states by coherent photon subtraction,” Phys. Rev. Lett. 98, 030502 (2007).
[CrossRef] [PubMed]

Debuisschert, T.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

J. Lodewyck, T. Debuisschert, R. Garcia-Patron, R. Tualle-Brouri, N. J. Cerf, and P. Grangier, “Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system,” Phys. Rev. Lett. 98, 030503 (2007).
[CrossRef] [PubMed]

J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303(R) (2005).
[CrossRef]

Diamanti, E.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

Faridani, A.

D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244-1247 (1993).
[CrossRef] [PubMed]

Fossier, S.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

Garcia-Patron, R.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

J. Lodewyck, T. Debuisschert, R. Garcia-Patron, R. Tualle-Brouri, N. J. Cerf, and P. Grangier, “Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system,” Phys. Rev. Lett. 98, 030503 (2007).
[CrossRef] [PubMed]

Grangier, P.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

J. Lodewyck, T. Debuisschert, R. Garcia-Patron, R. Tualle-Brouri, N. J. Cerf, and P. Grangier, “Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system,” Phys. Rev. Lett. 98, 030503 (2007).
[CrossRef] [PubMed]

A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, “Generation of optical “Schrödinger cats” from photon number states,” Nature 448, 784-786 (2007).
[CrossRef] [PubMed]

A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and P. Grangier, “Increasing entanglement between Gaussian states by coherent photon subtraction,” Phys. Rev. Lett. 98, 030502 (2007).
[CrossRef] [PubMed]

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science 312, 83-86 (2006).
[CrossRef] [PubMed]

A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Quantum homodyne tomography of a two-photon Fock state,” Phys. Rev. Lett. 96, 213601 (2006).
[CrossRef] [PubMed]

J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303(R) (2005).
[CrossRef]

J. Wenger, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Time-resolved homodyne characterization of individual quadrature-entangled pulses,” Eur. Phys. J. D 32, 391-396 (2005).
[CrossRef]

J. Wenger, R. Tualle-Brouri, and P. Grangier, “Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification,” Opt. Lett. 29, 1267-1269 (2004).
[CrossRef] [PubMed]

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using Gaussian-modulated coherent states,” Nature 421, 238-241 (2003).
[CrossRef] [PubMed]

Grosshans, F.

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using Gaussian-modulated coherent states,” Nature 421, 238-241 (2003).
[CrossRef] [PubMed]

Hansen, H.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402 (2001).
[CrossRef] [PubMed]

H. Hansen, T. Aichele, C. Hettich, P. Lodahl, A. I. Lvovsky, J. Mlynek, and S. Schiller, “Ultrasensitive pulsed, balanced homodyne detector: application to time-domain quantum measurements,” Opt. Lett. 26, 1714-1716 (2001).
[CrossRef]

Haus, H. A.

H. A. Haus, Electromagnetic Noise and Quantum Optical Measurements (Springer-Verlag, 2000).

Hettich, C.

Hirano, M.

Hirano, T.

Hollberg, L. W.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409-2412 (1985).
[CrossRef] [PubMed]

Jeong, H.

A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, “Generation of optical “Schrödinger cats” from photon number states,” Nature 448, 784-786 (2007).
[CrossRef] [PubMed]

Karpov, E.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

Kim, M.

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890-1893 (2007).
[CrossRef] [PubMed]

Laurat, J.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science 312, 83-86 (2006).
[CrossRef] [PubMed]

Leonhardt, U.

U. Leonhardt, Measuring the Quantum State of Light (Cambridge U. Press, 1997).

Lodahl, P.

Lodewyck, J.

J. Lodewyck, T. Debuisschert, R. Garcia-Patron, R. Tualle-Brouri, N. J. Cerf, and P. Grangier, “Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system,” Phys. Rev. Lett. 98, 030503 (2007).
[CrossRef] [PubMed]

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303(R) (2005).
[CrossRef]

Lvovsky, A. I.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402 (2001).
[CrossRef] [PubMed]

H. Hansen, T. Aichele, C. Hettich, P. Lodahl, A. I. Lvovsky, J. Mlynek, and S. Schiller, “Ultrasensitive pulsed, balanced homodyne detector: application to time-domain quantum measurements,” Opt. Lett. 26, 1714-1716 (2001).
[CrossRef]

Marin, F.

McLaughlin, S. W.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

Mertz, J. C.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409-2412 (1985).
[CrossRef] [PubMed]

Mlynek, J.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402 (2001).
[CrossRef] [PubMed]

H. Hansen, T. Aichele, C. Hettich, P. Lodahl, A. I. Lvovsky, J. Mlynek, and S. Schiller, “Ultrasensitive pulsed, balanced homodyne detector: application to time-domain quantum measurements,” Opt. Lett. 26, 1714-1716 (2001).
[CrossRef]

G. Breitenbach, S. Schiller, and J. Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471-475 (1997).
[CrossRef]

Okubo, R.

Ourjoumtsev, A.

A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and P. Grangier, “Increasing entanglement between Gaussian states by coherent photon subtraction,” Phys. Rev. Lett. 98, 030502 (2007).
[CrossRef] [PubMed]

A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, “Generation of optical “Schrödinger cats” from photon number states,” Nature 448, 784-786 (2007).
[CrossRef] [PubMed]

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science 312, 83-86 (2006).
[CrossRef] [PubMed]

A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Quantum homodyne tomography of a two-photon Fock state,” Phys. Rev. Lett. 96, 213601 (2006).
[CrossRef] [PubMed]

J. Wenger, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Time-resolved homodyne characterization of individual quadrature-entangled pulses,” Eur. Phys. J. D 32, 391-396 (2005).
[CrossRef]

Parigi, V.

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890-1893 (2007).
[CrossRef] [PubMed]

Ramazza, P. L.

Raymer, M. G.

D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244-1247 (1993).
[CrossRef] [PubMed]

Schiller, S.

H. Hansen, T. Aichele, C. Hettich, P. Lodahl, A. I. Lvovsky, J. Mlynek, and S. Schiller, “Ultrasensitive pulsed, balanced homodyne detector: application to time-domain quantum measurements,” Opt. Lett. 26, 1714-1716 (2001).
[CrossRef]

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402 (2001).
[CrossRef] [PubMed]

G. Breitenbach, S. Schiller, and J. Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471-475 (1997).
[CrossRef]

Slusher, R. E.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409-2412 (1985).
[CrossRef] [PubMed]

Smithey, D. T.

D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244-1247 (1993).
[CrossRef] [PubMed]

Tualle-Brouri, R.

J. Lodewyck, T. Debuisschert, R. Garcia-Patron, R. Tualle-Brouri, N. J. Cerf, and P. Grangier, “Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system,” Phys. Rev. Lett. 98, 030503 (2007).
[CrossRef] [PubMed]

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and P. Grangier, “Increasing entanglement between Gaussian states by coherent photon subtraction,” Phys. Rev. Lett. 98, 030502 (2007).
[CrossRef] [PubMed]

A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, “Generation of optical “Schrödinger cats” from photon number states,” Nature 448, 784-786 (2007).
[CrossRef] [PubMed]

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science 312, 83-86 (2006).
[CrossRef] [PubMed]

A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Quantum homodyne tomography of a two-photon Fock state,” Phys. Rev. Lett. 96, 213601 (2006).
[CrossRef] [PubMed]

J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303(R) (2005).
[CrossRef]

J. Wenger, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Time-resolved homodyne characterization of individual quadrature-entangled pulses,” Eur. Phys. J. D 32, 391-396 (2005).
[CrossRef]

J. Wenger, R. Tualle-Brouri, and P. Grangier, “Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification,” Opt. Lett. 29, 1267-1269 (2004).
[CrossRef] [PubMed]

Valley, J. F.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409-2412 (1985).
[CrossRef] [PubMed]

Van Assche, G.

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using Gaussian-modulated coherent states,” Nature 421, 238-241 (2003).
[CrossRef] [PubMed]

Viciani, S.

A. Zavatta, S. Viciani, and M. Bellini, “Single-photon excitation of a coherent state: catching the elementary step of stimulated light emission,” Phys. Rev. A 72, 023820(2005).
[CrossRef]

A. Zavatta, S. Viciani, M. Bellini, “Quantum-to-classical transition with single-photon-added coherent states of light,” Science 306, 660-662 (2004).
[CrossRef] [PubMed]

A. Zavatta, S. Viciani, and M. Bellini, “Tomographic reconstruction of the single-photon Fock state by high-frequency homodyne detection,” Phys. Rev. A 70, 053821 (2004).
[CrossRef]

Wenger, J.

J. Wenger, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Time-resolved homodyne characterization of individual quadrature-entangled pulses,” Eur. Phys. J. D 32, 391-396 (2005).
[CrossRef]

J. Wenger, R. Tualle-Brouri, and P. Grangier, “Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification,” Opt. Lett. 29, 1267-1269 (2004).
[CrossRef] [PubMed]

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using Gaussian-modulated coherent states,” Nature 421, 238-241 (2003).
[CrossRef] [PubMed]

Yee, S. T.

Yuen, H. P.

Yurke, B.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409-2412 (1985).
[CrossRef] [PubMed]

Zavatta, A.

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890-1893 (2007).
[CrossRef] [PubMed]

A. Zavatta, S. Viciani, and M. Bellini, “Single-photon excitation of a coherent state: catching the elementary step of stimulated light emission,” Phys. Rev. A 72, 023820(2005).
[CrossRef]

A. Zavatta, S. Viciani, M. Bellini, “Quantum-to-classical transition with single-photon-added coherent states of light,” Science 306, 660-662 (2004).
[CrossRef] [PubMed]

A. Zavatta, S. Viciani, and M. Bellini, “Tomographic reconstruction of the single-photon Fock state by high-frequency homodyne detection,” Phys. Rev. A 70, 053821 (2004).
[CrossRef]

A. Zavatta, M. Bellini, P. L. Ramazza, F. Marin, and F. T. Arecchi, “Time-domain analysis of quantum states of light: noise characterization and homodyne tomography,” J. Opt. Soc. Am. B 19, 1189-1194 (2002).
[CrossRef]

Zhang, Y.

Eur. Phys. J. D (1)

J. Wenger, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Time-resolved homodyne characterization of individual quadrature-entangled pulses,” Eur. Phys. J. D 32, 391-396 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (3)

G. Breitenbach, S. Schiller, and J. Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471-475 (1997).
[CrossRef]

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using Gaussian-modulated coherent states,” Nature 421, 238-241 (2003).
[CrossRef] [PubMed]

A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and P. Grangier, “Generation of optical “Schrödinger cats” from photon number states,” Nature 448, 784-786 (2007).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Rev. A (4)

A. Zavatta, S. Viciani, and M. Bellini, “Tomographic reconstruction of the single-photon Fock state by high-frequency homodyne detection,” Phys. Rev. A 70, 053821 (2004).
[CrossRef]

A. Zavatta, S. Viciani, and M. Bellini, “Single-photon excitation of a coherent state: catching the elementary step of stimulated light emission,” Phys. Rev. A 72, 023820(2005).
[CrossRef]

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303(R) (2005).
[CrossRef]

Phys. Rev. Lett. (6)

J. Lodewyck, T. Debuisschert, R. Garcia-Patron, R. Tualle-Brouri, N. J. Cerf, and P. Grangier, “Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system,” Phys. Rev. Lett. 98, 030503 (2007).
[CrossRef] [PubMed]

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409-2412 (1985).
[CrossRef] [PubMed]

A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and P. Grangier, “Increasing entanglement between Gaussian states by coherent photon subtraction,” Phys. Rev. Lett. 98, 030502 (2007).
[CrossRef] [PubMed]

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon Fock state,” Phys. Rev. Lett. 87, 050402 (2001).
[CrossRef] [PubMed]

A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Quantum homodyne tomography of a two-photon Fock state,” Phys. Rev. Lett. 96, 213601 (2006).
[CrossRef] [PubMed]

D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244-1247 (1993).
[CrossRef] [PubMed]

Science (3)

A. Zavatta, S. Viciani, M. Bellini, “Quantum-to-classical transition with single-photon-added coherent states of light,” Science 306, 660-662 (2004).
[CrossRef] [PubMed]

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science 312, 83-86 (2006).
[CrossRef] [PubMed]

V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890-1893 (2007).
[CrossRef] [PubMed]

Other (2)

H. A. Haus, Electromagnetic Noise and Quantum Optical Measurements (Springer-Verlag, 2000).

U. Leonhardt, Measuring the Quantum State of Light (Cambridge U. Press, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scheme of the homodyne detector; see detailed description in the text. Inset, scheme of the diode module.

Fig. 2
Fig. 2

Balancing the detector at the spectrum analyzer. Line a, spectrum of the unbalanced detector at a lower power; curve b, spectrum analyzer internal noise reference; curve c, electronic noise (with the light signal blocked); curve d, balanced detector at normal operating power. Inset, individual pulses and the difference signal as seen on the oscilloscope.

Fig. 3
Fig. 3

Relative Allan variance for a data batch of 500 μs (27300 laser pulses).

Fig. 4
Fig. 4

Variance of the quadrature of the vacuum state measured as a function of local oscillator power by use of AC coupling (solid curve, rectangles) and DC coupling (dashed curve, circles) and a pair of selected S3883 photodiodes. The values obtained for electronic noise were 1930 ± 160 ( pV ) 2 for AC coupling and 1980 ± 170 ( pV ) 2 for DC coupling. Individual points were obtained as a mean value of the variance over approximately 30,000 quadrature measurements.

Fig. 5
Fig. 5

Histogram of the quadrature values for shot-noise measurement of the local oscillator at 8 mW average power. Data were obtained from a sequence of 5465 pulses ( 100 μs batch). Solid curve respresents the Gaussian fit.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E ( r , t ) = E 0 [ α ( r , t ) e i 2 π ν t + α * ( r , t ) e i 2 π ν t ) ] = E 0 [ x ( r , t ) cos ( 2 π ν t ) + p ( r , t ) sin ( 2 π ν t ) ] ,
n ^ 21 N LO ( x ^ cos θ + p ^ sin θ ) ,
var [ n ^ 21 ] N LO var [ q ^ θ ]
n ^ 21 g η N LO q ^ θ + g η ( 1 η ) N LO ν ^ + g δ + g N e + N d .
var [ n ^ 21 ν a c ] g 2 η N LO var [ ν ^ ] + g 2 f ( var [ δ ] ) + g 2 N e 2 + N d 2 ,
σ 2 ( τ ) = { 1 2 ( q n q n 1 ) 2 } { q } ,

Metrics