Abstract

Optical properties of cadmium sulfide nanowires of 50100nm diameter prepared by the pulsed-laser vaporization method have been studied using photoacoustic, UV-Vis, Raman, and photoluminescence spectroscopy. The photoacoustic (PA) technique yielded clean spectra with a steeper absorption edge for as-prepared opaque semiconducting CdS nanowires when compared to the corresponding con ventional optical absorption spectra. The PA signal intensity was also significantly higher for nanowires. The Raman spectrum revealed increased exciton–longitudinal-optical-phonon coupling. The appearance of a narrow photoluminescence peak at 491nm (FWHM 9nm) and the absence of emission above 500nm demonstrate the high quality of nanowires. High-resolution transmission electron microscopy showed excellent ordering of the atoms in the [001] planes perpendicular to the growth direction.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley, “Nanotube devices,” Science 278, 100-102 (1997).
    [CrossRef]
  2. C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Lett. 4, 1981-1985 (2004).
    [CrossRef]
  3. Y. Huang, X. F. Duan, Q. Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291, 630-633 (2001).
    [CrossRef] [PubMed]
  4. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897-1899 (2001).
    [CrossRef] [PubMed]
  5. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9, 18-27 (2006).
    [CrossRef]
  6. C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Govindaraj, “Inorganic nanowires,” Prog. Solid State Chem. 31, 5-147(2003).
    [CrossRef]
  7. Y. Xiong, Y. Xie, J. Yang, R. Zhang, C. Wu, and G. Du, “In situ micelle-template-interface reaction route to CdS nanotubes and nanowires,” J. Mater. Chem. 12, 3712-3716 (2002).
    [CrossRef]
  8. A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, and K. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109, 24268-24272 (2005).
    [CrossRef] [PubMed]
  9. H. Cao, G. Wang, S. Zhang, X. Zhang, and D. Rabinovich, “Growth and optical properties of wurtzite-type CdS nanocrystals,” Inorg. Chem. 45, 5103-5108 (2006).
    [CrossRef] [PubMed]
  10. C. Barrelet, Y. Wu, D. C. Bell, and C. M. Lieber, “Synthesis of CdS and ZnS nanowires using single-source molecular precursors,” J. Am. Chem. Soc. 125, 11498-11499 (2003).
    [CrossRef] [PubMed]
  11. J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, “Synthesis of β−Ga2O3 nanowires by laser ablation,” J. Phys. Chem. B 106, 9536-9539 (2002).
    [CrossRef]
  12. J. Reppert, R. Rao, M. Skove, J. He, M. Craps, T. M. Tritt, and A. M. Rao, “Laser-assisted synthesis and optical properties of bismuth nanorods,” Chem. Phys. Lett. 442, 334-338 (2007).
    [CrossRef]
  13. P. G. Ganesan, K. McGuire, H. Kim, N. Gothard, S. Mohan, A. M. Rao, and G. Ramanath, “Nanowires by pulsed laser vaporization: synthesis and properties,” J. Nanosci. Nanotechnol. 5, 1125-1129 (2005).
    [CrossRef] [PubMed]
  14. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, 1980).
  15. A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381-431 (1986).
    [CrossRef]
  16. N. Kuthirummal, A. Dean, C. Yao, and W. Risen Jr., “Photo-formation of gold nanoparticles: photoacoustic studies on solid monoliths of Au(III)-chitosan-silica aerogels,” Spectrochim. Acta A 70, 700-703 (2008).
    [CrossRef]
  17. H. Pan, G. Xing, Z. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Lin, and Z. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105-193107 (2007).
    [CrossRef]
  18. A. Rosencwaig, “Photoacoustic spectroscopy of solids,” Phys. Today 28, 23-30 (1975).
    [CrossRef]
  19. T. Toyoda and Q. Shen, “Effect of size confinement on photoacoustic spectra and photothermal response of CdSxSe1−x(0<×<1)) nanocrystals in a glass matrix,” Anal. Sci. 17, s259-s261 (2001).
    [CrossRef]
  20. P. Nandakuamr, A. R. Dhobale, Y. Babu, M. D. Sastry, C. Vijayan, Y. V. G. S. Murti, K. Dhanalakshmi, and G. Sundararajan, “Photoacoustic response of CdS quantum dots in nafion,” Solid State Commun. 106, 193-196 (1998).
    [CrossRef]
  21. H. M. Pan, Z. N. Ni, Y. P. Feng, X. F. Fan, J. L. Kuo, Z. X. Shen, and B. S. Zou, “Anisotropy of electron-phonon coupling in single wurtzite CdS nanowires,” Appl. Phys. Lett. 91, 171911-171913 (2007).
    [CrossRef]
  22. M. Froment, M. C. Bernard, R. Cortes, B. Mokili, and D. J. Lincot, “Study of CdS epitaxial films chemically deposited from aqueous solutions on InP single crystals,” J. Electrochem. Soc. 142, 2642-2649(1995).
    [CrossRef]
  23. J. J. Shiang, S. H. Risbud, and A. P. Alivisatos, “Resonance Raman studies of the ground and lowest electronic excited state in CdS nanocrystals,” J. Chem. Phys. 98, 8432-8442(1993).
    [CrossRef]
  24. K. Y. Lee, J. R. Lim, H. Rho, Y. J. Choi, K. J. Choi, and J. G. Park, “Evolution optical phonons in CdS nanowires, nanobelts, and nanosheets,” Appl. Phys. Lett. 91, 201901-201903 (2007).
    [CrossRef]
  25. W. Z. Shen, “Study of exciton-longitudinal optical phonon coupling in quantum wells for optoelectronic applications,” Appl. Phys. Lett. 79, 1285-1287 (2001).
    [CrossRef]

2008 (1)

N. Kuthirummal, A. Dean, C. Yao, and W. Risen Jr., “Photo-formation of gold nanoparticles: photoacoustic studies on solid monoliths of Au(III)-chitosan-silica aerogels,” Spectrochim. Acta A 70, 700-703 (2008).
[CrossRef]

2007 (4)

H. Pan, G. Xing, Z. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Lin, and Z. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105-193107 (2007).
[CrossRef]

J. Reppert, R. Rao, M. Skove, J. He, M. Craps, T. M. Tritt, and A. M. Rao, “Laser-assisted synthesis and optical properties of bismuth nanorods,” Chem. Phys. Lett. 442, 334-338 (2007).
[CrossRef]

H. M. Pan, Z. N. Ni, Y. P. Feng, X. F. Fan, J. L. Kuo, Z. X. Shen, and B. S. Zou, “Anisotropy of electron-phonon coupling in single wurtzite CdS nanowires,” Appl. Phys. Lett. 91, 171911-171913 (2007).
[CrossRef]

K. Y. Lee, J. R. Lim, H. Rho, Y. J. Choi, K. J. Choi, and J. G. Park, “Evolution optical phonons in CdS nanowires, nanobelts, and nanosheets,” Appl. Phys. Lett. 91, 201901-201903 (2007).
[CrossRef]

2006 (2)

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9, 18-27 (2006).
[CrossRef]

H. Cao, G. Wang, S. Zhang, X. Zhang, and D. Rabinovich, “Growth and optical properties of wurtzite-type CdS nanocrystals,” Inorg. Chem. 45, 5103-5108 (2006).
[CrossRef] [PubMed]

2005 (2)

A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, and K. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109, 24268-24272 (2005).
[CrossRef] [PubMed]

P. G. Ganesan, K. McGuire, H. Kim, N. Gothard, S. Mohan, A. M. Rao, and G. Ramanath, “Nanowires by pulsed laser vaporization: synthesis and properties,” J. Nanosci. Nanotechnol. 5, 1125-1129 (2005).
[CrossRef] [PubMed]

2004 (1)

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Lett. 4, 1981-1985 (2004).
[CrossRef]

2003 (2)

C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Govindaraj, “Inorganic nanowires,” Prog. Solid State Chem. 31, 5-147(2003).
[CrossRef]

C. Barrelet, Y. Wu, D. C. Bell, and C. M. Lieber, “Synthesis of CdS and ZnS nanowires using single-source molecular precursors,” J. Am. Chem. Soc. 125, 11498-11499 (2003).
[CrossRef] [PubMed]

2002 (2)

J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, “Synthesis of β−Ga2O3 nanowires by laser ablation,” J. Phys. Chem. B 106, 9536-9539 (2002).
[CrossRef]

Y. Xiong, Y. Xie, J. Yang, R. Zhang, C. Wu, and G. Du, “In situ micelle-template-interface reaction route to CdS nanotubes and nanowires,” J. Mater. Chem. 12, 3712-3716 (2002).
[CrossRef]

2001 (4)

Y. Huang, X. F. Duan, Q. Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291, 630-633 (2001).
[CrossRef] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

T. Toyoda and Q. Shen, “Effect of size confinement on photoacoustic spectra and photothermal response of CdSxSe1−x(0<×<1)) nanocrystals in a glass matrix,” Anal. Sci. 17, s259-s261 (2001).
[CrossRef]

W. Z. Shen, “Study of exciton-longitudinal optical phonon coupling in quantum wells for optoelectronic applications,” Appl. Phys. Lett. 79, 1285-1287 (2001).
[CrossRef]

1998 (1)

P. Nandakuamr, A. R. Dhobale, Y. Babu, M. D. Sastry, C. Vijayan, Y. V. G. S. Murti, K. Dhanalakshmi, and G. Sundararajan, “Photoacoustic response of CdS quantum dots in nafion,” Solid State Commun. 106, 193-196 (1998).
[CrossRef]

1997 (1)

P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley, “Nanotube devices,” Science 278, 100-102 (1997).
[CrossRef]

1995 (1)

M. Froment, M. C. Bernard, R. Cortes, B. Mokili, and D. J. Lincot, “Study of CdS epitaxial films chemically deposited from aqueous solutions on InP single crystals,” J. Electrochem. Soc. 142, 2642-2649(1995).
[CrossRef]

1993 (1)

J. J. Shiang, S. H. Risbud, and A. P. Alivisatos, “Resonance Raman studies of the ground and lowest electronic excited state in CdS nanocrystals,” J. Chem. Phys. 98, 8432-8442(1993).
[CrossRef]

1986 (1)

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381-431 (1986).
[CrossRef]

1975 (1)

A. Rosencwaig, “Photoacoustic spectroscopy of solids,” Phys. Today 28, 23-30 (1975).
[CrossRef]

Alivisatos, A. P.

J. J. Shiang, S. H. Risbud, and A. P. Alivisatos, “Resonance Raman studies of the ground and lowest electronic excited state in CdS nanocrystals,” J. Chem. Phys. 98, 8432-8442(1993).
[CrossRef]

Babu, Y.

P. Nandakuamr, A. R. Dhobale, Y. Babu, M. D. Sastry, C. Vijayan, Y. V. G. S. Murti, K. Dhanalakshmi, and G. Sundararajan, “Photoacoustic response of CdS quantum dots in nafion,” Solid State Commun. 106, 193-196 (1998).
[CrossRef]

Bando, H.

P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley, “Nanotube devices,” Science 278, 100-102 (1997).
[CrossRef]

Barrelet, C.

C. Barrelet, Y. Wu, D. C. Bell, and C. M. Lieber, “Synthesis of CdS and ZnS nanowires using single-source molecular precursors,” J. Am. Chem. Soc. 125, 11498-11499 (2003).
[CrossRef] [PubMed]

Barrelet, C. J.

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Lett. 4, 1981-1985 (2004).
[CrossRef]

Bell, D. C.

C. Barrelet, Y. Wu, D. C. Bell, and C. M. Lieber, “Synthesis of CdS and ZnS nanowires using single-source molecular precursors,” J. Am. Chem. Soc. 125, 11498-11499 (2003).
[CrossRef] [PubMed]

Bernard, M. C.

M. Froment, M. C. Bernard, R. Cortes, B. Mokili, and D. J. Lincot, “Study of CdS epitaxial films chemically deposited from aqueous solutions on InP single crystals,” J. Electrochem. Soc. 142, 2642-2649(1995).
[CrossRef]

Cao, H.

H. Cao, G. Wang, S. Zhang, X. Zhang, and D. Rabinovich, “Growth and optical properties of wurtzite-type CdS nanocrystals,” Inorg. Chem. 45, 5103-5108 (2006).
[CrossRef] [PubMed]

Chen, K.

A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, and K. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109, 24268-24272 (2005).
[CrossRef] [PubMed]

Choi, K. J.

K. Y. Lee, J. R. Lim, H. Rho, Y. J. Choi, K. J. Choi, and J. G. Park, “Evolution optical phonons in CdS nanowires, nanobelts, and nanosheets,” Appl. Phys. Lett. 91, 201901-201903 (2007).
[CrossRef]

Choi, Y. J.

K. Y. Lee, J. R. Lim, H. Rho, Y. J. Choi, K. J. Choi, and J. G. Park, “Evolution optical phonons in CdS nanowires, nanobelts, and nanosheets,” Appl. Phys. Lett. 91, 201901-201903 (2007).
[CrossRef]

Chua, D. H. C.

H. Pan, G. Xing, Z. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Lin, and Z. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105-193107 (2007).
[CrossRef]

Collins, P. G.

P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley, “Nanotube devices,” Science 278, 100-102 (1997).
[CrossRef]

Cortes, R.

M. Froment, M. C. Bernard, R. Cortes, B. Mokili, and D. J. Lincot, “Study of CdS epitaxial films chemically deposited from aqueous solutions on InP single crystals,” J. Electrochem. Soc. 142, 2642-2649(1995).
[CrossRef]

Craps, M.

J. Reppert, R. Rao, M. Skove, J. He, M. Craps, T. M. Tritt, and A. M. Rao, “Laser-assisted synthesis and optical properties of bismuth nanorods,” Chem. Phys. Lett. 442, 334-338 (2007).
[CrossRef]

Dean, A.

N. Kuthirummal, A. Dean, C. Yao, and W. Risen Jr., “Photo-formation of gold nanoparticles: photoacoustic studies on solid monoliths of Au(III)-chitosan-silica aerogels,” Spectrochim. Acta A 70, 700-703 (2008).
[CrossRef]

Deepak, F. L.

C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Govindaraj, “Inorganic nanowires,” Prog. Solid State Chem. 31, 5-147(2003).
[CrossRef]

Dhanalakshmi, K.

P. Nandakuamr, A. R. Dhobale, Y. Babu, M. D. Sastry, C. Vijayan, Y. V. G. S. Murti, K. Dhanalakshmi, and G. Sundararajan, “Photoacoustic response of CdS quantum dots in nafion,” Solid State Commun. 106, 193-196 (1998).
[CrossRef]

Dhobale, A. R.

P. Nandakuamr, A. R. Dhobale, Y. Babu, M. D. Sastry, C. Vijayan, Y. V. G. S. Murti, K. Dhanalakshmi, and G. Sundararajan, “Photoacoustic response of CdS quantum dots in nafion,” Solid State Commun. 106, 193-196 (1998).
[CrossRef]

Du, G.

Y. Xiong, Y. Xie, J. Yang, R. Zhang, C. Wu, and G. Du, “In situ micelle-template-interface reaction route to CdS nanotubes and nanowires,” J. Mater. Chem. 12, 3712-3716 (2002).
[CrossRef]

Duan, X. F.

Y. Huang, X. F. Duan, Q. Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291, 630-633 (2001).
[CrossRef] [PubMed]

Fan, X. F.

H. M. Pan, Z. N. Ni, Y. P. Feng, X. F. Fan, J. L. Kuo, Z. X. Shen, and B. S. Zou, “Anisotropy of electron-phonon coupling in single wurtzite CdS nanowires,” Appl. Phys. Lett. 91, 171911-171913 (2007).
[CrossRef]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Feng, Y. P.

H. M. Pan, Z. N. Ni, Y. P. Feng, X. F. Fan, J. L. Kuo, Z. X. Shen, and B. S. Zou, “Anisotropy of electron-phonon coupling in single wurtzite CdS nanowires,” Appl. Phys. Lett. 91, 171911-171913 (2007).
[CrossRef]

H. Pan, G. Xing, Z. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Lin, and Z. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105-193107 (2007).
[CrossRef]

Froment, M.

M. Froment, M. C. Bernard, R. Cortes, B. Mokili, and D. J. Lincot, “Study of CdS epitaxial films chemically deposited from aqueous solutions on InP single crystals,” J. Electrochem. Soc. 142, 2642-2649(1995).
[CrossRef]

Ganesan, P. G.

P. G. Ganesan, K. McGuire, H. Kim, N. Gothard, S. Mohan, A. M. Rao, and G. Ramanath, “Nanowires by pulsed laser vaporization: synthesis and properties,” J. Nanosci. Nanotechnol. 5, 1125-1129 (2005).
[CrossRef] [PubMed]

Gothard, N.

P. G. Ganesan, K. McGuire, H. Kim, N. Gothard, S. Mohan, A. M. Rao, and G. Ramanath, “Nanowires by pulsed laser vaporization: synthesis and properties,” J. Nanosci. Nanotechnol. 5, 1125-1129 (2005).
[CrossRef] [PubMed]

Govindaraj, A.

C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Govindaraj, “Inorganic nanowires,” Prog. Solid State Chem. 31, 5-147(2003).
[CrossRef]

Greytak, A. B.

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Lett. 4, 1981-1985 (2004).
[CrossRef]

Gundiah, G.

C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Govindaraj, “Inorganic nanowires,” Prog. Solid State Chem. 31, 5-147(2003).
[CrossRef]

He, J.

J. Reppert, R. Rao, M. Skove, J. He, M. Craps, T. M. Tritt, and A. M. Rao, “Laser-assisted synthesis and optical properties of bismuth nanorods,” Chem. Phys. Lett. 442, 334-338 (2007).
[CrossRef]

Hu, J. Q.

J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, “Synthesis of β−Ga2O3 nanowires by laser ablation,” J. Phys. Chem. B 106, 9536-9539 (2002).
[CrossRef]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Huang, Y.

Y. Huang, X. F. Duan, Q. Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291, 630-633 (2001).
[CrossRef] [PubMed]

Ji, W.

H. Pan, G. Xing, Z. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Lin, and Z. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105-193107 (2007).
[CrossRef]

Kim, H.

P. G. Ganesan, K. McGuire, H. Kim, N. Gothard, S. Mohan, A. M. Rao, and G. Ramanath, “Nanowires by pulsed laser vaporization: synthesis and properties,” J. Nanosci. Nanotechnol. 5, 1125-1129 (2005).
[CrossRef] [PubMed]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Kuo, J. L.

H. M. Pan, Z. N. Ni, Y. P. Feng, X. F. Fan, J. L. Kuo, Z. X. Shen, and B. S. Zou, “Anisotropy of electron-phonon coupling in single wurtzite CdS nanowires,” Appl. Phys. Lett. 91, 171911-171913 (2007).
[CrossRef]

Kuthirummal, N.

N. Kuthirummal, A. Dean, C. Yao, and W. Risen Jr., “Photo-formation of gold nanoparticles: photoacoustic studies on solid monoliths of Au(III)-chitosan-silica aerogels,” Spectrochim. Acta A 70, 700-703 (2008).
[CrossRef]

Lee, C. S.

J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, “Synthesis of β−Ga2O3 nanowires by laser ablation,” J. Phys. Chem. B 106, 9536-9539 (2002).
[CrossRef]

Lee, K. Y.

K. Y. Lee, J. R. Lim, H. Rho, Y. J. Choi, K. J. Choi, and J. G. Park, “Evolution optical phonons in CdS nanowires, nanobelts, and nanosheets,” Appl. Phys. Lett. 91, 201901-201903 (2007).
[CrossRef]

Lee, S. T.

J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, “Synthesis of β−Ga2O3 nanowires by laser ablation,” J. Phys. Chem. B 106, 9536-9539 (2002).
[CrossRef]

Li, Q.

J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, “Synthesis of β−Ga2O3 nanowires by laser ablation,” J. Phys. Chem. B 106, 9536-9539 (2002).
[CrossRef]

Li, Y.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9, 18-27 (2006).
[CrossRef]

Lieber, C. M.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9, 18-27 (2006).
[CrossRef]

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Lett. 4, 1981-1985 (2004).
[CrossRef]

C. Barrelet, Y. Wu, D. C. Bell, and C. M. Lieber, “Synthesis of CdS and ZnS nanowires using single-source molecular precursors,” J. Am. Chem. Soc. 125, 11498-11499 (2003).
[CrossRef] [PubMed]

Y. Huang, X. F. Duan, Q. Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291, 630-633 (2001).
[CrossRef] [PubMed]

Lim, J. R.

K. Y. Lee, J. R. Lim, H. Rho, Y. J. Choi, K. J. Choi, and J. G. Park, “Evolution optical phonons in CdS nanowires, nanobelts, and nanosheets,” Appl. Phys. Lett. 91, 201901-201903 (2007).
[CrossRef]

Lin, J.

H. Pan, G. Xing, Z. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Lin, and Z. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105-193107 (2007).
[CrossRef]

Lincot, D. J.

M. Froment, M. C. Bernard, R. Cortes, B. Mokili, and D. J. Lincot, “Study of CdS epitaxial films chemically deposited from aqueous solutions on InP single crystals,” J. Electrochem. Soc. 142, 2642-2649(1995).
[CrossRef]

Liu, R.

A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, and K. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109, 24268-24272 (2005).
[CrossRef] [PubMed]

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

McGuire, K.

P. G. Ganesan, K. McGuire, H. Kim, N. Gothard, S. Mohan, A. M. Rao, and G. Ramanath, “Nanowires by pulsed laser vaporization: synthesis and properties,” J. Nanosci. Nanotechnol. 5, 1125-1129 (2005).
[CrossRef] [PubMed]

Meng, X. M.

J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, “Synthesis of β−Ga2O3 nanowires by laser ablation,” J. Phys. Chem. B 106, 9536-9539 (2002).
[CrossRef]

Mohan, S.

P. G. Ganesan, K. McGuire, H. Kim, N. Gothard, S. Mohan, A. M. Rao, and G. Ramanath, “Nanowires by pulsed laser vaporization: synthesis and properties,” J. Nanosci. Nanotechnol. 5, 1125-1129 (2005).
[CrossRef] [PubMed]

Mokili, B.

M. Froment, M. C. Bernard, R. Cortes, B. Mokili, and D. J. Lincot, “Study of CdS epitaxial films chemically deposited from aqueous solutions on InP single crystals,” J. Electrochem. Soc. 142, 2642-2649(1995).
[CrossRef]

Murti, Y. V. G. S.

P. Nandakuamr, A. R. Dhobale, Y. Babu, M. D. Sastry, C. Vijayan, Y. V. G. S. Murti, K. Dhanalakshmi, and G. Sundararajan, “Photoacoustic response of CdS quantum dots in nafion,” Solid State Commun. 106, 193-196 (1998).
[CrossRef]

Nandakuamr, P.

P. Nandakuamr, A. R. Dhobale, Y. Babu, M. D. Sastry, C. Vijayan, Y. V. G. S. Murti, K. Dhanalakshmi, and G. Sundararajan, “Photoacoustic response of CdS quantum dots in nafion,” Solid State Commun. 106, 193-196 (1998).
[CrossRef]

Ni, Z.

H. Pan, G. Xing, Z. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Lin, and Z. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105-193107 (2007).
[CrossRef]

Ni, Z. N.

H. M. Pan, Z. N. Ni, Y. P. Feng, X. F. Fan, J. L. Kuo, Z. X. Shen, and B. S. Zou, “Anisotropy of electron-phonon coupling in single wurtzite CdS nanowires,” Appl. Phys. Lett. 91, 171911-171913 (2007).
[CrossRef]

Pan, A.

A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, and K. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109, 24268-24272 (2005).
[CrossRef] [PubMed]

Pan, H.

H. Pan, G. Xing, Z. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Lin, and Z. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105-193107 (2007).
[CrossRef]

Pan, H. M.

H. M. Pan, Z. N. Ni, Y. P. Feng, X. F. Fan, J. L. Kuo, Z. X. Shen, and B. S. Zou, “Anisotropy of electron-phonon coupling in single wurtzite CdS nanowires,” Appl. Phys. Lett. 91, 171911-171913 (2007).
[CrossRef]

Park, J. G.

K. Y. Lee, J. R. Lim, H. Rho, Y. J. Choi, K. J. Choi, and J. G. Park, “Evolution optical phonons in CdS nanowires, nanobelts, and nanosheets,” Appl. Phys. Lett. 91, 201901-201903 (2007).
[CrossRef]

Qian, F.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9, 18-27 (2006).
[CrossRef]

Rabinovich, D.

H. Cao, G. Wang, S. Zhang, X. Zhang, and D. Rabinovich, “Growth and optical properties of wurtzite-type CdS nanocrystals,” Inorg. Chem. 45, 5103-5108 (2006).
[CrossRef] [PubMed]

Ramanath, G.

P. G. Ganesan, K. McGuire, H. Kim, N. Gothard, S. Mohan, A. M. Rao, and G. Ramanath, “Nanowires by pulsed laser vaporization: synthesis and properties,” J. Nanosci. Nanotechnol. 5, 1125-1129 (2005).
[CrossRef] [PubMed]

Rao, A. M.

J. Reppert, R. Rao, M. Skove, J. He, M. Craps, T. M. Tritt, and A. M. Rao, “Laser-assisted synthesis and optical properties of bismuth nanorods,” Chem. Phys. Lett. 442, 334-338 (2007).
[CrossRef]

P. G. Ganesan, K. McGuire, H. Kim, N. Gothard, S. Mohan, A. M. Rao, and G. Ramanath, “Nanowires by pulsed laser vaporization: synthesis and properties,” J. Nanosci. Nanotechnol. 5, 1125-1129 (2005).
[CrossRef] [PubMed]

Rao, C. N. R.

C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Govindaraj, “Inorganic nanowires,” Prog. Solid State Chem. 31, 5-147(2003).
[CrossRef]

Rao, R.

J. Reppert, R. Rao, M. Skove, J. He, M. Craps, T. M. Tritt, and A. M. Rao, “Laser-assisted synthesis and optical properties of bismuth nanorods,” Chem. Phys. Lett. 442, 334-338 (2007).
[CrossRef]

Reppert, J.

J. Reppert, R. Rao, M. Skove, J. He, M. Craps, T. M. Tritt, and A. M. Rao, “Laser-assisted synthesis and optical properties of bismuth nanorods,” Chem. Phys. Lett. 442, 334-338 (2007).
[CrossRef]

Rho, H.

K. Y. Lee, J. R. Lim, H. Rho, Y. J. Choi, K. J. Choi, and J. G. Park, “Evolution optical phonons in CdS nanowires, nanobelts, and nanosheets,” Appl. Phys. Lett. 91, 201901-201903 (2007).
[CrossRef]

Risbud, S. H.

J. J. Shiang, S. H. Risbud, and A. P. Alivisatos, “Resonance Raman studies of the ground and lowest electronic excited state in CdS nanocrystals,” J. Chem. Phys. 98, 8432-8442(1993).
[CrossRef]

Risen, W.

N. Kuthirummal, A. Dean, C. Yao, and W. Risen Jr., “Photo-formation of gold nanoparticles: photoacoustic studies on solid monoliths of Au(III)-chitosan-silica aerogels,” Spectrochim. Acta A 70, 700-703 (2008).
[CrossRef]

Rosencwaig, A.

A. Rosencwaig, “Photoacoustic spectroscopy of solids,” Phys. Today 28, 23-30 (1975).
[CrossRef]

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, 1980).

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Sastry, M. D.

P. Nandakuamr, A. R. Dhobale, Y. Babu, M. D. Sastry, C. Vijayan, Y. V. G. S. Murti, K. Dhanalakshmi, and G. Sundararajan, “Photoacoustic response of CdS quantum dots in nafion,” Solid State Commun. 106, 193-196 (1998).
[CrossRef]

Shen, Q.

T. Toyoda and Q. Shen, “Effect of size confinement on photoacoustic spectra and photothermal response of CdSxSe1−x(0<×<1)) nanocrystals in a glass matrix,” Anal. Sci. 17, s259-s261 (2001).
[CrossRef]

Shen, W. Z.

W. Z. Shen, “Study of exciton-longitudinal optical phonon coupling in quantum wells for optoelectronic applications,” Appl. Phys. Lett. 79, 1285-1287 (2001).
[CrossRef]

Shen, Z.

H. Pan, G. Xing, Z. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Lin, and Z. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105-193107 (2007).
[CrossRef]

Shen, Z. X.

H. M. Pan, Z. N. Ni, Y. P. Feng, X. F. Fan, J. L. Kuo, Z. X. Shen, and B. S. Zou, “Anisotropy of electron-phonon coupling in single wurtzite CdS nanowires,” Appl. Phys. Lett. 91, 171911-171913 (2007).
[CrossRef]

Shiang, J. J.

J. J. Shiang, S. H. Risbud, and A. P. Alivisatos, “Resonance Raman studies of the ground and lowest electronic excited state in CdS nanocrystals,” J. Chem. Phys. 98, 8432-8442(1993).
[CrossRef]

Skove, M.

J. Reppert, R. Rao, M. Skove, J. He, M. Craps, T. M. Tritt, and A. M. Rao, “Laser-assisted synthesis and optical properties of bismuth nanorods,” Chem. Phys. Lett. 442, 334-338 (2007).
[CrossRef]

Smalley, R. E.

P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley, “Nanotube devices,” Science 278, 100-102 (1997).
[CrossRef]

Sundararajan, G.

P. Nandakuamr, A. R. Dhobale, Y. Babu, M. D. Sastry, C. Vijayan, Y. V. G. S. Murti, K. Dhanalakshmi, and G. Sundararajan, “Photoacoustic response of CdS quantum dots in nafion,” Solid State Commun. 106, 193-196 (1998).
[CrossRef]

Tam, A. C.

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381-431 (1986).
[CrossRef]

Tang, Z.

H. Pan, G. Xing, Z. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Lin, and Z. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105-193107 (2007).
[CrossRef]

Thess, A.

P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley, “Nanotube devices,” Science 278, 100-102 (1997).
[CrossRef]

Toyoda, T.

T. Toyoda and Q. Shen, “Effect of size confinement on photoacoustic spectra and photothermal response of CdSxSe1−x(0<×<1)) nanocrystals in a glass matrix,” Anal. Sci. 17, s259-s261 (2001).
[CrossRef]

Tritt, T. M.

J. Reppert, R. Rao, M. Skove, J. He, M. Craps, T. M. Tritt, and A. M. Rao, “Laser-assisted synthesis and optical properties of bismuth nanorods,” Chem. Phys. Lett. 442, 334-338 (2007).
[CrossRef]

Vijayan, C.

P. Nandakuamr, A. R. Dhobale, Y. Babu, M. D. Sastry, C. Vijayan, Y. V. G. S. Murti, K. Dhanalakshmi, and G. Sundararajan, “Photoacoustic response of CdS quantum dots in nafion,” Solid State Commun. 106, 193-196 (1998).
[CrossRef]

Wang, G.

H. Cao, G. Wang, S. Zhang, X. Zhang, and D. Rabinovich, “Growth and optical properties of wurtzite-type CdS nanocrystals,” Inorg. Chem. 45, 5103-5108 (2006).
[CrossRef] [PubMed]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Wei, Q. Q.

Y. Huang, X. F. Duan, Q. Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291, 630-633 (2001).
[CrossRef] [PubMed]

Wu, C.

Y. Xiong, Y. Xie, J. Yang, R. Zhang, C. Wu, and G. Du, “In situ micelle-template-interface reaction route to CdS nanotubes and nanowires,” J. Mater. Chem. 12, 3712-3716 (2002).
[CrossRef]

Wu, Y.

C. Barrelet, Y. Wu, D. C. Bell, and C. M. Lieber, “Synthesis of CdS and ZnS nanowires using single-source molecular precursors,” J. Am. Chem. Soc. 125, 11498-11499 (2003).
[CrossRef] [PubMed]

Wu, Y. Y.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Xiang, J.

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9, 18-27 (2006).
[CrossRef]

Xie, Y.

Y. Xiong, Y. Xie, J. Yang, R. Zhang, C. Wu, and G. Du, “In situ micelle-template-interface reaction route to CdS nanotubes and nanowires,” J. Mater. Chem. 12, 3712-3716 (2002).
[CrossRef]

Xing, G.

H. Pan, G. Xing, Z. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Lin, and Z. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105-193107 (2007).
[CrossRef]

Xiong, Y.

Y. Xiong, Y. Xie, J. Yang, R. Zhang, C. Wu, and G. Du, “In situ micelle-template-interface reaction route to CdS nanotubes and nanowires,” J. Mater. Chem. 12, 3712-3716 (2002).
[CrossRef]

Yan, H. Q.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Yang, G.

A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, and K. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109, 24268-24272 (2005).
[CrossRef] [PubMed]

Yang, J.

Y. Xiong, Y. Xie, J. Yang, R. Zhang, C. Wu, and G. Du, “In situ micelle-template-interface reaction route to CdS nanotubes and nanowires,” J. Mater. Chem. 12, 3712-3716 (2002).
[CrossRef]

Yang, P. D.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

Yang, Q.

A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, and K. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109, 24268-24272 (2005).
[CrossRef] [PubMed]

Yao, C.

N. Kuthirummal, A. Dean, C. Yao, and W. Risen Jr., “Photo-formation of gold nanoparticles: photoacoustic studies on solid monoliths of Au(III)-chitosan-silica aerogels,” Spectrochim. Acta A 70, 700-703 (2008).
[CrossRef]

Zettl, A.

P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley, “Nanotube devices,” Science 278, 100-102 (1997).
[CrossRef]

Zhang, R.

Y. Xiong, Y. Xie, J. Yang, R. Zhang, C. Wu, and G. Du, “In situ micelle-template-interface reaction route to CdS nanotubes and nanowires,” J. Mater. Chem. 12, 3712-3716 (2002).
[CrossRef]

Zhang, S.

H. Cao, G. Wang, S. Zhang, X. Zhang, and D. Rabinovich, “Growth and optical properties of wurtzite-type CdS nanocrystals,” Inorg. Chem. 45, 5103-5108 (2006).
[CrossRef] [PubMed]

Zhang, X.

H. Cao, G. Wang, S. Zhang, X. Zhang, and D. Rabinovich, “Growth and optical properties of wurtzite-type CdS nanocrystals,” Inorg. Chem. 45, 5103-5108 (2006).
[CrossRef] [PubMed]

Zhu, Y.

A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, and K. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109, 24268-24272 (2005).
[CrossRef] [PubMed]

Zou, B.

A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, and K. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109, 24268-24272 (2005).
[CrossRef] [PubMed]

Zou, B. S.

H. M. Pan, Z. N. Ni, Y. P. Feng, X. F. Fan, J. L. Kuo, Z. X. Shen, and B. S. Zou, “Anisotropy of electron-phonon coupling in single wurtzite CdS nanowires,” Appl. Phys. Lett. 91, 171911-171913 (2007).
[CrossRef]

Anal. Sci. (1)

T. Toyoda and Q. Shen, “Effect of size confinement on photoacoustic spectra and photothermal response of CdSxSe1−x(0<×<1)) nanocrystals in a glass matrix,” Anal. Sci. 17, s259-s261 (2001).
[CrossRef]

Appl. Phys. Lett. (4)

H. Pan, G. Xing, Z. Ni, W. Ji, Y. P. Feng, Z. Tang, D. H. C. Chua, J. Lin, and Z. Shen, “Stimulated emission of CdS nanowires grown by thermal evaporation,” Appl. Phys. Lett. 91, 193105-193107 (2007).
[CrossRef]

H. M. Pan, Z. N. Ni, Y. P. Feng, X. F. Fan, J. L. Kuo, Z. X. Shen, and B. S. Zou, “Anisotropy of electron-phonon coupling in single wurtzite CdS nanowires,” Appl. Phys. Lett. 91, 171911-171913 (2007).
[CrossRef]

K. Y. Lee, J. R. Lim, H. Rho, Y. J. Choi, K. J. Choi, and J. G. Park, “Evolution optical phonons in CdS nanowires, nanobelts, and nanosheets,” Appl. Phys. Lett. 91, 201901-201903 (2007).
[CrossRef]

W. Z. Shen, “Study of exciton-longitudinal optical phonon coupling in quantum wells for optoelectronic applications,” Appl. Phys. Lett. 79, 1285-1287 (2001).
[CrossRef]

Chem. Phys. Lett. (1)

J. Reppert, R. Rao, M. Skove, J. He, M. Craps, T. M. Tritt, and A. M. Rao, “Laser-assisted synthesis and optical properties of bismuth nanorods,” Chem. Phys. Lett. 442, 334-338 (2007).
[CrossRef]

Inorg. Chem. (1)

H. Cao, G. Wang, S. Zhang, X. Zhang, and D. Rabinovich, “Growth and optical properties of wurtzite-type CdS nanocrystals,” Inorg. Chem. 45, 5103-5108 (2006).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

C. Barrelet, Y. Wu, D. C. Bell, and C. M. Lieber, “Synthesis of CdS and ZnS nanowires using single-source molecular precursors,” J. Am. Chem. Soc. 125, 11498-11499 (2003).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

J. J. Shiang, S. H. Risbud, and A. P. Alivisatos, “Resonance Raman studies of the ground and lowest electronic excited state in CdS nanocrystals,” J. Chem. Phys. 98, 8432-8442(1993).
[CrossRef]

J. Electrochem. Soc. (1)

M. Froment, M. C. Bernard, R. Cortes, B. Mokili, and D. J. Lincot, “Study of CdS epitaxial films chemically deposited from aqueous solutions on InP single crystals,” J. Electrochem. Soc. 142, 2642-2649(1995).
[CrossRef]

J. Mater. Chem. (1)

Y. Xiong, Y. Xie, J. Yang, R. Zhang, C. Wu, and G. Du, “In situ micelle-template-interface reaction route to CdS nanotubes and nanowires,” J. Mater. Chem. 12, 3712-3716 (2002).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

P. G. Ganesan, K. McGuire, H. Kim, N. Gothard, S. Mohan, A. M. Rao, and G. Ramanath, “Nanowires by pulsed laser vaporization: synthesis and properties,” J. Nanosci. Nanotechnol. 5, 1125-1129 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. B (2)

A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, and K. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B 109, 24268-24272 (2005).
[CrossRef] [PubMed]

J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, “Synthesis of β−Ga2O3 nanowires by laser ablation,” J. Phys. Chem. B 106, 9536-9539 (2002).
[CrossRef]

Mater. Today (1)

Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9, 18-27 (2006).
[CrossRef]

Nano Lett. (1)

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Lett. 4, 1981-1985 (2004).
[CrossRef]

Phys. Today (1)

A. Rosencwaig, “Photoacoustic spectroscopy of solids,” Phys. Today 28, 23-30 (1975).
[CrossRef]

Prog. Solid State Chem. (1)

C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Govindaraj, “Inorganic nanowires,” Prog. Solid State Chem. 31, 5-147(2003).
[CrossRef]

Rev. Mod. Phys. (1)

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381-431 (1986).
[CrossRef]

Science (3)

Y. Huang, X. F. Duan, Q. Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291, 630-633 (2001).
[CrossRef] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897-1899 (2001).
[CrossRef] [PubMed]

P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley, “Nanotube devices,” Science 278, 100-102 (1997).
[CrossRef]

Solid State Commun. (1)

P. Nandakuamr, A. R. Dhobale, Y. Babu, M. D. Sastry, C. Vijayan, Y. V. G. S. Murti, K. Dhanalakshmi, and G. Sundararajan, “Photoacoustic response of CdS quantum dots in nafion,” Solid State Commun. 106, 193-196 (1998).
[CrossRef]

Spectrochim. Acta A (1)

N. Kuthirummal, A. Dean, C. Yao, and W. Risen Jr., “Photo-formation of gold nanoparticles: photoacoustic studies on solid monoliths of Au(III)-chitosan-silica aerogels,” Spectrochim. Acta A 70, 700-703 (2008).
[CrossRef]

Other (1)

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) SEM image of the as-prepared CdS nanowires. (b) TEM image of an isolated CdS nanowire with a diameter of 40 nm . Inset shows magnified image of the selected region. (c) HRTEM image of a CdS nanowire showing the excellent ordering of the lattice planes. Inset shows the corresponding Fourier transform of the lattice image of the CdS nanowire.

Fig. 2
Fig. 2

Photoacoustic spectra of bulk CdS (curve a) and CdS nanowires (curve b). The inset shows the conventional optical absorption spectrum of CdS nanowires.

Fig. 3
Fig. 3

Photoluminescence spectrum of CdS nanowires ( λ ex = 380 nm ).

Fig. 4
Fig. 4

Raman spectrum of the as-prepared CdS nanowires ( λ ex = 514.5 nm ).

Metrics