Abstract

We present a compact wavelength stabilized diode laser system at 671nm on a micro-optical bench as a light source for shifted excitation Raman difference spectroscopy (SERDS). The laser system consists of two broad-area gain media in separate laser cavities using two reflection Bragg gratings with slightly different center wavelengths. A spectral width below 100pm and a constant wavelength shift of 0.57±0.06nm is obtained up to output powers of 250mW. The suitability of this light source for SERDS is demonstrated using Raman spectra of ethanol with increasing concentrations of Cresyl Violet as the fluorescent contaminant.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Maiwald, A. Ginolas, A. Müller, A. Sahm, B. Sumpf, G. Erbert, and G. Tränkle, “Wavelength-stabilized compact diode laser system on a microoptical bench with 1.5 W optical output power,” IEEE Photon. Technol. Lett. 20, 1627-1629 (2008).
    [CrossRef]
  2. P. A. Mosier-Boss, S. H. Liebermann, and R. Newberry, “Fluorescence rejection in Raman spectroscopy by shifted-spectra, edge detection, and FFT filtering techniques,” Appl. Spectrosc. 49, 630-638 (1995).
    [CrossRef]
  3. J. Zhao, M. M. Carrabba, and F. Allen, “Automated fluorescence rejection using shifted excitation Raman difference spectroscopy,” Appl. Spectrosc. 56, 834-845 (2002).
    [CrossRef]
  4. A. P. Shreve, N. J. Cherepy, and R. A. Mathies, “Effective rejection of fluorescence interference in Raman spectroscopy using shifted excitation difference technique,” Appl. Spectrosc. 46, 707-711 (1992).
    [CrossRef]
  5. M. Maiwald, G. Erbert, A. Klehr, H.-D. Kronfeldt, H. Schmidt, B. Sumpf, and G. Tränkle, “Rapid shifted excitation Raman difference spectroscopy with a distributed feedback diode laser emitting at 785 nm,” Appl. Phys. B 85, 509-512 (2006).
    [CrossRef]
  6. S. T. McCain, R. M. Willett, and D. J. Bragy, “Multi-excitation Raman spectroscopy technique for fluorescence rejection,” Opt. Express 16, 10975-10991 (2008).
    [CrossRef] [PubMed]
  7. B. Sumpf, M. Zorn, M. Maiwald, R. Staske, J. Fricke, P. Ressel, G. Erbert, M. Weyers, and G. Tränkle, “5.6 W broad area lasers with a vertical far field angle of 31° emitting at 670 nm,” IEEE Photon. Technol. Lett. 20, 575-577 (2008).
    [CrossRef]
  8. R. L. McCreery, “Lasers for Raman spectroscopy,” in Raman Spectroscopy for Chemical Analysis,” Vol. 157 of Chemical Analysis (Wiley, 2000), Chap. 7, pp. 127-148.
  9. B. Schrader, Raman/Infrared Atlas of Organic Compounds (Wiley-CVH, 1989), A 3-11.

2008 (3)

M. Maiwald, A. Ginolas, A. Müller, A. Sahm, B. Sumpf, G. Erbert, and G. Tränkle, “Wavelength-stabilized compact diode laser system on a microoptical bench with 1.5 W optical output power,” IEEE Photon. Technol. Lett. 20, 1627-1629 (2008).
[CrossRef]

S. T. McCain, R. M. Willett, and D. J. Bragy, “Multi-excitation Raman spectroscopy technique for fluorescence rejection,” Opt. Express 16, 10975-10991 (2008).
[CrossRef] [PubMed]

B. Sumpf, M. Zorn, M. Maiwald, R. Staske, J. Fricke, P. Ressel, G. Erbert, M. Weyers, and G. Tränkle, “5.6 W broad area lasers with a vertical far field angle of 31° emitting at 670 nm,” IEEE Photon. Technol. Lett. 20, 575-577 (2008).
[CrossRef]

2006 (1)

M. Maiwald, G. Erbert, A. Klehr, H.-D. Kronfeldt, H. Schmidt, B. Sumpf, and G. Tränkle, “Rapid shifted excitation Raman difference spectroscopy with a distributed feedback diode laser emitting at 785 nm,” Appl. Phys. B 85, 509-512 (2006).
[CrossRef]

2002 (1)

1995 (1)

1992 (1)

Allen, F.

Bragy, D. J.

Carrabba, M. M.

Cherepy, N. J.

Erbert, G.

M. Maiwald, A. Ginolas, A. Müller, A. Sahm, B. Sumpf, G. Erbert, and G. Tränkle, “Wavelength-stabilized compact diode laser system on a microoptical bench with 1.5 W optical output power,” IEEE Photon. Technol. Lett. 20, 1627-1629 (2008).
[CrossRef]

B. Sumpf, M. Zorn, M. Maiwald, R. Staske, J. Fricke, P. Ressel, G. Erbert, M. Weyers, and G. Tränkle, “5.6 W broad area lasers with a vertical far field angle of 31° emitting at 670 nm,” IEEE Photon. Technol. Lett. 20, 575-577 (2008).
[CrossRef]

M. Maiwald, G. Erbert, A. Klehr, H.-D. Kronfeldt, H. Schmidt, B. Sumpf, and G. Tränkle, “Rapid shifted excitation Raman difference spectroscopy with a distributed feedback diode laser emitting at 785 nm,” Appl. Phys. B 85, 509-512 (2006).
[CrossRef]

Fricke, J.

B. Sumpf, M. Zorn, M. Maiwald, R. Staske, J. Fricke, P. Ressel, G. Erbert, M. Weyers, and G. Tränkle, “5.6 W broad area lasers with a vertical far field angle of 31° emitting at 670 nm,” IEEE Photon. Technol. Lett. 20, 575-577 (2008).
[CrossRef]

Ginolas, A.

M. Maiwald, A. Ginolas, A. Müller, A. Sahm, B. Sumpf, G. Erbert, and G. Tränkle, “Wavelength-stabilized compact diode laser system on a microoptical bench with 1.5 W optical output power,” IEEE Photon. Technol. Lett. 20, 1627-1629 (2008).
[CrossRef]

Klehr, A.

M. Maiwald, G. Erbert, A. Klehr, H.-D. Kronfeldt, H. Schmidt, B. Sumpf, and G. Tränkle, “Rapid shifted excitation Raman difference spectroscopy with a distributed feedback diode laser emitting at 785 nm,” Appl. Phys. B 85, 509-512 (2006).
[CrossRef]

Kronfeldt, H.-D.

M. Maiwald, G. Erbert, A. Klehr, H.-D. Kronfeldt, H. Schmidt, B. Sumpf, and G. Tränkle, “Rapid shifted excitation Raman difference spectroscopy with a distributed feedback diode laser emitting at 785 nm,” Appl. Phys. B 85, 509-512 (2006).
[CrossRef]

Liebermann, S. H.

Maiwald, M.

M. Maiwald, A. Ginolas, A. Müller, A. Sahm, B. Sumpf, G. Erbert, and G. Tränkle, “Wavelength-stabilized compact diode laser system on a microoptical bench with 1.5 W optical output power,” IEEE Photon. Technol. Lett. 20, 1627-1629 (2008).
[CrossRef]

B. Sumpf, M. Zorn, M. Maiwald, R. Staske, J. Fricke, P. Ressel, G. Erbert, M. Weyers, and G. Tränkle, “5.6 W broad area lasers with a vertical far field angle of 31° emitting at 670 nm,” IEEE Photon. Technol. Lett. 20, 575-577 (2008).
[CrossRef]

M. Maiwald, G. Erbert, A. Klehr, H.-D. Kronfeldt, H. Schmidt, B. Sumpf, and G. Tränkle, “Rapid shifted excitation Raman difference spectroscopy with a distributed feedback diode laser emitting at 785 nm,” Appl. Phys. B 85, 509-512 (2006).
[CrossRef]

Mathies, R. A.

McCain, S. T.

McCreery, R. L.

R. L. McCreery, “Lasers for Raman spectroscopy,” in Raman Spectroscopy for Chemical Analysis,” Vol. 157 of Chemical Analysis (Wiley, 2000), Chap. 7, pp. 127-148.

Mosier-Boss, P. A.

Müller, A.

M. Maiwald, A. Ginolas, A. Müller, A. Sahm, B. Sumpf, G. Erbert, and G. Tränkle, “Wavelength-stabilized compact diode laser system on a microoptical bench with 1.5 W optical output power,” IEEE Photon. Technol. Lett. 20, 1627-1629 (2008).
[CrossRef]

Newberry, R.

Ressel, P.

B. Sumpf, M. Zorn, M. Maiwald, R. Staske, J. Fricke, P. Ressel, G. Erbert, M. Weyers, and G. Tränkle, “5.6 W broad area lasers with a vertical far field angle of 31° emitting at 670 nm,” IEEE Photon. Technol. Lett. 20, 575-577 (2008).
[CrossRef]

Sahm, A.

M. Maiwald, A. Ginolas, A. Müller, A. Sahm, B. Sumpf, G. Erbert, and G. Tränkle, “Wavelength-stabilized compact diode laser system on a microoptical bench with 1.5 W optical output power,” IEEE Photon. Technol. Lett. 20, 1627-1629 (2008).
[CrossRef]

Schmidt, H.

M. Maiwald, G. Erbert, A. Klehr, H.-D. Kronfeldt, H. Schmidt, B. Sumpf, and G. Tränkle, “Rapid shifted excitation Raman difference spectroscopy with a distributed feedback diode laser emitting at 785 nm,” Appl. Phys. B 85, 509-512 (2006).
[CrossRef]

Schrader, B.

B. Schrader, Raman/Infrared Atlas of Organic Compounds (Wiley-CVH, 1989), A 3-11.

Shreve, A. P.

Staske, R.

B. Sumpf, M. Zorn, M. Maiwald, R. Staske, J. Fricke, P. Ressel, G. Erbert, M. Weyers, and G. Tränkle, “5.6 W broad area lasers with a vertical far field angle of 31° emitting at 670 nm,” IEEE Photon. Technol. Lett. 20, 575-577 (2008).
[CrossRef]

Sumpf, B.

B. Sumpf, M. Zorn, M. Maiwald, R. Staske, J. Fricke, P. Ressel, G. Erbert, M. Weyers, and G. Tränkle, “5.6 W broad area lasers with a vertical far field angle of 31° emitting at 670 nm,” IEEE Photon. Technol. Lett. 20, 575-577 (2008).
[CrossRef]

M. Maiwald, A. Ginolas, A. Müller, A. Sahm, B. Sumpf, G. Erbert, and G. Tränkle, “Wavelength-stabilized compact diode laser system on a microoptical bench with 1.5 W optical output power,” IEEE Photon. Technol. Lett. 20, 1627-1629 (2008).
[CrossRef]

M. Maiwald, G. Erbert, A. Klehr, H.-D. Kronfeldt, H. Schmidt, B. Sumpf, and G. Tränkle, “Rapid shifted excitation Raman difference spectroscopy with a distributed feedback diode laser emitting at 785 nm,” Appl. Phys. B 85, 509-512 (2006).
[CrossRef]

Tränkle, G.

M. Maiwald, A. Ginolas, A. Müller, A. Sahm, B. Sumpf, G. Erbert, and G. Tränkle, “Wavelength-stabilized compact diode laser system on a microoptical bench with 1.5 W optical output power,” IEEE Photon. Technol. Lett. 20, 1627-1629 (2008).
[CrossRef]

B. Sumpf, M. Zorn, M. Maiwald, R. Staske, J. Fricke, P. Ressel, G. Erbert, M. Weyers, and G. Tränkle, “5.6 W broad area lasers with a vertical far field angle of 31° emitting at 670 nm,” IEEE Photon. Technol. Lett. 20, 575-577 (2008).
[CrossRef]

M. Maiwald, G. Erbert, A. Klehr, H.-D. Kronfeldt, H. Schmidt, B. Sumpf, and G. Tränkle, “Rapid shifted excitation Raman difference spectroscopy with a distributed feedback diode laser emitting at 785 nm,” Appl. Phys. B 85, 509-512 (2006).
[CrossRef]

Weyers, M.

B. Sumpf, M. Zorn, M. Maiwald, R. Staske, J. Fricke, P. Ressel, G. Erbert, M. Weyers, and G. Tränkle, “5.6 W broad area lasers with a vertical far field angle of 31° emitting at 670 nm,” IEEE Photon. Technol. Lett. 20, 575-577 (2008).
[CrossRef]

Willett, R. M.

Zhao, J.

Zorn, M.

B. Sumpf, M. Zorn, M. Maiwald, R. Staske, J. Fricke, P. Ressel, G. Erbert, M. Weyers, and G. Tränkle, “5.6 W broad area lasers with a vertical far field angle of 31° emitting at 670 nm,” IEEE Photon. Technol. Lett. 20, 575-577 (2008).
[CrossRef]

Appl. Phys. B (1)

M. Maiwald, G. Erbert, A. Klehr, H.-D. Kronfeldt, H. Schmidt, B. Sumpf, and G. Tränkle, “Rapid shifted excitation Raman difference spectroscopy with a distributed feedback diode laser emitting at 785 nm,” Appl. Phys. B 85, 509-512 (2006).
[CrossRef]

Appl. Spectrosc. (3)

IEEE Photon. Technol. Lett. (2)

B. Sumpf, M. Zorn, M. Maiwald, R. Staske, J. Fricke, P. Ressel, G. Erbert, M. Weyers, and G. Tränkle, “5.6 W broad area lasers with a vertical far field angle of 31° emitting at 670 nm,” IEEE Photon. Technol. Lett. 20, 575-577 (2008).
[CrossRef]

M. Maiwald, A. Ginolas, A. Müller, A. Sahm, B. Sumpf, G. Erbert, and G. Tränkle, “Wavelength-stabilized compact diode laser system on a microoptical bench with 1.5 W optical output power,” IEEE Photon. Technol. Lett. 20, 1627-1629 (2008).
[CrossRef]

Opt. Express (1)

Other (2)

R. L. McCreery, “Lasers for Raman spectroscopy,” in Raman Spectroscopy for Chemical Analysis,” Vol. 157 of Chemical Analysis (Wiley, 2000), Chap. 7, pp. 127-148.

B. Schrader, Raman/Infrared Atlas of Organic Compounds (Wiley-CVH, 1989), A 3-11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scheme of the microbench laser system: 1, BA laser; 2, micro-optics; 3, reflection Bragg gratings (RBG); 4, mirror; 5, beam splitter cube (BSC); 6, bandpass filter (BPF); 7, AlN microbench.

Fig. 2
Fig. 2

Power–voltage–current characteristics for C λ 1 and C λ 2 of the microbench laser system at T = 25 ° C .

Fig. 3
Fig. 3

Center wavelength versus optical power for C λ 1 and C λ 2 of the microbench laser system at T = 25 ° C .

Fig. 4
Fig. 4

Optical spectra of C λ 1 A without and B with the use of a BPF of the microbench laser system at P = 0.2 W and T = 25 ° C .

Fig. 5
Fig. 5

Raman spectra of ethanol with increasing concentrations of Cresyl Violet: (a)  ( 0 0.2 ) μg / ml , (b)  ( 0.4 2 ) μg / ml , excited with C λ 1 with 30 mW at sample and a 0.1 s integration time, ten accumulations.

Fig. 6
Fig. 6

SERD spectra of ethanol with concentrations of dissolved Cresyl Violet: (a)  ( 0 0.2 ) μg / ml , (b)  ( 0.4 2 ) μg / ml , excited with C λ 1 and C λ 2 with 30 mW at sample and 0.1 s integration time, ten accumulations.

Metrics