Abstract

Propagation of polarized light in skeletal muscle is significantly affected by anisotropic muscle structures. To completely characterize muscle polarization properties, we acquired the whole Mueller matrix images of the diffuse reflectance. A polar decomposition algorithm was applied to extract the individual diattenuation, retardance, and depolarization images from the measured Mueller matrix. The decomposed polarization properties in muscle show distinctly different patterns from those obtained in isotropic scattering media. Stretching the prerigor muscle sample induced clear changes in the raw polarization reflectance images. However, muscle stretching induced minimal changes in the decomposed Mueller matrix images.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, S. G. Demos, and S. K. Gayen, “Advances in optical imaging of biomedical media,” Ann. N.Y. Acad. Sci. 820, 248-271 (1997).
    [CrossRef] [PubMed]
  2. J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387(2002).
    [CrossRef] [PubMed]
  3. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, P. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Quantum Electron. 5, 1019-1026 (1999).
    [CrossRef]
  4. S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119-129 (2000).
    [CrossRef] [PubMed]
  5. W. S. Bickel, J. F. Davidson, D. R. Huffman, and R. Kilkson, “Application of polarization effects in light scattering: a new biophysical tool,” Proc. Natl. Acad. Sci. USA 73, 486-490(1976).
    [CrossRef] [PubMed]
  6. A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, “Diffuse backscattering Mueller matrices of highly scattering media,” Opt. Express 1, 441-453 (1997).
    [CrossRef] [PubMed]
  7. G. Yao and L.-H. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24, 537-539 (1999).
    [CrossRef]
  8. S. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106-1113 (1996).
    [CrossRef]
  9. M. K. Swami, S. Manhas, P. Buddhiwant, N. Ghosh, A. Uppal, and P. K. Gupta, “Polar decomposition of 3×3 Mueller matrix: a tool for quantitative tissue polarimetry,” Opt. Express 14, 9324-9337 (2006).
    [CrossRef] [PubMed]
  10. S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, and K. Singh, “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express 14, 190-202 (2006).
    [CrossRef] [PubMed]
  11. N. Ghosh, M. F. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008).
    [CrossRef] [PubMed]
  12. M. H. Smith, “Interpreting Mueller matrix images of tissues,” Proc. SPIE 4257, 82-89 (2001).
    [CrossRef]
  13. G. L. Liu, Y. Li, and B. D. Cameron, “Polarization-based optical imaging and processing techniques with application to the cancer diagnostics,” Proc. SPIE 4617, 208-220 (2002).
    [CrossRef]
  14. J. Chung, W. Jung, M. J. Hammer-Wilson, P. Wilder-Smith, and Z. Chen, “Use of polar decomposition for the diagnosis of oral precancer,” Appl. Opt. 46, 3038-3045 (2007).
    [CrossRef] [PubMed]
  15. P. Shukla, A. Awasthi, P. K. Pandey, and A. Pradhan, “Discrimination of normal and dysplasia in cervix tissue by Mueller matrix analysis,” Proc. SPIE 6864, 686417 (2008).
    [CrossRef]
  16. J. Xia, A. Weaver, D. Gerrard, and G. Yao, “Monitoring sarcomere structure changes in whole muscle using diffuse light reflectance,” J. Biomed. Opt. 11, 040504 (2006).
    [CrossRef] [PubMed]
  17. J. Ranasinghesagara and G. Yao, “Imaging 2D optical diffuse reflectance in skeletal muscle,” Opt. Express 15, 3998-4007(2007).
    [CrossRef] [PubMed]
  18. X. Li, J. Ranasinghesagara, and G. Yao, “Polarization-sensitive reflectance imaging in skeletal muscle,” Opt. Express 16, 9927-9935 (2008).
    [CrossRef] [PubMed]
  19. R. Ossikovski, A. De Martino, and S. Guyot, “Forward and reverse product decompositions of depolarizing Mueller matrices,” Opt. Lett. 32, 689-691 (2007).
    [CrossRef] [PubMed]
  20. J. Morio and F. Goudail, “Influence of the order of diattenuator, retarder, and polarizer in polar decomposition of Mueller matrices,” Opt. Lett. 29, 2234-2236 (2004).
    [CrossRef] [PubMed]
  21. D. Hayes, “Error propagation in decomposition of Mueller matrices,” Proc. SPIE 3121, 112-123 (1997).
    [CrossRef]
  22. J. J. Pasquesi, S. C. Schlachter, M. D. Boppart, E. Chaney, S. J. Kaufman, and S. A. Boppart, “In vivo detection of exercised-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography,” Opt. Express 14, 1547-1556 (2006).
    [CrossRef] [PubMed]

2008 (3)

N. Ghosh, M. F. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008).
[CrossRef] [PubMed]

P. Shukla, A. Awasthi, P. K. Pandey, and A. Pradhan, “Discrimination of normal and dysplasia in cervix tissue by Mueller matrix analysis,” Proc. SPIE 6864, 686417 (2008).
[CrossRef]

X. Li, J. Ranasinghesagara, and G. Yao, “Polarization-sensitive reflectance imaging in skeletal muscle,” Opt. Express 16, 9927-9935 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (4)

2004 (1)

2002 (2)

G. L. Liu, Y. Li, and B. D. Cameron, “Polarization-based optical imaging and processing techniques with application to the cancer diagnostics,” Proc. SPIE 4617, 208-220 (2002).
[CrossRef]

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387(2002).
[CrossRef] [PubMed]

2001 (1)

M. H. Smith, “Interpreting Mueller matrix images of tissues,” Proc. SPIE 4257, 82-89 (2001).
[CrossRef]

2000 (1)

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

1999 (2)

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, P. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

G. Yao and L.-H. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24, 537-539 (1999).
[CrossRef]

1997 (3)

A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, “Diffuse backscattering Mueller matrices of highly scattering media,” Opt. Express 1, 441-453 (1997).
[CrossRef] [PubMed]

D. Hayes, “Error propagation in decomposition of Mueller matrices,” Proc. SPIE 3121, 112-123 (1997).
[CrossRef]

R. R. Alfano, S. G. Demos, and S. K. Gayen, “Advances in optical imaging of biomedical media,” Ann. N.Y. Acad. Sci. 820, 248-271 (1997).
[CrossRef] [PubMed]

1996 (1)

1976 (1)

W. S. Bickel, J. F. Davidson, D. R. Huffman, and R. Kilkson, “Application of polarization effects in light scattering: a new biophysical tool,” Proc. Natl. Acad. Sci. USA 73, 486-490(1976).
[CrossRef] [PubMed]

Aida, T.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387(2002).
[CrossRef] [PubMed]

Alfano, R. R.

R. R. Alfano, S. G. Demos, and S. K. Gayen, “Advances in optical imaging of biomedical media,” Ann. N.Y. Acad. Sci. 820, 248-271 (1997).
[CrossRef] [PubMed]

Awasthi, A.

P. Shukla, A. Awasthi, P. K. Pandey, and A. Pradhan, “Discrimination of normal and dysplasia in cervix tissue by Mueller matrix analysis,” Proc. SPIE 6864, 686417 (2008).
[CrossRef]

Backman, V.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, P. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Badizadegan, K.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, P. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Bickel, W. S.

W. S. Bickel, J. F. Davidson, D. R. Huffman, and R. Kilkson, “Application of polarization effects in light scattering: a new biophysical tool,” Proc. Natl. Acad. Sci. USA 73, 486-490(1976).
[CrossRef] [PubMed]

Bigio, I. J.

Boppart, M. D.

Boppart, S. A.

Buddhiwant, P.

Cameron, B. D.

G. L. Liu, Y. Li, and B. D. Cameron, “Polarization-based optical imaging and processing techniques with application to the cancer diagnostics,” Proc. SPIE 4617, 208-220 (2002).
[CrossRef]

Carpenter, S.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387(2002).
[CrossRef] [PubMed]

Chaney, E.

Chen, Z.

Chipman, R. A.

Chung, J.

Dasari, P. R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, P. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Davidson, J. F.

W. S. Bickel, J. F. Davidson, D. R. Huffman, and R. Kilkson, “Application of polarization effects in light scattering: a new biophysical tool,” Proc. Natl. Acad. Sci. USA 73, 486-490(1976).
[CrossRef] [PubMed]

De Martino, A.

Demos, S. G.

R. R. Alfano, S. G. Demos, and S. K. Gayen, “Advances in optical imaging of biomedical media,” Ann. N.Y. Acad. Sci. 820, 248-271 (1997).
[CrossRef] [PubMed]

Eick, A. A.

Feld, M. S.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, P. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Freyer, J. P.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387(2002).
[CrossRef] [PubMed]

A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, “Diffuse backscattering Mueller matrices of highly scattering media,” Opt. Express 1, 441-453 (1997).
[CrossRef] [PubMed]

Gayen, S. K.

R. R. Alfano, S. G. Demos, and S. K. Gayen, “Advances in optical imaging of biomedical media,” Ann. N.Y. Acad. Sci. 820, 248-271 (1997).
[CrossRef] [PubMed]

Gerrard, D.

J. Xia, A. Weaver, D. Gerrard, and G. Yao, “Monitoring sarcomere structure changes in whole muscle using diffuse light reflectance,” J. Biomed. Opt. 11, 040504 (2006).
[CrossRef] [PubMed]

Ghosh, N.

Goudail, F.

Guerra, A.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387(2002).
[CrossRef] [PubMed]

Gupta, P. K.

Gurjar, R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, P. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Guyot, S.

Hammer-Wilson, M. J.

Hayes, D.

D. Hayes, “Error propagation in decomposition of Mueller matrices,” Proc. SPIE 3121, 112-123 (1997).
[CrossRef]

Hielscher, A. H.

Huffman, D. R.

W. S. Bickel, J. F. Davidson, D. R. Huffman, and R. Kilkson, “Application of polarization effects in light scattering: a new biophysical tool,” Proc. Natl. Acad. Sci. USA 73, 486-490(1976).
[CrossRef] [PubMed]

Itzkan, I.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, P. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Jacques, S. L.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

Johnson, T. M.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387(2002).
[CrossRef] [PubMed]

Jung, W.

Kaufman, S. J.

Kilkson, R.

W. S. Bickel, J. F. Davidson, D. R. Huffman, and R. Kilkson, “Application of polarization effects in light scattering: a new biophysical tool,” Proc. Natl. Acad. Sci. USA 73, 486-490(1976).
[CrossRef] [PubMed]

Lee, K.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

Li, X.

Li, Y.

G. L. Liu, Y. Li, and B. D. Cameron, “Polarization-based optical imaging and processing techniques with application to the cancer diagnostics,” Proc. SPIE 4617, 208-220 (2002).
[CrossRef]

Liu, G. L.

G. L. Liu, Y. Li, and B. D. Cameron, “Polarization-based optical imaging and processing techniques with application to the cancer diagnostics,” Proc. SPIE 4617, 208-220 (2002).
[CrossRef]

Lu, S.

Manhas, S.

Morio, J.

Mourant, J. R.

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387(2002).
[CrossRef] [PubMed]

A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, “Diffuse backscattering Mueller matrices of highly scattering media,” Opt. Express 1, 441-453 (1997).
[CrossRef] [PubMed]

Ossikovski, R.

Pandey, P. K.

P. Shukla, A. Awasthi, P. K. Pandey, and A. Pradhan, “Discrimination of normal and dysplasia in cervix tissue by Mueller matrix analysis,” Proc. SPIE 6864, 686417 (2008).
[CrossRef]

Pasquesi, J. J.

Perelman, L. T.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, P. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

Pradhan, A.

P. Shukla, A. Awasthi, P. K. Pandey, and A. Pradhan, “Discrimination of normal and dysplasia in cervix tissue by Mueller matrix analysis,” Proc. SPIE 6864, 686417 (2008).
[CrossRef]

Ranasinghesagara, J.

Roman, J. R.

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

Schlachter, S. C.

Shen, D.

Shukla, P.

P. Shukla, A. Awasthi, P. K. Pandey, and A. Pradhan, “Discrimination of normal and dysplasia in cervix tissue by Mueller matrix analysis,” Proc. SPIE 6864, 686417 (2008).
[CrossRef]

Singh, K.

Smith, M. H.

M. H. Smith, “Interpreting Mueller matrix images of tissues,” Proc. SPIE 4257, 82-89 (2001).
[CrossRef]

Swami, M. K.

Uppal, A.

Vitkin, I. A.

N. Ghosh, M. F. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008).
[CrossRef] [PubMed]

Wang, L.-H.

Weaver, A.

J. Xia, A. Weaver, D. Gerrard, and G. Yao, “Monitoring sarcomere structure changes in whole muscle using diffuse light reflectance,” J. Biomed. Opt. 11, 040504 (2006).
[CrossRef] [PubMed]

Wilder-Smith, P.

Wood, M. F.

N. Ghosh, M. F. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008).
[CrossRef] [PubMed]

Xia, J.

J. Xia, A. Weaver, D. Gerrard, and G. Yao, “Monitoring sarcomere structure changes in whole muscle using diffuse light reflectance,” J. Biomed. Opt. 11, 040504 (2006).
[CrossRef] [PubMed]

Yao, G.

Ann. N.Y. Acad. Sci. (1)

R. R. Alfano, S. G. Demos, and S. K. Gayen, “Advances in optical imaging of biomedical media,” Ann. N.Y. Acad. Sci. 820, 248-271 (1997).
[CrossRef] [PubMed]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, P. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Quantum Electron. 5, 1019-1026 (1999).
[CrossRef]

J. Biomed. Opt. (3)

J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387(2002).
[CrossRef] [PubMed]

N. Ghosh, M. F. Wood, and I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008).
[CrossRef] [PubMed]

J. Xia, A. Weaver, D. Gerrard, and G. Yao, “Monitoring sarcomere structure changes in whole muscle using diffuse light reflectance,” J. Biomed. Opt. 11, 040504 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Lasers Surg. Med. (1)

S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. USA (1)

W. S. Bickel, J. F. Davidson, D. R. Huffman, and R. Kilkson, “Application of polarization effects in light scattering: a new biophysical tool,” Proc. Natl. Acad. Sci. USA 73, 486-490(1976).
[CrossRef] [PubMed]

Proc. SPIE (4)

M. H. Smith, “Interpreting Mueller matrix images of tissues,” Proc. SPIE 4257, 82-89 (2001).
[CrossRef]

G. L. Liu, Y. Li, and B. D. Cameron, “Polarization-based optical imaging and processing techniques with application to the cancer diagnostics,” Proc. SPIE 4617, 208-220 (2002).
[CrossRef]

P. Shukla, A. Awasthi, P. K. Pandey, and A. Pradhan, “Discrimination of normal and dysplasia in cervix tissue by Mueller matrix analysis,” Proc. SPIE 6864, 686417 (2008).
[CrossRef]

D. Hayes, “Error propagation in decomposition of Mueller matrices,” Proc. SPIE 3121, 112-123 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of experimental setup: LS, 10 mW He–Ne laser; P1, P2, polarizers; VW, variable wave plate; M, mirror with a 1 mm hole in the center; Q, quarter-wave plate; L, imaging lens; CCD, imaging camera. The muscle sample was mounted so that the fibers were along the y axis.

Fig. 2
Fig. 2

Polarization reflectance images acquired in a muscle sample at its original length and when stretched 20% along the fiber orientation (vertical direction). As a comparison, images acquired in a solution of 1.093 μm polystyrenes (12%) are also shown. The image labels are the same as shown in the first sample.

Fig. 3
Fig. 3

Fitted axes ratio B and q parameter in the HH (solid symbols) and VV (open symbols) images.

Fig. 4
Fig. 4

Diattenuation images obtained in muscle and polystyrene solution. The diattenuation values shown in (b) were extracted at locations 5 mm away from the incidence.

Fig. 5
Fig. 5

Depolarization images obtained in muscle and polystyrene solution. The depolarization values shown in (b) were extracted at locations 5 mm away from the incidence.

Fig. 6
Fig. 6

Retardance images obtained in muscle and polystyrene solution.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

M = [ m 11 m 12 m 13 m 14 m 21 m 22 m 23 m 24 m 31 m 32 m 33 m 34 m 41 m 42 m 43 m 44 ] = 1 2 [ H H + H V + V H + V V H H + H V V H V V 2 P H + 2 P V m 11 2 R H + 2 R V m 11 H H H V + V H V V H H H V V H + V V 2 P H 2 P V m 21 2 R H 2 R V m 21 2 H P + 2 V P m 11 2 H P 2 V P m 12 4 P P 2 P H 2 P V m 31 4 R P 2 R H 2 R V m 31 2 H R + 2 V R m 11 2 H R 2 V R m 12 4 P R 2 P H 2 P V m 41 4 R R 2 R H 2 R V m 41 ] ,
M = M Δ M R M D .
M Δ = [ 1 0 T P Δ m Δ ] , M R = [ 1 0 T 0 m R ] , M D = [ 1 D T D m D ] ,
m D = 1 D 2 I + 1 1 D 2 D 2 D D T ,
D = [ m 12 m 13 m 14 ] T ,
D = m 12 2 + m 13 2 + m 14 2 .
M Δ M R = [ 1 0 T P Δ m ] = MM D 1 ,
m Δ = ± [ ( m ) T m + ( λ 1 λ 2 + λ 2 λ 3 + λ 3 λ 1 ) I ] × [ ( λ 1 + λ 2 + λ 3 ) ( m ) T m + λ 1 λ 2 λ 3 I ] ,
Δ = 1 | t r ( m Δ ) | 3 .
m R = m Δ 1 m .
R = cos 1 [ tr ( M R ) 2 1 ] .
R L = cos 1 ( [ m R ( 2 , 1 ) m R ( 1 , 2 ) ] 2 + [ m R ( 1 , 1 ) + m R ( 2 , 2 ) ] 2 1 ) ,
2 R C = tan 1 ( m R ( 2 , 1 ) m R ( 1 , 2 ) m R ( 1 , 1 ) + m R ( 2 , 2 ) ) .
( | x | a ) q + ( | y | b ) q = 1.

Metrics