Abstract

We present an optical resonance sensor capable of measurement of refractive index in highly nonhomogeneous materials. Traditional optical resonance sensors fail when the size of particles is comparable with the wavelength (100nm and larger). Our new nanoengineered design allows incorporation of a highly delocalized mode into a resonance structure. The sensing depth of the device was measured to be 1μm, the largest reported in the literature as far as we know, with a quality factor of 500. We demonstrate two applications.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Zh. Shi, K. G. Neoh, E. T. Kang, and W. Wang, “Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles,” Biomaterials 27, 2440-2449 (2006).
    [CrossRef]
  2. A. J. Thote and R. B. Gupta, “Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release,” Nanomed. 1, 85-90 (2005).
    [CrossRef]
  3. L. M. Swallow, J. K. Luo, E. Siores, I. Patel, and D. Dodds, “A piezoelectric fibre composite based energy harvesting device for potential wearable applications,” Smart Mater. Struct. 17, 025017-025023 (2008).
    [CrossRef]
  4. A. Buchman and R. G. Bryant, “Molded carbon-carbon composites based on microcomposite technology,” Appl. Compos. Mater. 6(5), 309-326 (1999).
    [CrossRef]
  5. M. F. Fréchette, R. Y. Larocque, M. Trudeau, R. Veillette, R. Rioux, S. Pelissou, S. Besner, M. Javan, K. Cole, M.-T. T. That, D. Desgagnes, J. Castellon, S. Agnel, A. Toureille, and G. Platbrood, “Nanostructured polymer microcomposites: a distinct class of insulating materials,” IEEE Trans. Dielectr. Electr. Insul. 15, 90-105 (2008).
    [CrossRef]
  6. F. Wypych and K. Satyanarayana, “Functionalization of single layers and nanofibers: a new strategy to produce polymer nanocomposites with optimized properties,” J. Colloid Interface Sci, 285, 532-543 (2005).
    [CrossRef]
  7. F. Hussain, J. Chen, and M. Hojjati, “Epoxy-silicate nanocomposites: cure monitoring and characterization,” Mater. Sci. Eng. A 445-446, 467-476 (2007).
    [CrossRef]
  8. W. E. Gacitua, A. A. Ballerini, and J. Zhang, “Polymer nanocomposites: synthetic and natural fillers. A review,” Maderas Cien. Tecnol. 7 (3), 159-178 (2005).
  9. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensor based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16-24 (1999).
    [CrossRef]
  10. I. M. White, N. M. Hanumegowda, and X. Fan, “Subfemtomole detection of small molecules with microsphere sensors,” Opt. Lett. 30, 3189-3191 (2005).
    [CrossRef] [PubMed]
  11. C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-1529 (2003).
    [CrossRef]
  12. V. Mironov, G. Prestwich, and G. Forgacs, “Bioprinting living structures,” J. Mater. Chem. 17, 2054-2060 (2007).
    [CrossRef]
  13. V. Mironov, T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald, “Organ printing: computer-aided jet-based 3D tissue engineering,” Trends Biotechnol. 21, 157-61 (2003).
    [CrossRef] [PubMed]
  14. J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nature Mater. 6, 782-789 (2007).
    [CrossRef]
  15. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302-1304 (2003).
    [CrossRef] [PubMed]
  16. R. Magnusson, and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022-1024 (1992).
    [CrossRef]
  17. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606-2613(1993).
    [CrossRef] [PubMed]
  18. L. Shi, P. Pottier, Y.-A. Peter, and M. Skorobogatiy, “Guided-mode resonance photonic crystal slab sensors based on bead monolayer geometry,” Opt. Express 16, 17962-17971 (2008).
    [CrossRef] [PubMed]
  19. C. M. Wang, J. Y. Chang, C. L. Hsu, C. C. Lee, and J. C. Yang, “Si-based guided-mode resonance filter on a micro-optical bench,” Electron. Lett. 40, 1335-1336 (2004).
    [CrossRef]
  20. S. T. Thurman and G. M. Morris, “Controlling the spectral response in guided-mode resonance filter design,” Appl. Opt. 42, 3225-3233 (2003).
    [CrossRef] [PubMed]
  21. H. Kikuta, K. Fujita, A. Mizutani, H. Toyota, and K. Iwata, “High resolution refractive index sensor with a crossed guided-mode resonant grating,” Proc. SPIE 5931, 59310N (2005).
    [CrossRef]
  22. D. Fattal, M. Sigalas, A. Pyayt, Zh. Li, and R. G. Beausoleil, “Guided-mode resonance sensor with extended spatial sensitivity,” Proc. SPIE 6766, 67660J (2007).
    [CrossRef]

2008 (3)

L. M. Swallow, J. K. Luo, E. Siores, I. Patel, and D. Dodds, “A piezoelectric fibre composite based energy harvesting device for potential wearable applications,” Smart Mater. Struct. 17, 025017-025023 (2008).
[CrossRef]

M. F. Fréchette, R. Y. Larocque, M. Trudeau, R. Veillette, R. Rioux, S. Pelissou, S. Besner, M. Javan, K. Cole, M.-T. T. That, D. Desgagnes, J. Castellon, S. Agnel, A. Toureille, and G. Platbrood, “Nanostructured polymer microcomposites: a distinct class of insulating materials,” IEEE Trans. Dielectr. Electr. Insul. 15, 90-105 (2008).
[CrossRef]

L. Shi, P. Pottier, Y.-A. Peter, and M. Skorobogatiy, “Guided-mode resonance photonic crystal slab sensors based on bead monolayer geometry,” Opt. Express 16, 17962-17971 (2008).
[CrossRef] [PubMed]

2007 (4)

F. Hussain, J. Chen, and M. Hojjati, “Epoxy-silicate nanocomposites: cure monitoring and characterization,” Mater. Sci. Eng. A 445-446, 467-476 (2007).
[CrossRef]

V. Mironov, G. Prestwich, and G. Forgacs, “Bioprinting living structures,” J. Mater. Chem. 17, 2054-2060 (2007).
[CrossRef]

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nature Mater. 6, 782-789 (2007).
[CrossRef]

D. Fattal, M. Sigalas, A. Pyayt, Zh. Li, and R. G. Beausoleil, “Guided-mode resonance sensor with extended spatial sensitivity,” Proc. SPIE 6766, 67660J (2007).
[CrossRef]

2006 (1)

Zh. Shi, K. G. Neoh, E. T. Kang, and W. Wang, “Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles,” Biomaterials 27, 2440-2449 (2006).
[CrossRef]

2005 (5)

A. J. Thote and R. B. Gupta, “Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release,” Nanomed. 1, 85-90 (2005).
[CrossRef]

W. E. Gacitua, A. A. Ballerini, and J. Zhang, “Polymer nanocomposites: synthetic and natural fillers. A review,” Maderas Cien. Tecnol. 7 (3), 159-178 (2005).

F. Wypych and K. Satyanarayana, “Functionalization of single layers and nanofibers: a new strategy to produce polymer nanocomposites with optimized properties,” J. Colloid Interface Sci, 285, 532-543 (2005).
[CrossRef]

H. Kikuta, K. Fujita, A. Mizutani, H. Toyota, and K. Iwata, “High resolution refractive index sensor with a crossed guided-mode resonant grating,” Proc. SPIE 5931, 59310N (2005).
[CrossRef]

I. M. White, N. M. Hanumegowda, and X. Fan, “Subfemtomole detection of small molecules with microsphere sensors,” Opt. Lett. 30, 3189-3191 (2005).
[CrossRef] [PubMed]

2004 (1)

C. M. Wang, J. Y. Chang, C. L. Hsu, C. C. Lee, and J. C. Yang, “Si-based guided-mode resonance filter on a micro-optical bench,” Electron. Lett. 40, 1335-1336 (2004).
[CrossRef]

2003 (4)

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

V. Mironov, T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald, “Organ printing: computer-aided jet-based 3D tissue engineering,” Trends Biotechnol. 21, 157-61 (2003).
[CrossRef] [PubMed]

S. T. Thurman and G. M. Morris, “Controlling the spectral response in guided-mode resonance filter design,” Appl. Opt. 42, 3225-3233 (2003).
[CrossRef] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302-1304 (2003).
[CrossRef] [PubMed]

1999 (2)

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensor based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16-24 (1999).
[CrossRef]

A. Buchman and R. G. Bryant, “Molded carbon-carbon composites based on microcomposite technology,” Appl. Compos. Mater. 6(5), 309-326 (1999).
[CrossRef]

1993 (1)

1992 (1)

R. Magnusson, and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

Adair, K.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nature Mater. 6, 782-789 (2007).
[CrossRef]

Agnel, S.

M. F. Fréchette, R. Y. Larocque, M. Trudeau, R. Veillette, R. Rioux, S. Pelissou, S. Besner, M. Javan, K. Cole, M.-T. T. That, D. Desgagnes, J. Castellon, S. Agnel, A. Toureille, and G. Platbrood, “Nanostructured polymer microcomposites: a distinct class of insulating materials,” IEEE Trans. Dielectr. Electr. Insul. 15, 90-105 (2008).
[CrossRef]

Alleyne, A. G.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nature Mater. 6, 782-789 (2007).
[CrossRef]

Almeida, V. R.

Ballerini, A. A.

W. E. Gacitua, A. A. Ballerini, and J. Zhang, “Polymer nanocomposites: synthetic and natural fillers. A review,” Maderas Cien. Tecnol. 7 (3), 159-178 (2005).

Barton, K.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nature Mater. 6, 782-789 (2007).
[CrossRef]

Beausoleil, R. G.

D. Fattal, M. Sigalas, A. Pyayt, Zh. Li, and R. G. Beausoleil, “Guided-mode resonance sensor with extended spatial sensitivity,” Proc. SPIE 6766, 67660J (2007).
[CrossRef]

Besner, S.

M. F. Fréchette, R. Y. Larocque, M. Trudeau, R. Veillette, R. Rioux, S. Pelissou, S. Besner, M. Javan, K. Cole, M.-T. T. That, D. Desgagnes, J. Castellon, S. Agnel, A. Toureille, and G. Platbrood, “Nanostructured polymer microcomposites: a distinct class of insulating materials,” IEEE Trans. Dielectr. Electr. Insul. 15, 90-105 (2008).
[CrossRef]

Boland, T.

V. Mironov, T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald, “Organ printing: computer-aided jet-based 3D tissue engineering,” Trends Biotechnol. 21, 157-61 (2003).
[CrossRef] [PubMed]

Bryant, R. G.

A. Buchman and R. G. Bryant, “Molded carbon-carbon composites based on microcomposite technology,” Appl. Compos. Mater. 6(5), 309-326 (1999).
[CrossRef]

Buchman, A.

A. Buchman and R. G. Bryant, “Molded carbon-carbon composites based on microcomposite technology,” Appl. Compos. Mater. 6(5), 309-326 (1999).
[CrossRef]

Castellon, J.

M. F. Fréchette, R. Y. Larocque, M. Trudeau, R. Veillette, R. Rioux, S. Pelissou, S. Besner, M. Javan, K. Cole, M.-T. T. That, D. Desgagnes, J. Castellon, S. Agnel, A. Toureille, and G. Platbrood, “Nanostructured polymer microcomposites: a distinct class of insulating materials,” IEEE Trans. Dielectr. Electr. Insul. 15, 90-105 (2008).
[CrossRef]

Chang, J. Y.

C. M. Wang, J. Y. Chang, C. L. Hsu, C. C. Lee, and J. C. Yang, “Si-based guided-mode resonance filter on a micro-optical bench,” Electron. Lett. 40, 1335-1336 (2004).
[CrossRef]

Chao, C.-Y.

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

Chen, J.

F. Hussain, J. Chen, and M. Hojjati, “Epoxy-silicate nanocomposites: cure monitoring and characterization,” Mater. Sci. Eng. A 445-446, 467-476 (2007).
[CrossRef]

Cole, K.

M. F. Fréchette, R. Y. Larocque, M. Trudeau, R. Veillette, R. Rioux, S. Pelissou, S. Besner, M. Javan, K. Cole, M.-T. T. That, D. Desgagnes, J. Castellon, S. Agnel, A. Toureille, and G. Platbrood, “Nanostructured polymer microcomposites: a distinct class of insulating materials,” IEEE Trans. Dielectr. Electr. Insul. 15, 90-105 (2008).
[CrossRef]

Desgagnes, D.

M. F. Fréchette, R. Y. Larocque, M. Trudeau, R. Veillette, R. Rioux, S. Pelissou, S. Besner, M. Javan, K. Cole, M.-T. T. That, D. Desgagnes, J. Castellon, S. Agnel, A. Toureille, and G. Platbrood, “Nanostructured polymer microcomposites: a distinct class of insulating materials,” IEEE Trans. Dielectr. Electr. Insul. 15, 90-105 (2008).
[CrossRef]

Dodds, D.

L. M. Swallow, J. K. Luo, E. Siores, I. Patel, and D. Dodds, “A piezoelectric fibre composite based energy harvesting device for potential wearable applications,” Smart Mater. Struct. 17, 025017-025023 (2008).
[CrossRef]

Fan, X.

Fattal, D.

D. Fattal, M. Sigalas, A. Pyayt, Zh. Li, and R. G. Beausoleil, “Guided-mode resonance sensor with extended spatial sensitivity,” Proc. SPIE 6766, 67660J (2007).
[CrossRef]

Ferreira, P. M.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nature Mater. 6, 782-789 (2007).
[CrossRef]

Forgacs, G.

V. Mironov, G. Prestwich, and G. Forgacs, “Bioprinting living structures,” J. Mater. Chem. 17, 2054-2060 (2007).
[CrossRef]

V. Mironov, T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald, “Organ printing: computer-aided jet-based 3D tissue engineering,” Trends Biotechnol. 21, 157-61 (2003).
[CrossRef] [PubMed]

Fréchette, M. F.

M. F. Fréchette, R. Y. Larocque, M. Trudeau, R. Veillette, R. Rioux, S. Pelissou, S. Besner, M. Javan, K. Cole, M.-T. T. That, D. Desgagnes, J. Castellon, S. Agnel, A. Toureille, and G. Platbrood, “Nanostructured polymer microcomposites: a distinct class of insulating materials,” IEEE Trans. Dielectr. Electr. Insul. 15, 90-105 (2008).
[CrossRef]

Fujita, K.

H. Kikuta, K. Fujita, A. Mizutani, H. Toyota, and K. Iwata, “High resolution refractive index sensor with a crossed guided-mode resonant grating,” Proc. SPIE 5931, 59310N (2005).
[CrossRef]

Gacitua, W. E.

W. E. Gacitua, A. A. Ballerini, and J. Zhang, “Polymer nanocomposites: synthetic and natural fillers. A review,” Maderas Cien. Tecnol. 7 (3), 159-178 (2005).

Georgiadis, J. G.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nature Mater. 6, 782-789 (2007).
[CrossRef]

Guo, L. J.

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

Gupta, R. B.

A. J. Thote and R. B. Gupta, “Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release,” Nanomed. 1, 85-90 (2005).
[CrossRef]

Hanumegowda, N. M.

Hardy, M.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nature Mater. 6, 782-789 (2007).
[CrossRef]

Hojjati, M.

F. Hussain, J. Chen, and M. Hojjati, “Epoxy-silicate nanocomposites: cure monitoring and characterization,” Mater. Sci. Eng. A 445-446, 467-476 (2007).
[CrossRef]

Homola, J.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensor based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16-24 (1999).
[CrossRef]

Hsu, C. L.

C. M. Wang, J. Y. Chang, C. L. Hsu, C. C. Lee, and J. C. Yang, “Si-based guided-mode resonance filter on a micro-optical bench,” Electron. Lett. 40, 1335-1336 (2004).
[CrossRef]

Hussain, F.

F. Hussain, J. Chen, and M. Hojjati, “Epoxy-silicate nanocomposites: cure monitoring and characterization,” Mater. Sci. Eng. A 445-446, 467-476 (2007).
[CrossRef]

Iwata, K.

H. Kikuta, K. Fujita, A. Mizutani, H. Toyota, and K. Iwata, “High resolution refractive index sensor with a crossed guided-mode resonant grating,” Proc. SPIE 5931, 59310N (2005).
[CrossRef]

Javan, M.

M. F. Fréchette, R. Y. Larocque, M. Trudeau, R. Veillette, R. Rioux, S. Pelissou, S. Besner, M. Javan, K. Cole, M.-T. T. That, D. Desgagnes, J. Castellon, S. Agnel, A. Toureille, and G. Platbrood, “Nanostructured polymer microcomposites: a distinct class of insulating materials,” IEEE Trans. Dielectr. Electr. Insul. 15, 90-105 (2008).
[CrossRef]

Kang, E. T.

Zh. Shi, K. G. Neoh, E. T. Kang, and W. Wang, “Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles,” Biomaterials 27, 2440-2449 (2006).
[CrossRef]

Kang, S. J.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nature Mater. 6, 782-789 (2007).
[CrossRef]

Kikuta, H.

H. Kikuta, K. Fujita, A. Mizutani, H. Toyota, and K. Iwata, “High resolution refractive index sensor with a crossed guided-mode resonant grating,” Proc. SPIE 5931, 59310N (2005).
[CrossRef]

Koudela, I.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensor based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16-24 (1999).
[CrossRef]

Larocque, R. Y.

M. F. Fréchette, R. Y. Larocque, M. Trudeau, R. Veillette, R. Rioux, S. Pelissou, S. Besner, M. Javan, K. Cole, M.-T. T. That, D. Desgagnes, J. Castellon, S. Agnel, A. Toureille, and G. Platbrood, “Nanostructured polymer microcomposites: a distinct class of insulating materials,” IEEE Trans. Dielectr. Electr. Insul. 15, 90-105 (2008).
[CrossRef]

Lee, C. C.

C. M. Wang, J. Y. Chang, C. L. Hsu, C. C. Lee, and J. C. Yang, “Si-based guided-mode resonance filter on a micro-optical bench,” Electron. Lett. 40, 1335-1336 (2004).
[CrossRef]

Lee, C. Y.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nature Mater. 6, 782-789 (2007).
[CrossRef]

Li, Zh.

D. Fattal, M. Sigalas, A. Pyayt, Zh. Li, and R. G. Beausoleil, “Guided-mode resonance sensor with extended spatial sensitivity,” Proc. SPIE 6766, 67660J (2007).
[CrossRef]

Lipson, M.

Luo, J. K.

L. M. Swallow, J. K. Luo, E. Siores, I. Patel, and D. Dodds, “A piezoelectric fibre composite based energy harvesting device for potential wearable applications,” Smart Mater. Struct. 17, 025017-025023 (2008).
[CrossRef]

Magnusson, R.

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606-2613(1993).
[CrossRef] [PubMed]

R. Magnusson, and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

Markwald, R. R.

V. Mironov, T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald, “Organ printing: computer-aided jet-based 3D tissue engineering,” Trends Biotechnol. 21, 157-61 (2003).
[CrossRef] [PubMed]

Mironov, V.

V. Mironov, G. Prestwich, and G. Forgacs, “Bioprinting living structures,” J. Mater. Chem. 17, 2054-2060 (2007).
[CrossRef]

V. Mironov, T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald, “Organ printing: computer-aided jet-based 3D tissue engineering,” Trends Biotechnol. 21, 157-61 (2003).
[CrossRef] [PubMed]

Mizutani, A.

H. Kikuta, K. Fujita, A. Mizutani, H. Toyota, and K. Iwata, “High resolution refractive index sensor with a crossed guided-mode resonant grating,” Proc. SPIE 5931, 59310N (2005).
[CrossRef]

Morris, G. M.

Mukhopadhyay, D. K.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nature Mater. 6, 782-789 (2007).
[CrossRef]

Neoh, K. G.

Zh. Shi, K. G. Neoh, E. T. Kang, and W. Wang, “Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles,” Biomaterials 27, 2440-2449 (2006).
[CrossRef]

Panepucci, R. R.

Park, J.-U.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nature Mater. 6, 782-789 (2007).
[CrossRef]

Patel, I.

L. M. Swallow, J. K. Luo, E. Siores, I. Patel, and D. Dodds, “A piezoelectric fibre composite based energy harvesting device for potential wearable applications,” Smart Mater. Struct. 17, 025017-025023 (2008).
[CrossRef]

Pelissou, S.

M. F. Fréchette, R. Y. Larocque, M. Trudeau, R. Veillette, R. Rioux, S. Pelissou, S. Besner, M. Javan, K. Cole, M.-T. T. That, D. Desgagnes, J. Castellon, S. Agnel, A. Toureille, and G. Platbrood, “Nanostructured polymer microcomposites: a distinct class of insulating materials,” IEEE Trans. Dielectr. Electr. Insul. 15, 90-105 (2008).
[CrossRef]

Peter, Y.-A.

Platbrood, G.

M. F. Fréchette, R. Y. Larocque, M. Trudeau, R. Veillette, R. Rioux, S. Pelissou, S. Besner, M. Javan, K. Cole, M.-T. T. That, D. Desgagnes, J. Castellon, S. Agnel, A. Toureille, and G. Platbrood, “Nanostructured polymer microcomposites: a distinct class of insulating materials,” IEEE Trans. Dielectr. Electr. Insul. 15, 90-105 (2008).
[CrossRef]

Pottier, P.

Prestwich, G.

V. Mironov, G. Prestwich, and G. Forgacs, “Bioprinting living structures,” J. Mater. Chem. 17, 2054-2060 (2007).
[CrossRef]

Pyayt, A.

D. Fattal, M. Sigalas, A. Pyayt, Zh. Li, and R. G. Beausoleil, “Guided-mode resonance sensor with extended spatial sensitivity,” Proc. SPIE 6766, 67660J (2007).
[CrossRef]

Rioux, R.

M. F. Fréchette, R. Y. Larocque, M. Trudeau, R. Veillette, R. Rioux, S. Pelissou, S. Besner, M. Javan, K. Cole, M.-T. T. That, D. Desgagnes, J. Castellon, S. Agnel, A. Toureille, and G. Platbrood, “Nanostructured polymer microcomposites: a distinct class of insulating materials,” IEEE Trans. Dielectr. Electr. Insul. 15, 90-105 (2008).
[CrossRef]

Rogers, J. A.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nature Mater. 6, 782-789 (2007).
[CrossRef]

Satyanarayana, K.

F. Wypych and K. Satyanarayana, “Functionalization of single layers and nanofibers: a new strategy to produce polymer nanocomposites with optimized properties,” J. Colloid Interface Sci, 285, 532-543 (2005).
[CrossRef]

Shi, L.

Shi, Zh.

Zh. Shi, K. G. Neoh, E. T. Kang, and W. Wang, “Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles,” Biomaterials 27, 2440-2449 (2006).
[CrossRef]

Sigalas, M.

D. Fattal, M. Sigalas, A. Pyayt, Zh. Li, and R. G. Beausoleil, “Guided-mode resonance sensor with extended spatial sensitivity,” Proc. SPIE 6766, 67660J (2007).
[CrossRef]

Siores, E.

L. M. Swallow, J. K. Luo, E. Siores, I. Patel, and D. Dodds, “A piezoelectric fibre composite based energy harvesting device for potential wearable applications,” Smart Mater. Struct. 17, 025017-025023 (2008).
[CrossRef]

Skorobogatiy, M.

Strano, M. S.

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nature Mater. 6, 782-789 (2007).
[CrossRef]

Swallow, L. M.

L. M. Swallow, J. K. Luo, E. Siores, I. Patel, and D. Dodds, “A piezoelectric fibre composite based energy harvesting device for potential wearable applications,” Smart Mater. Struct. 17, 025017-025023 (2008).
[CrossRef]

That, M.-T. T.

M. F. Fréchette, R. Y. Larocque, M. Trudeau, R. Veillette, R. Rioux, S. Pelissou, S. Besner, M. Javan, K. Cole, M.-T. T. That, D. Desgagnes, J. Castellon, S. Agnel, A. Toureille, and G. Platbrood, “Nanostructured polymer microcomposites: a distinct class of insulating materials,” IEEE Trans. Dielectr. Electr. Insul. 15, 90-105 (2008).
[CrossRef]

Thote, A. J.

A. J. Thote and R. B. Gupta, “Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release,” Nanomed. 1, 85-90 (2005).
[CrossRef]

Thurman, S. T.

Toureille, A.

M. F. Fréchette, R. Y. Larocque, M. Trudeau, R. Veillette, R. Rioux, S. Pelissou, S. Besner, M. Javan, K. Cole, M.-T. T. That, D. Desgagnes, J. Castellon, S. Agnel, A. Toureille, and G. Platbrood, “Nanostructured polymer microcomposites: a distinct class of insulating materials,” IEEE Trans. Dielectr. Electr. Insul. 15, 90-105 (2008).
[CrossRef]

Toyota, H.

H. Kikuta, K. Fujita, A. Mizutani, H. Toyota, and K. Iwata, “High resolution refractive index sensor with a crossed guided-mode resonant grating,” Proc. SPIE 5931, 59310N (2005).
[CrossRef]

Trudeau, M.

M. F. Fréchette, R. Y. Larocque, M. Trudeau, R. Veillette, R. Rioux, S. Pelissou, S. Besner, M. Javan, K. Cole, M.-T. T. That, D. Desgagnes, J. Castellon, S. Agnel, A. Toureille, and G. Platbrood, “Nanostructured polymer microcomposites: a distinct class of insulating materials,” IEEE Trans. Dielectr. Electr. Insul. 15, 90-105 (2008).
[CrossRef]

Trusk, T.

V. Mironov, T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald, “Organ printing: computer-aided jet-based 3D tissue engineering,” Trends Biotechnol. 21, 157-61 (2003).
[CrossRef] [PubMed]

Veillette, R.

M. F. Fréchette, R. Y. Larocque, M. Trudeau, R. Veillette, R. Rioux, S. Pelissou, S. Besner, M. Javan, K. Cole, M.-T. T. That, D. Desgagnes, J. Castellon, S. Agnel, A. Toureille, and G. Platbrood, “Nanostructured polymer microcomposites: a distinct class of insulating materials,” IEEE Trans. Dielectr. Electr. Insul. 15, 90-105 (2008).
[CrossRef]

Wang, C. M.

C. M. Wang, J. Y. Chang, C. L. Hsu, C. C. Lee, and J. C. Yang, “Si-based guided-mode resonance filter on a micro-optical bench,” Electron. Lett. 40, 1335-1336 (2004).
[CrossRef]

Wang, S. S.

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606-2613(1993).
[CrossRef] [PubMed]

R. Magnusson, and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

Wang, W.

Zh. Shi, K. G. Neoh, E. T. Kang, and W. Wang, “Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles,” Biomaterials 27, 2440-2449 (2006).
[CrossRef]

White, I. M.

Wypych, F.

F. Wypych and K. Satyanarayana, “Functionalization of single layers and nanofibers: a new strategy to produce polymer nanocomposites with optimized properties,” J. Colloid Interface Sci, 285, 532-543 (2005).
[CrossRef]

Yang, J. C.

C. M. Wang, J. Y. Chang, C. L. Hsu, C. C. Lee, and J. C. Yang, “Si-based guided-mode resonance filter on a micro-optical bench,” Electron. Lett. 40, 1335-1336 (2004).
[CrossRef]

Yee, S. S.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensor based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16-24 (1999).
[CrossRef]

Zhang, J.

W. E. Gacitua, A. A. Ballerini, and J. Zhang, “Polymer nanocomposites: synthetic and natural fillers. A review,” Maderas Cien. Tecnol. 7 (3), 159-178 (2005).

Appl. Compos. Mater. (1)

A. Buchman and R. G. Bryant, “Molded carbon-carbon composites based on microcomposite technology,” Appl. Compos. Mater. 6(5), 309-326 (1999).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

R. Magnusson, and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

Biomaterials (1)

Zh. Shi, K. G. Neoh, E. T. Kang, and W. Wang, “Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles,” Biomaterials 27, 2440-2449 (2006).
[CrossRef]

Electron. Lett. (1)

C. M. Wang, J. Y. Chang, C. L. Hsu, C. C. Lee, and J. C. Yang, “Si-based guided-mode resonance filter on a micro-optical bench,” Electron. Lett. 40, 1335-1336 (2004).
[CrossRef]

IEEE Trans. Dielectr. Electr. Insul. (1)

M. F. Fréchette, R. Y. Larocque, M. Trudeau, R. Veillette, R. Rioux, S. Pelissou, S. Besner, M. Javan, K. Cole, M.-T. T. That, D. Desgagnes, J. Castellon, S. Agnel, A. Toureille, and G. Platbrood, “Nanostructured polymer microcomposites: a distinct class of insulating materials,” IEEE Trans. Dielectr. Electr. Insul. 15, 90-105 (2008).
[CrossRef]

J. Colloid Interface Sci, (1)

F. Wypych and K. Satyanarayana, “Functionalization of single layers and nanofibers: a new strategy to produce polymer nanocomposites with optimized properties,” J. Colloid Interface Sci, 285, 532-543 (2005).
[CrossRef]

J. Mater. Chem. (1)

V. Mironov, G. Prestwich, and G. Forgacs, “Bioprinting living structures,” J. Mater. Chem. 17, 2054-2060 (2007).
[CrossRef]

Maderas Cien. Tecnol. (1)

W. E. Gacitua, A. A. Ballerini, and J. Zhang, “Polymer nanocomposites: synthetic and natural fillers. A review,” Maderas Cien. Tecnol. 7 (3), 159-178 (2005).

Mater. Sci. Eng. A (1)

F. Hussain, J. Chen, and M. Hojjati, “Epoxy-silicate nanocomposites: cure monitoring and characterization,” Mater. Sci. Eng. A 445-446, 467-476 (2007).
[CrossRef]

Nanomed. (1)

A. J. Thote and R. B. Gupta, “Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release,” Nanomed. 1, 85-90 (2005).
[CrossRef]

Nature Mater. (1)

J.-U. Park, M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers, “High-resolution electrohydrodynamic jet printing,” Nature Mater. 6, 782-789 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (2)

H. Kikuta, K. Fujita, A. Mizutani, H. Toyota, and K. Iwata, “High resolution refractive index sensor with a crossed guided-mode resonant grating,” Proc. SPIE 5931, 59310N (2005).
[CrossRef]

D. Fattal, M. Sigalas, A. Pyayt, Zh. Li, and R. G. Beausoleil, “Guided-mode resonance sensor with extended spatial sensitivity,” Proc. SPIE 6766, 67660J (2007).
[CrossRef]

Sens. Actuators B (1)

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensor based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16-24 (1999).
[CrossRef]

Smart Mater. Struct. (1)

L. M. Swallow, J. K. Luo, E. Siores, I. Patel, and D. Dodds, “A piezoelectric fibre composite based energy harvesting device for potential wearable applications,” Smart Mater. Struct. 17, 025017-025023 (2008).
[CrossRef]

Trends Biotechnol. (1)

V. Mironov, T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald, “Organ printing: computer-aided jet-based 3D tissue engineering,” Trends Biotechnol. 21, 157-61 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Mode profiles for (a) thick and (b) thin gratings showing that light propagates much further in the cladding for thin gratings. (c) Design of a thick GMR sensor with a particle on the sensing surface and (d) the corresponding mode profile (particle is almost completely out of the sensing volume). (e) Design of a thin GMR sensor with a particle on the surface and (f)  the corresponding mode profile (the whole particle is inside the sensing volume). A color gradient illustrates a simulated mode profile in the waveguide.

Fig. 2
Fig. 2

Design of the sensor. (a) Side view of the grating with a droplet of fluid under study on top. (b) Scanning electron microscope image taken from the top showing a patterned Si layer. (c) Calculation of the effective refractive index of the waveguide depending on the refractive index of the liquid under study. (d) Sensing distance inside the liquid under study and the silicon oxide cladding that depends on the refractive index of the liquid under study. It is obvious that, in a symmetrical situation, when the liquid under study has the same refractive index as the silicon oxide, both distances are approximately 800 nm . For a higher refractive index of the liquid, the light extends further into the liquid and less into the silicon oxide.

Fig. 3
Fig. 3

(a) Typical shape of the resonance curve taken in the transmission mode with a quality factor of Q = 500 measured on the left-hand side of the resonance. (b) Shift of the resonance with spin coating of multiple 100 nm thick PMMA layers on top of the sensor (the mode size is 1 n m . (c) Demonstration of PMMA refractive-index measurements using calibration with index-matching fluids of n = 1.472 and n = 1.5 .

Fig. 4
Fig. 4

(a) Resonance curves for the microspheres in air in comparison with the curve for air as the top cladding. (b) Microspheres in water with increased concentration of the microspheres close to the sensing surface. (c) Resonance curves for the electro-ink comparison with pure oil with 2% and 4% pigment particle concentration.

Tables (1)

Tables Icon

Table 1 Effective Refractive Index of Two Sensors

Metrics