Abstract

We report in situ, simultaneous measurements of both drag and normal forces in magnetorheological finishing (MRF) for what is believed to be the first time, using a spot taking machine (STM) as a test bed to take MRF spots on stationary parts. The measurements are carried out over the entire area where material is being removed, i.e., the projected area of the MRF removal function/spot on the part surface, using a dual force sensor. This approach experimentally addresses the mechanisms governing material removal in MRF for optical glasses in terms of the hydrodynamic pressure and shear stress, applied by the hydrodynamic flow of magnetorheological fluid at the gap between the part surface and the STM wheel. This work demonstrates that the volumetric removal rate shows a positive linear dependence on shear stress. Shear stress exhibits a positive linear dependence on a material figure of merit that depends upon Young’s modulus, fracture toughness, and hardness. A modified Preston’s equation is proposed that better estimates MRF material removal rate for optical glasses by incorporating mechanical properties, shear stress, and velocity.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jacobs, D. Golini, Y. Hsu, B. E. Puchebner, D. Strafford, Wm. I. Kordonski, I. V. Prokhorov, E. Fess, D. Pietrowski, and V. W. Kordonski, “Magnetorheological finishing: A deterministic process for optics manufacturing,” Proc. SPIE 2576, 372-382 ( 1995).
    [CrossRef]
  2. S. D. Jacobs, S. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, and S. Hogan, “An overview of magnetorheological finishing (MRF) for precision optics manufacturing,” Ceramic Trans. 102, 185-199 (1999).
  3. F. W. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 11, 214-256 (1927).
  4. A. B. Shorey, “Mechanisms of material removal in magnetorheological finishing (mrf) of glass,” Ph.D. dissertation (Department of Mechancial Engineering, Materials Science Program, University of Rochester, 2000).
  5. V. H. Bulsara, Y. Ahn, S. Chandrasekar, and T. N. Farris, “Mechanics of polishing,” Trans. ASME, J. Appl. Mech. 65, 410-416 (1998).
    [CrossRef]
  6. V. W. Kordonski and D. Golini, “Progress update in magnetorheological finshing,” in 6th International Conference on Electro-Rheological Fluid, Magnetorheological Suspensions and Their Applications (Yonezava, 1997).
  7. D. Golini, H. M. Pollicove, G. Platt, S. D. Jacobs, and W. Kordonsky, “Computer control makes asphere production run of the mill,” Laser Focus World 31(9), 83-86 (1995).
  8. A. B. Shorey, S. D. Jacobs, W. E. Kordonski, and R. F. Gans, “Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing,” Appl. Opt. 40, 20-33 (2001).
    [CrossRef]
  9. J. E. DeGroote, “Surface interactions between nanodiamonds and glass in magnetorheological finishing (MRF),” Ph.D. dissertation (The Institute of Optics, University of Rochester, 2007).
  10. J. E. DeGroote, A. E. Marino, J. P. Wilson, A. L. Bishop, J. C. Lambropoulos, and S. D. Jacobs, “Removal rate model for magnetorheological finishing of glass,” Appl. Opt. 46, 7927-7941 (2007).
    [CrossRef] [PubMed]
  11. C. Miao, S. N. Shafrir, H. J. Romanofsky, J. Mici, J. C. Lambropoulos, and S. D. Jacbos, “Frictional investigation for magnetorheological finishing (mrf) of optical ceramcis and hard metals,” in Optical Fabrication and Testing, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThB4.
  12. J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, “Material removal mechanisms from grinding to polishing,” Ceramic Trans. 102, 113-128 (1999).
  13. A. G. Evans, “Fracture toughness: The role of indentation techniques,” in Fracture Mechanics Applied to Brittle Materials, S. W. Fierman, ed. (American Society for Testing and Materials, 1979), Vol. 678, pp. 112-135.
    [CrossRef]
  14. Zygo Mark IV xp Interferometer (Zygo Corp., Middlefield, Conn.). This instrument is a 4 in. He-Ne Fizeau interferometer with a wavelength of 632.8 nm. pv for surface flatness and ddp of the spot were measured in micrometers.
  15. Zygo NewView 5000 noncontact white light interferometer, Zygo Corp., Middlefield, Conn. Average microroughness data (pv and rms) were obtained under the following conditions: 20× Mirau objective; 20 μm bipolar scan length; min/mod 5%, unfiltered. This instrument has a lateral resolution of ~1 μm and a vertical resolution of ~0.3 nm.
  16. Single Axis Slim Line Compressive (K9133B21) Force Sensor Measuring System (Kistler Instrument Corp.).
  17. Single Axis Slim Line Shear (K9143B21) Force Sensor Measuring System (Kistler Instrument Corp.).
  18. Labview (National Instruments Corporation, Austin, Texas). The Labview interface was written by S. Russell and S. N. Shafrir (2008, University of Rochester, Rochester, New York).
  19. “MetroPro Reference Guide” (Zygo Corporation).
  20. M. Schinhaerl, C. Vogt, A. Geiss, R. Stamp, P. Sperber, L. Smith, and R. Rascher, “Forces acting between polishing tool and workpiece surface in magnetorheological finishing,” Proc. SPIE 7060, 706006 (2008).
  21. B. Bhushan and B. K. Gupta, “Friction, wear, and lubrication,” Handbook of Triboloty: Materials, Coatings, and Surface Treatments (Krieger, 1997), Chap. 2, p. 2.11, Table 2.
  22. J. M. Steigerwald, S. P. Murarka, and R. J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials (Wiley, 1997).
    [CrossRef]
  23. J. C. Lambropoulos, Su Xu, and Tong Fang, “Loose abrasive lapping hardness of optical glasses and its interpretation,” Appl. Opt. 36, 1501-1516 (1997).
    [CrossRef] [PubMed]
  24. T. S. Izumitani, “Polishing rate of optical glass,” in Optical Fabrication and Testing Workshop Digest (Optical Society of America, 1982), pp. 1-4.
  25. T. S. Izumitani, “Polishing mechanism of fused silica glass,” in Optical Fabrication and Testing Workshop Diegest (Optical Society of America, 1984), pp. TuB-A1-1-TuB-A1-3.
  26. M. J. Cumbo, “Chemo-mechanical interactions in optical polishing,” Doctor of Philosophy, Ph.D. dissertation (The Institute of Optics, University of Rochester, 1993).

2007

2001

1999

J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, “Material removal mechanisms from grinding to polishing,” Ceramic Trans. 102, 113-128 (1999).

S. D. Jacobs, S. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, and S. Hogan, “An overview of magnetorheological finishing (MRF) for precision optics manufacturing,” Ceramic Trans. 102, 185-199 (1999).

1998

V. H. Bulsara, Y. Ahn, S. Chandrasekar, and T. N. Farris, “Mechanics of polishing,” Trans. ASME, J. Appl. Mech. 65, 410-416 (1998).
[CrossRef]

1997

1995

S. D. Jacobs, D. Golini, Y. Hsu, B. E. Puchebner, D. Strafford, Wm. I. Kordonski, I. V. Prokhorov, E. Fess, D. Pietrowski, and V. W. Kordonski, “Magnetorheological finishing: A deterministic process for optics manufacturing,” Proc. SPIE 2576, 372-382 ( 1995).
[CrossRef]

D. Golini, H. M. Pollicove, G. Platt, S. D. Jacobs, and W. Kordonsky, “Computer control makes asphere production run of the mill,” Laser Focus World 31(9), 83-86 (1995).

1927

F. W. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 11, 214-256 (1927).

Ahn, Y.

V. H. Bulsara, Y. Ahn, S. Chandrasekar, and T. N. Farris, “Mechanics of polishing,” Trans. ASME, J. Appl. Mech. 65, 410-416 (1998).
[CrossRef]

Arrasmith, S.

S. D. Jacobs, S. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, and S. Hogan, “An overview of magnetorheological finishing (MRF) for precision optics manufacturing,” Ceramic Trans. 102, 185-199 (1999).

Bhushan, B.

B. Bhushan and B. K. Gupta, “Friction, wear, and lubrication,” Handbook of Triboloty: Materials, Coatings, and Surface Treatments (Krieger, 1997), Chap. 2, p. 2.11, Table 2.

Bishop, A. L.

Bulsara, V. H.

V. H. Bulsara, Y. Ahn, S. Chandrasekar, and T. N. Farris, “Mechanics of polishing,” Trans. ASME, J. Appl. Mech. 65, 410-416 (1998).
[CrossRef]

Chandrasekar, S.

V. H. Bulsara, Y. Ahn, S. Chandrasekar, and T. N. Farris, “Mechanics of polishing,” Trans. ASME, J. Appl. Mech. 65, 410-416 (1998).
[CrossRef]

Cumbo, M. J.

M. J. Cumbo, “Chemo-mechanical interactions in optical polishing,” Doctor of Philosophy, Ph.D. dissertation (The Institute of Optics, University of Rochester, 1993).

DeGroote, J. E.

J. E. DeGroote, A. E. Marino, J. P. Wilson, A. L. Bishop, J. C. Lambropoulos, and S. D. Jacobs, “Removal rate model for magnetorheological finishing of glass,” Appl. Opt. 46, 7927-7941 (2007).
[CrossRef] [PubMed]

J. E. DeGroote, “Surface interactions between nanodiamonds and glass in magnetorheological finishing (MRF),” Ph.D. dissertation (The Institute of Optics, University of Rochester, 2007).

Dumas, P.

S. D. Jacobs, S. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, and S. Hogan, “An overview of magnetorheological finishing (MRF) for precision optics manufacturing,” Ceramic Trans. 102, 185-199 (1999).

Evans, A. G.

A. G. Evans, “Fracture toughness: The role of indentation techniques,” in Fracture Mechanics Applied to Brittle Materials, S. W. Fierman, ed. (American Society for Testing and Materials, 1979), Vol. 678, pp. 112-135.
[CrossRef]

Fang, Tong

Farris, T. N.

V. H. Bulsara, Y. Ahn, S. Chandrasekar, and T. N. Farris, “Mechanics of polishing,” Trans. ASME, J. Appl. Mech. 65, 410-416 (1998).
[CrossRef]

Fess, E.

S. D. Jacobs, D. Golini, Y. Hsu, B. E. Puchebner, D. Strafford, Wm. I. Kordonski, I. V. Prokhorov, E. Fess, D. Pietrowski, and V. W. Kordonski, “Magnetorheological finishing: A deterministic process for optics manufacturing,” Proc. SPIE 2576, 372-382 ( 1995).
[CrossRef]

Gans, R. F.

Geiss, A.

M. Schinhaerl, C. Vogt, A. Geiss, R. Stamp, P. Sperber, L. Smith, and R. Rascher, “Forces acting between polishing tool and workpiece surface in magnetorheological finishing,” Proc. SPIE 7060, 706006 (2008).

Golini, D.

S. D. Jacobs, S. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, and S. Hogan, “An overview of magnetorheological finishing (MRF) for precision optics manufacturing,” Ceramic Trans. 102, 185-199 (1999).

S. D. Jacobs, D. Golini, Y. Hsu, B. E. Puchebner, D. Strafford, Wm. I. Kordonski, I. V. Prokhorov, E. Fess, D. Pietrowski, and V. W. Kordonski, “Magnetorheological finishing: A deterministic process for optics manufacturing,” Proc. SPIE 2576, 372-382 ( 1995).
[CrossRef]

D. Golini, H. M. Pollicove, G. Platt, S. D. Jacobs, and W. Kordonsky, “Computer control makes asphere production run of the mill,” Laser Focus World 31(9), 83-86 (1995).

V. W. Kordonski and D. Golini, “Progress update in magnetorheological finshing,” in 6th International Conference on Electro-Rheological Fluid, Magnetorheological Suspensions and Their Applications (Yonezava, 1997).

Gregg, L. L.

S. D. Jacobs, S. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, and S. Hogan, “An overview of magnetorheological finishing (MRF) for precision optics manufacturing,” Ceramic Trans. 102, 185-199 (1999).

Gupta, B. K.

B. Bhushan and B. K. Gupta, “Friction, wear, and lubrication,” Handbook of Triboloty: Materials, Coatings, and Surface Treatments (Krieger, 1997), Chap. 2, p. 2.11, Table 2.

Gutmann, R. J.

J. M. Steigerwald, S. P. Murarka, and R. J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials (Wiley, 1997).
[CrossRef]

Hogan, S.

S. D. Jacobs, S. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, and S. Hogan, “An overview of magnetorheological finishing (MRF) for precision optics manufacturing,” Ceramic Trans. 102, 185-199 (1999).

Hsu, Y.

S. D. Jacobs, D. Golini, Y. Hsu, B. E. Puchebner, D. Strafford, Wm. I. Kordonski, I. V. Prokhorov, E. Fess, D. Pietrowski, and V. W. Kordonski, “Magnetorheological finishing: A deterministic process for optics manufacturing,” Proc. SPIE 2576, 372-382 ( 1995).
[CrossRef]

Izumitani, T. S.

T. S. Izumitani, “Polishing mechanism of fused silica glass,” in Optical Fabrication and Testing Workshop Diegest (Optical Society of America, 1984), pp. TuB-A1-1-TuB-A1-3.

T. S. Izumitani, “Polishing rate of optical glass,” in Optical Fabrication and Testing Workshop Digest (Optical Society of America, 1982), pp. 1-4.

Jacbos, S. D.

C. Miao, S. N. Shafrir, H. J. Romanofsky, J. Mici, J. C. Lambropoulos, and S. D. Jacbos, “Frictional investigation for magnetorheological finishing (mrf) of optical ceramcis and hard metals,” in Optical Fabrication and Testing, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThB4.

Jacobs, S. D.

J. E. DeGroote, A. E. Marino, J. P. Wilson, A. L. Bishop, J. C. Lambropoulos, and S. D. Jacobs, “Removal rate model for magnetorheological finishing of glass,” Appl. Opt. 46, 7927-7941 (2007).
[CrossRef] [PubMed]

A. B. Shorey, S. D. Jacobs, W. E. Kordonski, and R. F. Gans, “Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing,” Appl. Opt. 40, 20-33 (2001).
[CrossRef]

S. D. Jacobs, S. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, and S. Hogan, “An overview of magnetorheological finishing (MRF) for precision optics manufacturing,” Ceramic Trans. 102, 185-199 (1999).

J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, “Material removal mechanisms from grinding to polishing,” Ceramic Trans. 102, 113-128 (1999).

S. D. Jacobs, D. Golini, Y. Hsu, B. E. Puchebner, D. Strafford, Wm. I. Kordonski, I. V. Prokhorov, E. Fess, D. Pietrowski, and V. W. Kordonski, “Magnetorheological finishing: A deterministic process for optics manufacturing,” Proc. SPIE 2576, 372-382 ( 1995).
[CrossRef]

D. Golini, H. M. Pollicove, G. Platt, S. D. Jacobs, and W. Kordonsky, “Computer control makes asphere production run of the mill,” Laser Focus World 31(9), 83-86 (1995).

Kordonski, V. W.

S. D. Jacobs, D. Golini, Y. Hsu, B. E. Puchebner, D. Strafford, Wm. I. Kordonski, I. V. Prokhorov, E. Fess, D. Pietrowski, and V. W. Kordonski, “Magnetorheological finishing: A deterministic process for optics manufacturing,” Proc. SPIE 2576, 372-382 ( 1995).
[CrossRef]

V. W. Kordonski and D. Golini, “Progress update in magnetorheological finshing,” in 6th International Conference on Electro-Rheological Fluid, Magnetorheological Suspensions and Their Applications (Yonezava, 1997).

Kordonski, W. E.

Kordonski, W. I.

S. D. Jacobs, S. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, and S. Hogan, “An overview of magnetorheological finishing (MRF) for precision optics manufacturing,” Ceramic Trans. 102, 185-199 (1999).

Kordonski, Wm. I.

S. D. Jacobs, D. Golini, Y. Hsu, B. E. Puchebner, D. Strafford, Wm. I. Kordonski, I. V. Prokhorov, E. Fess, D. Pietrowski, and V. W. Kordonski, “Magnetorheological finishing: A deterministic process for optics manufacturing,” Proc. SPIE 2576, 372-382 ( 1995).
[CrossRef]

Kordonsky, W.

D. Golini, H. M. Pollicove, G. Platt, S. D. Jacobs, and W. Kordonsky, “Computer control makes asphere production run of the mill,” Laser Focus World 31(9), 83-86 (1995).

Kozhinova, I. A.

S. D. Jacobs, S. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, and S. Hogan, “An overview of magnetorheological finishing (MRF) for precision optics manufacturing,” Ceramic Trans. 102, 185-199 (1999).

Lambropoulos, J. C.

J. E. DeGroote, A. E. Marino, J. P. Wilson, A. L. Bishop, J. C. Lambropoulos, and S. D. Jacobs, “Removal rate model for magnetorheological finishing of glass,” Appl. Opt. 46, 7927-7941 (2007).
[CrossRef] [PubMed]

J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, “Material removal mechanisms from grinding to polishing,” Ceramic Trans. 102, 113-128 (1999).

J. C. Lambropoulos, Su Xu, and Tong Fang, “Loose abrasive lapping hardness of optical glasses and its interpretation,” Appl. Opt. 36, 1501-1516 (1997).
[CrossRef] [PubMed]

C. Miao, S. N. Shafrir, H. J. Romanofsky, J. Mici, J. C. Lambropoulos, and S. D. Jacbos, “Frictional investigation for magnetorheological finishing (mrf) of optical ceramcis and hard metals,” in Optical Fabrication and Testing, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThB4.

Marino, A. E.

Miao, C.

C. Miao, S. N. Shafrir, H. J. Romanofsky, J. Mici, J. C. Lambropoulos, and S. D. Jacbos, “Frictional investigation for magnetorheological finishing (mrf) of optical ceramcis and hard metals,” in Optical Fabrication and Testing, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThB4.

Mici, J.

C. Miao, S. N. Shafrir, H. J. Romanofsky, J. Mici, J. C. Lambropoulos, and S. D. Jacbos, “Frictional investigation for magnetorheological finishing (mrf) of optical ceramcis and hard metals,” in Optical Fabrication and Testing, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThB4.

Murarka, S. P.

J. M. Steigerwald, S. P. Murarka, and R. J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials (Wiley, 1997).
[CrossRef]

Pietrowski, D.

S. D. Jacobs, D. Golini, Y. Hsu, B. E. Puchebner, D. Strafford, Wm. I. Kordonski, I. V. Prokhorov, E. Fess, D. Pietrowski, and V. W. Kordonski, “Magnetorheological finishing: A deterministic process for optics manufacturing,” Proc. SPIE 2576, 372-382 ( 1995).
[CrossRef]

Platt, G.

D. Golini, H. M. Pollicove, G. Platt, S. D. Jacobs, and W. Kordonsky, “Computer control makes asphere production run of the mill,” Laser Focus World 31(9), 83-86 (1995).

Pollicove, H. M.

D. Golini, H. M. Pollicove, G. Platt, S. D. Jacobs, and W. Kordonsky, “Computer control makes asphere production run of the mill,” Laser Focus World 31(9), 83-86 (1995).

Preston, F. W.

F. W. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 11, 214-256 (1927).

Prokhorov, I. V.

S. D. Jacobs, D. Golini, Y. Hsu, B. E. Puchebner, D. Strafford, Wm. I. Kordonski, I. V. Prokhorov, E. Fess, D. Pietrowski, and V. W. Kordonski, “Magnetorheological finishing: A deterministic process for optics manufacturing,” Proc. SPIE 2576, 372-382 ( 1995).
[CrossRef]

Puchebner, B. E.

S. D. Jacobs, D. Golini, Y. Hsu, B. E. Puchebner, D. Strafford, Wm. I. Kordonski, I. V. Prokhorov, E. Fess, D. Pietrowski, and V. W. Kordonski, “Magnetorheological finishing: A deterministic process for optics manufacturing,” Proc. SPIE 2576, 372-382 ( 1995).
[CrossRef]

Rascher, R.

M. Schinhaerl, C. Vogt, A. Geiss, R. Stamp, P. Sperber, L. Smith, and R. Rascher, “Forces acting between polishing tool and workpiece surface in magnetorheological finishing,” Proc. SPIE 7060, 706006 (2008).

Romanofsky, H. J.

S. D. Jacobs, S. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, and S. Hogan, “An overview of magnetorheological finishing (MRF) for precision optics manufacturing,” Ceramic Trans. 102, 185-199 (1999).

C. Miao, S. N. Shafrir, H. J. Romanofsky, J. Mici, J. C. Lambropoulos, and S. D. Jacbos, “Frictional investigation for magnetorheological finishing (mrf) of optical ceramcis and hard metals,” in Optical Fabrication and Testing, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThB4.

Ruckman, J.

J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, “Material removal mechanisms from grinding to polishing,” Ceramic Trans. 102, 113-128 (1999).

Russell, S.

Labview (National Instruments Corporation, Austin, Texas). The Labview interface was written by S. Russell and S. N. Shafrir (2008, University of Rochester, Rochester, New York).

Schinhaerl, M.

M. Schinhaerl, C. Vogt, A. Geiss, R. Stamp, P. Sperber, L. Smith, and R. Rascher, “Forces acting between polishing tool and workpiece surface in magnetorheological finishing,” Proc. SPIE 7060, 706006 (2008).

Shafrir, S. N.

C. Miao, S. N. Shafrir, H. J. Romanofsky, J. Mici, J. C. Lambropoulos, and S. D. Jacbos, “Frictional investigation for magnetorheological finishing (mrf) of optical ceramcis and hard metals,” in Optical Fabrication and Testing, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThB4.

Labview (National Instruments Corporation, Austin, Texas). The Labview interface was written by S. Russell and S. N. Shafrir (2008, University of Rochester, Rochester, New York).

Shorey, A. B.

A. B. Shorey, S. D. Jacobs, W. E. Kordonski, and R. F. Gans, “Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing,” Appl. Opt. 40, 20-33 (2001).
[CrossRef]

S. D. Jacobs, S. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, and S. Hogan, “An overview of magnetorheological finishing (MRF) for precision optics manufacturing,” Ceramic Trans. 102, 185-199 (1999).

A. B. Shorey, “Mechanisms of material removal in magnetorheological finishing (mrf) of glass,” Ph.D. dissertation (Department of Mechancial Engineering, Materials Science Program, University of Rochester, 2000).

Smith, L.

M. Schinhaerl, C. Vogt, A. Geiss, R. Stamp, P. Sperber, L. Smith, and R. Rascher, “Forces acting between polishing tool and workpiece surface in magnetorheological finishing,” Proc. SPIE 7060, 706006 (2008).

Sperber, P.

M. Schinhaerl, C. Vogt, A. Geiss, R. Stamp, P. Sperber, L. Smith, and R. Rascher, “Forces acting between polishing tool and workpiece surface in magnetorheological finishing,” Proc. SPIE 7060, 706006 (2008).

Stamp, R.

M. Schinhaerl, C. Vogt, A. Geiss, R. Stamp, P. Sperber, L. Smith, and R. Rascher, “Forces acting between polishing tool and workpiece surface in magnetorheological finishing,” Proc. SPIE 7060, 706006 (2008).

Steigerwald, J. M.

J. M. Steigerwald, S. P. Murarka, and R. J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials (Wiley, 1997).
[CrossRef]

Strafford, D.

S. D. Jacobs, D. Golini, Y. Hsu, B. E. Puchebner, D. Strafford, Wm. I. Kordonski, I. V. Prokhorov, E. Fess, D. Pietrowski, and V. W. Kordonski, “Magnetorheological finishing: A deterministic process for optics manufacturing,” Proc. SPIE 2576, 372-382 ( 1995).
[CrossRef]

Vogt, C.

M. Schinhaerl, C. Vogt, A. Geiss, R. Stamp, P. Sperber, L. Smith, and R. Rascher, “Forces acting between polishing tool and workpiece surface in magnetorheological finishing,” Proc. SPIE 7060, 706006 (2008).

Wilson, J. P.

Xu, Su

Appl. Opt.

Ceramic Trans.

S. D. Jacobs, S. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, and S. Hogan, “An overview of magnetorheological finishing (MRF) for precision optics manufacturing,” Ceramic Trans. 102, 185-199 (1999).

J. Soc. Glass Technol.

F. W. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 11, 214-256 (1927).

Laser Focus World

D. Golini, H. M. Pollicove, G. Platt, S. D. Jacobs, and W. Kordonsky, “Computer control makes asphere production run of the mill,” Laser Focus World 31(9), 83-86 (1995).

Proc. SPIE

S. D. Jacobs, D. Golini, Y. Hsu, B. E. Puchebner, D. Strafford, Wm. I. Kordonski, I. V. Prokhorov, E. Fess, D. Pietrowski, and V. W. Kordonski, “Magnetorheological finishing: A deterministic process for optics manufacturing,” Proc. SPIE 2576, 372-382 ( 1995).
[CrossRef]

Trans. ASME, J. Appl. Mech.

V. H. Bulsara, Y. Ahn, S. Chandrasekar, and T. N. Farris, “Mechanics of polishing,” Trans. ASME, J. Appl. Mech. 65, 410-416 (1998).
[CrossRef]

Other

V. W. Kordonski and D. Golini, “Progress update in magnetorheological finshing,” in 6th International Conference on Electro-Rheological Fluid, Magnetorheological Suspensions and Their Applications (Yonezava, 1997).

A. B. Shorey, “Mechanisms of material removal in magnetorheological finishing (mrf) of glass,” Ph.D. dissertation (Department of Mechancial Engineering, Materials Science Program, University of Rochester, 2000).

C. Miao, S. N. Shafrir, H. J. Romanofsky, J. Mici, J. C. Lambropoulos, and S. D. Jacbos, “Frictional investigation for magnetorheological finishing (mrf) of optical ceramcis and hard metals,” in Optical Fabrication and Testing, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThB4.

J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, “Material removal mechanisms from grinding to polishing,” Ceramic Trans. 102, 113-128 (1999).

A. G. Evans, “Fracture toughness: The role of indentation techniques,” in Fracture Mechanics Applied to Brittle Materials, S. W. Fierman, ed. (American Society for Testing and Materials, 1979), Vol. 678, pp. 112-135.
[CrossRef]

Zygo Mark IV xp Interferometer (Zygo Corp., Middlefield, Conn.). This instrument is a 4 in. He-Ne Fizeau interferometer with a wavelength of 632.8 nm. pv for surface flatness and ddp of the spot were measured in micrometers.

Zygo NewView 5000 noncontact white light interferometer, Zygo Corp., Middlefield, Conn. Average microroughness data (pv and rms) were obtained under the following conditions: 20× Mirau objective; 20 μm bipolar scan length; min/mod 5%, unfiltered. This instrument has a lateral resolution of ~1 μm and a vertical resolution of ~0.3 nm.

Single Axis Slim Line Compressive (K9133B21) Force Sensor Measuring System (Kistler Instrument Corp.).

Single Axis Slim Line Shear (K9143B21) Force Sensor Measuring System (Kistler Instrument Corp.).

Labview (National Instruments Corporation, Austin, Texas). The Labview interface was written by S. Russell and S. N. Shafrir (2008, University of Rochester, Rochester, New York).

“MetroPro Reference Guide” (Zygo Corporation).

M. Schinhaerl, C. Vogt, A. Geiss, R. Stamp, P. Sperber, L. Smith, and R. Rascher, “Forces acting between polishing tool and workpiece surface in magnetorheological finishing,” Proc. SPIE 7060, 706006 (2008).

B. Bhushan and B. K. Gupta, “Friction, wear, and lubrication,” Handbook of Triboloty: Materials, Coatings, and Surface Treatments (Krieger, 1997), Chap. 2, p. 2.11, Table 2.

J. M. Steigerwald, S. P. Murarka, and R. J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials (Wiley, 1997).
[CrossRef]

J. E. DeGroote, “Surface interactions between nanodiamonds and glass in magnetorheological finishing (MRF),” Ph.D. dissertation (The Institute of Optics, University of Rochester, 2007).

T. S. Izumitani, “Polishing rate of optical glass,” in Optical Fabrication and Testing Workshop Digest (Optical Society of America, 1982), pp. 1-4.

T. S. Izumitani, “Polishing mechanism of fused silica glass,” in Optical Fabrication and Testing Workshop Diegest (Optical Society of America, 1984), pp. TuB-A1-1-TuB-A1-3.

M. J. Cumbo, “Chemo-mechanical interactions in optical polishing,” Doctor of Philosophy, Ph.D. dissertation (The Institute of Optics, University of Rochester, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Picture of the STM during the spot taking process: (a) STM; (b) nonrotating part partially submerged (under computer control) into the stiffened MR fluid ribbon, which is moving clockwise along with the rotating wheel. The STM has only z axis motion. The diameter of the STM wheel is 15 cm .

Fig. 2
Fig. 2

Interferometric image of an MRF spot on BK7 glass and its accompanying profile. [14] The dashed ellipse denotes the ddp region where a maximum amount of material is removed. Parallel dashed lines indicate the leading edge (where the MR ribbon starts to contact the part) and the trailing edge (where the MR fluid ribbon leaves the part). The MR fluid is flowing from left to right. The spot line profile is extracted through the center of the spot image; the distance from the leading edge to the trailing edge is 12 mm , and the spot depth is 0.28 μm .

Fig. 3
Fig. 3

Photograph of the dual force sensor/sample mounting device during spot taking on the STM, indicating the machine z axis, the normal and drag force sensors, the sample mounting device, a part, the MR fluid ribbon, and the rotating wheel (diameter 15 cm ). The sensors are located directly above the contact zone between the MR fluid ribbon and the part for real time in situ measurements. The sample is waxed to a glass disc held by a set of screws against the aluminum housing of the sample mounting device.

Fig. 4
Fig. 4

Normal force, F n , and drag force, F d as a function of material Vickers hardness (GPa) for LHG8, BK7, and FS. (See text for a discussion of data taken by DeGroote [9].)

Fig. 5
Fig. 5

VRR as a function of shear stress (τ), F d / A s and as a function of the hydrodynamic pressure, F n / A s .

Tables (3)

Tables Icon

Table 1 Physical and Mechanical Properties of Optical Glasses Rank Ordered by Increasing Vickers Hardness a

Tables Icon

Table 2 Experimental Data for Materials After Spotting

Tables Icon

Table 3 Preston’s Coefficient for Conventional Chemical Mechanical Polishing Processes from Literature and Modified Preston’s Coefficients Calculated for MRF from This Work

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

M R R = C p P V = C p F n A c V ,
MRR MRF = C p , MRF ( F n ) μ F n A s V = C p , MRF ( F d ) F d A s V = C p , MRF ( τ ) · τ · V ,
MRR MRF = C p , MRF ( τ , FOM ) E K c H V 2 · τ · V ,
20 ×
20 μm

Metrics