Abstract

Monitoring of light-element concentration in steel is very important for quality assurance in the steel industry. In this work, detection in open air of trace phosphorus (P) in steel using laser-induced breakdown spectroscopy (LIBS) combined with laser-induced fluorescence (LIF) has been investigated. An optical parametric oscillator wavelength-tunable laser was used to resonantly excite the P atoms within plasma plumes generated by a Q-switched Nd:YAG laser. A set of steel samples with P concentrations from 3.9 to 720partsin106(ppm) were analyzed using LIBS-LIF at wavelengths of 253.40 and 253.56nm for resonant excitation of P atoms and fluorescence lines at wavelengths of 213.55 and 213.62nm. The calibration curves were measured to determine the limit of detection for P in steel, which is estimated to be around 0.7ppm. The results demonstrate the potential of LIBS-LIF to meet the requirements for on-line analyses in open air in the steel industry.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30-48 (2000).
    [CrossRef]
  2. D. Anglos, K. Melesanaki, V. Zafiropulos, M. J. Gresalfi, and J. C. Miller, “Laser-induced breakdown spectroscopy for the analysis of 150-year-old daguerreotypes,” Appl. Spectrosc. 56, 423-432 (2002).
    [CrossRef]
  3. O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179-S182 (1999).
  4. F. Ferioli, P. V. Puzinauskas, and S. G. Buckley, “Laser-induced breakdown spectroscopy for on-line engine equivalence ratio measurements,” Appl. Spectrosc. 57, 1183-1189 (2003).
    [CrossRef] [PubMed]
  5. J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium, and neptunium by laser induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59-67 (1999).
  6. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry-applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637-649 (2001).
    [CrossRef]
  7. L. Peter, V. Sturm, and R. Noll, “Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Opt. 42, 6199-6204 (2003).
    [CrossRef] [PubMed]
  8. R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D: Appl. Phys. 28, 2181-2187 (1995).
    [CrossRef]
  9. R. M. Measures and H. S. Kwong, “TABLASER: trace (element) analyzer based on laser ablation and selectively excited radiation,” Appl. Opt. 18, 281-286 (1979).
    [CrossRef] [PubMed]
  10. H. S. Kwong and R. M. Measures, “Trace element laser microanalyzer with freedom from chemical matrix effect,” Anal. Chem. 51, 428-432 (1979).
    [CrossRef]
  11. F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B 56, 933-945 (2001).
    [CrossRef]
  12. H. H. Telle, D. C. S. Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947-960 (2001).
    [CrossRef]
  13. J. D. Wu and N. H. Cheung, “Resonance-enhanced laser-induced plasma spectroscopy for multielement analysis in laser ablative sampling,” Appl. Spectrosc. 55, 366-370(2001).
    [CrossRef]
  14. S. L. Lui and N. H. Cheung, “Resonance-enhanced laser-induced plasma spectroscopy for sensitive elemental analysis: Elucidation of enhancement mechanisms,” Appl. Phys. Lett. 81, 5114-5116 (2002).
    [CrossRef]
  15. X. K. Shen and Y. F. Lu, “Detection of uranium in solids by using laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Appl. Opt. 47, 1810-1815(2008).
    [CrossRef] [PubMed]
  16. Y. Ralchenko, A. E. Kramida, J. Reader, and NIST ASD Team (2008), NIST Atomic Spectra Database (version 3.1.5)(National Institute of Standards and Technology, 2009), http://physics.nist.gov/asd3.

2008 (1)

2003 (2)

2002 (2)

D. Anglos, K. Melesanaki, V. Zafiropulos, M. J. Gresalfi, and J. C. Miller, “Laser-induced breakdown spectroscopy for the analysis of 150-year-old daguerreotypes,” Appl. Spectrosc. 56, 423-432 (2002).
[CrossRef]

S. L. Lui and N. H. Cheung, “Resonance-enhanced laser-induced plasma spectroscopy for sensitive elemental analysis: Elucidation of enhancement mechanisms,” Appl. Phys. Lett. 81, 5114-5116 (2002).
[CrossRef]

2001 (4)

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry-applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637-649 (2001).
[CrossRef]

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B 56, 933-945 (2001).
[CrossRef]

H. H. Telle, D. C. S. Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947-960 (2001).
[CrossRef]

J. D. Wu and N. H. Cheung, “Resonance-enhanced laser-induced plasma spectroscopy for multielement analysis in laser ablative sampling,” Appl. Spectrosc. 55, 366-370(2001).
[CrossRef]

2000 (1)

D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30-48 (2000).
[CrossRef]

1999 (2)

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179-S182 (1999).

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium, and neptunium by laser induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59-67 (1999).

1995 (1)

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D: Appl. Phys. 28, 2181-2187 (1995).
[CrossRef]

1979 (2)

R. M. Measures and H. S. Kwong, “TABLASER: trace (element) analyzer based on laser ablation and selectively excited radiation,” Appl. Opt. 18, 281-286 (1979).
[CrossRef] [PubMed]

H. S. Kwong and R. M. Measures, “Trace element laser microanalyzer with freedom from chemical matrix effect,” Anal. Chem. 51, 428-432 (1979).
[CrossRef]

Anglos, D.

Becker, C.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B 56, 933-945 (2001).
[CrossRef]

Beddows, D. C. S.

H. H. Telle, D. C. S. Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947-960 (2001).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179-S182 (1999).

Bette, H.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry-applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637-649 (2001).
[CrossRef]

Brysch, A.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry-applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637-649 (2001).
[CrossRef]

Buckley, S. G.

Cheung, N. H.

S. L. Lui and N. H. Cheung, “Resonance-enhanced laser-induced plasma spectroscopy for sensitive elemental analysis: Elucidation of enhancement mechanisms,” Appl. Phys. Lett. 81, 5114-5116 (2002).
[CrossRef]

J. D. Wu and N. H. Cheung, “Resonance-enhanced laser-induced plasma spectroscopy for multielement analysis in laser ablative sampling,” Appl. Spectrosc. 55, 366-370(2001).
[CrossRef]

Falk, H.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B 56, 933-945 (2001).
[CrossRef]

Ferioli, F.

Gresalfi, M. J.

Hahn, D. W.

D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30-48 (2000).
[CrossRef]

Hilbk-Kortenbruck, F.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B 56, 933-945 (2001).
[CrossRef]

Kaiser, J.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179-S182 (1999).

Karney, K. P.

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium, and neptunium by laser induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59-67 (1999).

Kramida, A. E.

Y. Ralchenko, A. E. Kramida, J. Reader, and NIST ASD Team (2008), NIST Atomic Spectra Database (version 3.1.5)(National Institute of Standards and Technology, 2009), http://physics.nist.gov/asd3.

Kraushaar, M.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry-applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637-649 (2001).
[CrossRef]

Kwong, H. S.

R. M. Measures and H. S. Kwong, “TABLASER: trace (element) analyzer based on laser ablation and selectively excited radiation,” Appl. Opt. 18, 281-286 (1979).
[CrossRef] [PubMed]

H. S. Kwong and R. M. Measures, “Trace element laser microanalyzer with freedom from chemical matrix effect,” Anal. Chem. 51, 428-432 (1979).
[CrossRef]

Liska, M.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179-S182 (1999).

Lu, Y. F.

Lui, S. L.

S. L. Lui and N. H. Cheung, “Resonance-enhanced laser-induced plasma spectroscopy for sensitive elemental analysis: Elucidation of enhancement mechanisms,” Appl. Phys. Lett. 81, 5114-5116 (2002).
[CrossRef]

Lunden, M. M.

D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30-48 (2000).
[CrossRef]

Measures, R. M.

H. S. Kwong and R. M. Measures, “Trace element laser microanalyzer with freedom from chemical matrix effect,” Anal. Chem. 51, 428-432 (1979).
[CrossRef]

R. M. Measures and H. S. Kwong, “TABLASER: trace (element) analyzer based on laser ablation and selectively excited radiation,” Appl. Opt. 18, 281-286 (1979).
[CrossRef] [PubMed]

Melesanaki, K.

Miller, J. C.

Monch, I.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry-applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637-649 (2001).
[CrossRef]

Morris, G. W.

H. H. Telle, D. C. S. Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947-960 (2001).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179-S182 (1999).

Noll, R.

L. Peter, V. Sturm, and R. Noll, “Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Opt. 42, 6199-6204 (2003).
[CrossRef] [PubMed]

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B 56, 933-945 (2001).
[CrossRef]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry-applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637-649 (2001).
[CrossRef]

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D: Appl. Phys. 28, 2181-2187 (1995).
[CrossRef]

Peter, L.

L. Peter, V. Sturm, and R. Noll, “Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Opt. 42, 6199-6204 (2003).
[CrossRef] [PubMed]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry-applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637-649 (2001).
[CrossRef]

Puzinauskas, P. V.

Ralchenko, Y.

Y. Ralchenko, A. E. Kramida, J. Reader, and NIST ASD Team (2008), NIST Atomic Spectra Database (version 3.1.5)(National Institute of Standards and Technology, 2009), http://physics.nist.gov/asd3.

Reader, J.

Y. Ralchenko, A. E. Kramida, J. Reader, and NIST ASD Team (2008), NIST Atomic Spectra Database (version 3.1.5)(National Institute of Standards and Technology, 2009), http://physics.nist.gov/asd3.

Samek, O.

H. H. Telle, D. C. S. Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947-960 (2001).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179-S182 (1999).

Sattmann, R.

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D: Appl. Phys. 28, 2181-2187 (1995).
[CrossRef]

Shen, X. K.

Singh, J. P.

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium, and neptunium by laser induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59-67 (1999).

Sturm, V.

L. Peter, V. Sturm, and R. Noll, “Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Opt. 42, 6199-6204 (2003).
[CrossRef] [PubMed]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry-applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637-649 (2001).
[CrossRef]

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D: Appl. Phys. 28, 2181-2187 (1995).
[CrossRef]

Telle, H. H.

H. H. Telle, D. C. S. Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947-960 (2001).
[CrossRef]

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179-S182 (1999).

Wintjens, P.

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B 56, 933-945 (2001).
[CrossRef]

Wu, J. D.

Yueh, F. Y.

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium, and neptunium by laser induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59-67 (1999).

Zafiropulos, V.

Zhang, H.

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium, and neptunium by laser induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59-67 (1999).

Aerosol Sci. Technol. (1)

D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30-48 (2000).
[CrossRef]

Anal. Chem. (1)

H. S. Kwong and R. M. Measures, “Trace element laser microanalyzer with freedom from chemical matrix effect,” Anal. Chem. 51, 428-432 (1979).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. A (1)

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179-S182 (1999).

Appl. Phys. Lett. (1)

S. L. Lui and N. H. Cheung, “Resonance-enhanced laser-induced plasma spectroscopy for sensitive elemental analysis: Elucidation of enhancement mechanisms,” Appl. Phys. Lett. 81, 5114-5116 (2002).
[CrossRef]

Appl. Spectrosc. (3)

J. Phys. D: Appl. Phys. (1)

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D: Appl. Phys. 28, 2181-2187 (1995).
[CrossRef]

Rec. Res. Dev. Appl. Spectrosc. (1)

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium, and neptunium by laser induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59-67 (1999).

Spectrochim. Acta B (1)

F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta B 56, 933-945 (2001).
[CrossRef]

Spectrochim. Acta Part B (2)

H. H. Telle, D. C. S. Beddows, G. W. Morris, and O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947-960 (2001).
[CrossRef]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry-applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637-649 (2001).
[CrossRef]

Other (1)

Y. Ralchenko, A. E. Kramida, J. Reader, and NIST ASD Team (2008), NIST Atomic Spectra Database (version 3.1.5)(National Institute of Standards and Technology, 2009), http://physics.nist.gov/asd3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagrams of the LIBS-LIF experimental setup.

Fig. 2
Fig. 2

Partial energy level diagram for P atoms.

Fig. 3
Fig. 3

LIBS-LIF spectra (solid curves) with the excitation wavelength at 253.40 nm and LIBS only (dashed curves) spectra for the samples with P concentration of (a)  720 ppm , (b)  440 ppm , (c)  330 ppm , (d)  120 ppm , and (e)  3.9 ppm .

Fig. 4
Fig. 4

LIBS-LIF spectra (solid curves) with the excitation wavelength at 253.56 nm and LIBS only (dashed curves) spectra for the samples with P concentration of (a)  720 ppm , (b)  440 ppm , (c)  330 ppm , (d)  120 ppm , and (e)  3.9 ppm .

Fig. 5
Fig. 5

Spectra using LIBS only for the four samples with a gate delay of 2 μs and a gate width of 20 ns .

Fig. 6
Fig. 6

LIBS-LIF spectra (solid curves) with the excitation wavelength at 253.40 nm and LIBS only (dashed curves) spectra for NIST SRM C1285 (P: 720 ppm ) with the time delays of (a)  2 μs , (b)  4 μs , (c)  6 μs , (d)  8 μs , and (e)  10 μs between the two lasers.

Fig. 7
Fig. 7

Calibration curves for P in steel with (a)  253.56 nm and (b)  253.40 nm laser excitations.

Tables (3)

Tables Icon

Table 1 Fe Atomic and Ionic Transition Lines at Wavelengths Around 253.40 and 253.56 nm [16]

Tables Icon

Table 2 Possible Emission Lines at Wavelengths Around 213.6 nm [16]

Tables Icon

Table 3 Certified Concentrations of the Possible Elements in the NIST SRM Steel Samples (ppm)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

LOD = 3 σ B S ,

Metrics