Abstract

Microlens arrays (MLAs) were fabricated based on the mass transport effect of SU-8 photoresist by a multiexposure two-beam interference technique. In particular, a direct single-step fabrication process, i.e., without developing, mask, and pattern transferring processes, is demonstrated. The effects of various parameters such as thicknesses, exposure dosage, and angle between two laser beams on MLAs were investigated. Square and hexagonal lattices of microlenses were obtained by controlling rotation angles between different exposures on SU-8 samples. In addition, microlenses with elliptical shape were fabricated by a double exposure at 0° and 60°. Finally, the surface profiles of microlenses in MLAs were characterized by atomic force microscopy.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Yu and X. -C. Yuan, “A simple method for fabrication of thick solgel microlens as a single-mode fiber coupler,” IEEE Photon. Technol. Lett. 15, 1410-1412 (2003).
    [CrossRef]
  2. P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Glückstad, “Shack-Hartmann multiple-beam optical tweezers,” Opt. Express 11, 208-214 (2003).
    [CrossRef] [PubMed]
  3. M.-K. Wei and I.-L. Su, “Method to evaluate the enhancement of luminance efficiency in planar OLED light emitting devices for microlens array,” Opt. Express 12, 5777-5782(2004).
    [CrossRef] [PubMed]
  4. H. Yang, C.-K. Chao, M.-K. Wei, and C.-P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14, 1197-1204 (2004).
    [CrossRef]
  5. H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Vertennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A Pure Appl. Opt. 4, S22-S28 (2002).
    [CrossRef]
  6. S.-K. Lee, K.-C. Lee, and S. S. Lee, “A simple method for microlens fabrication by the modified LIGA process,” J. Micromech. Microeng. 12, 334-340 (2002).
    [CrossRef]
  7. J.-J. Yang, Y.-S. Liao, and C.-F. Chen, “Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in microreplication process,” Opt. Commun. 270, 433-440(2007).
    [CrossRef]
  8. D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112-1114 (1994).
    [CrossRef]
  9. M. F. Jensen, U. Krühne, L. H. Christensen, and O. Geschke, “Refractive microlenses produced by excimer laser irradiation of poly (methyl methacrylate),” J. Micromech. Microeng. 15, 91-97 (2005).
    [CrossRef]
  10. N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60, 365-379 (2002).
    [CrossRef]
  11. M. He, X. -C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Low-cost and efficient coupling technique using reflowed solgel microlens,” Opt. Express 11, 1621-1627 (2003).
    [CrossRef] [PubMed]
  12. M. He, X. Yuan, N. Q. Ngo, W. C. Cheong, and J. Bu, “Reflow technique for the fabrication of an elliptical microlens array in solgel material,” Appl. Opt. 42, 7174-7178 (2003).
    [CrossRef]
  13. J.-Y. Huang, Y.-S. Lu, and J. A. Yeh, “Self-assembled high NA microlens arrays using global dielectricphoretic energy wells,” Opt. Express 14, 10779-10784 (2006).
    [CrossRef] [PubMed]
  14. C. Y. Wu, T. H. Chiang, and C. C. Hsu, “Fabrication of microlens array diffuser films with controllable haze distribution by combination of breath figures and replica molding methods,” Opt. Express 16, 19978-19986 (2008).
    [CrossRef] [PubMed]
  15. C. Croutxé-Barghorn, O. Soppera, and D. J. Lougnot, “Fabrication of refractive microlens arrays by visible irradiation of acrylic monomers: influence of photonic parameters,” Eur. Phys. J.: Appl. Phys. 13, 31-37 (2001).
    [CrossRef]
  16. D. J. Kang, J.-P. Jeong, and B.-S. Bae, “Direct photofabrication of focal-length-controlled microlens array using photoinduced migration mechanisms of photosensitive solgel hybrid materials,” Opt. Express 14, 8347-8353 (2006).
    [CrossRef] [PubMed]
  17. M. C. Hutley, “Optical techniques for the generation of microlens arrays,” J. Mod. Opt. 37, 253-265 (1990).
    [CrossRef]
  18. C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk'yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125 (2006).
    [CrossRef]
  19. S. Lee, Y.-C. Jeong, and J.-K. Park, “Facile fabrication of close-packed microlens arrays using photoinduced surface relief structures as templates,” Opt. Express 15, 14550-14559 (2007).
    [CrossRef] [PubMed]
  20. D. C. Meisel, M. Diem, M. Deubel, F.-P. Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18, 2964-2968 (2006).
    [CrossRef]
  21. N. D. Lai, J. H. Lin, W. P. Liang, C. C. Hsu, and C. H. Lin, “Precisely introducing defects into periodic structures by using a double-step laser scanning technique,” Appl. Opt. 45, 5777-5782 (2006).
    [CrossRef] [PubMed]
  22. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multiexposure of two-beam interference technique,” Opt. Express 13, 9605-9611 (2005).
    [CrossRef] [PubMed]
  23. S. -I. Chang and J. -B. Yoon, “Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method,” Opt. Express 12, 6366-6371 (2004).
    [CrossRef] [PubMed]

2008 (1)

2007 (2)

S. Lee, Y.-C. Jeong, and J.-K. Park, “Facile fabrication of close-packed microlens arrays using photoinduced surface relief structures as templates,” Opt. Express 15, 14550-14559 (2007).
[CrossRef] [PubMed]

J.-J. Yang, Y.-S. Liao, and C.-F. Chen, “Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in microreplication process,” Opt. Commun. 270, 433-440(2007).
[CrossRef]

2006 (5)

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk'yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125 (2006).
[CrossRef]

D. C. Meisel, M. Diem, M. Deubel, F.-P. Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18, 2964-2968 (2006).
[CrossRef]

N. D. Lai, J. H. Lin, W. P. Liang, C. C. Hsu, and C. H. Lin, “Precisely introducing defects into periodic structures by using a double-step laser scanning technique,” Appl. Opt. 45, 5777-5782 (2006).
[CrossRef] [PubMed]

D. J. Kang, J.-P. Jeong, and B.-S. Bae, “Direct photofabrication of focal-length-controlled microlens array using photoinduced migration mechanisms of photosensitive solgel hybrid materials,” Opt. Express 14, 8347-8353 (2006).
[CrossRef] [PubMed]

J.-Y. Huang, Y.-S. Lu, and J. A. Yeh, “Self-assembled high NA microlens arrays using global dielectricphoretic energy wells,” Opt. Express 14, 10779-10784 (2006).
[CrossRef] [PubMed]

2005 (2)

M. F. Jensen, U. Krühne, L. H. Christensen, and O. Geschke, “Refractive microlenses produced by excimer laser irradiation of poly (methyl methacrylate),” J. Micromech. Microeng. 15, 91-97 (2005).
[CrossRef]

N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multiexposure of two-beam interference technique,” Opt. Express 13, 9605-9611 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (4)

2002 (3)

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60, 365-379 (2002).
[CrossRef]

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Vertennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A Pure Appl. Opt. 4, S22-S28 (2002).
[CrossRef]

S.-K. Lee, K.-C. Lee, and S. S. Lee, “A simple method for microlens fabrication by the modified LIGA process,” J. Micromech. Microeng. 12, 334-340 (2002).
[CrossRef]

2001 (1)

C. Croutxé-Barghorn, O. Soppera, and D. J. Lougnot, “Fabrication of refractive microlens arrays by visible irradiation of acrylic monomers: influence of photonic parameters,” Eur. Phys. J.: Appl. Phys. 13, 31-37 (2001).
[CrossRef]

1994 (1)

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112-1114 (1994).
[CrossRef]

1990 (1)

M. C. Hutley, “Optical techniques for the generation of microlens arrays,” J. Mod. Opt. 37, 253-265 (1990).
[CrossRef]

Bae, B.-S.

Bu, J.

Busch, K.

D. C. Meisel, M. Diem, M. Deubel, F.-P. Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18, 2964-2968 (2006).
[CrossRef]

Chang, S. -I.

Chao, C.-K.

H. Yang, C.-K. Chao, M.-K. Wei, and C.-P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14, 1197-1204 (2004).
[CrossRef]

Chen, C.-F.

J.-J. Yang, Y.-S. Liao, and C.-F. Chen, “Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in microreplication process,” Opt. Commun. 270, 433-440(2007).
[CrossRef]

Chen, T.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112-1114 (1994).
[CrossRef]

Cheong, W. C.

Chiang, T. H.

Christensen, L. H.

M. F. Jensen, U. Krühne, L. H. Christensen, and O. Geschke, “Refractive microlenses produced by excimer laser irradiation of poly (methyl methacrylate),” J. Micromech. Microeng. 15, 91-97 (2005).
[CrossRef]

Cox, W. R.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112-1114 (1994).
[CrossRef]

Croutxé-Barghorn, C.

C. Croutxé-Barghorn, O. Soppera, and D. J. Lougnot, “Fabrication of refractive microlens arrays by visible irradiation of acrylic monomers: influence of photonic parameters,” Eur. Phys. J.: Appl. Phys. 13, 31-37 (2001).
[CrossRef]

Daria, V. R.

Deubel, M.

D. C. Meisel, M. Diem, M. Deubel, F.-P. Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18, 2964-2968 (2006).
[CrossRef]

Diem, M.

D. C. Meisel, M. Diem, M. Deubel, F.-P. Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18, 2964-2968 (2006).
[CrossRef]

Eriksen, R. L.

Fu, Y. Q.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60, 365-379 (2002).
[CrossRef]

Gerthsen, D.

D. C. Meisel, M. Diem, M. Deubel, F.-P. Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18, 2964-2968 (2006).
[CrossRef]

Geschke, O.

M. F. Jensen, U. Krühne, L. H. Christensen, and O. Geschke, “Refractive microlenses produced by excimer laser irradiation of poly (methyl methacrylate),” J. Micromech. Microeng. 15, 91-97 (2005).
[CrossRef]

Glückstad, J.

Hayes, D. J.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112-1114 (1994).
[CrossRef]

He, M.

Hermanne, A.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Vertennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A Pure Appl. Opt. 4, S22-S28 (2002).
[CrossRef]

Hong, M. H.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk'yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125 (2006).
[CrossRef]

Hsu, C. C.

Huang, J.-Y.

Hutley, M. C.

M. C. Hutley, “Optical techniques for the generation of microlens arrays,” J. Mod. Opt. 37, 253-265 (1990).
[CrossRef]

Jensen, M. F.

M. F. Jensen, U. Krühne, L. H. Christensen, and O. Geschke, “Refractive microlenses produced by excimer laser irradiation of poly (methyl methacrylate),” J. Micromech. Microeng. 15, 91-97 (2005).
[CrossRef]

Jeong, J.-P.

Jeong, Y.-C.

Kang, D. J.

Koh, Y. H.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60, 365-379 (2002).
[CrossRef]

Krühne, U.

M. F. Jensen, U. Krühne, L. H. Christensen, and O. Geschke, “Refractive microlenses produced by excimer laser irradiation of poly (methyl methacrylate),” J. Micromech. Microeng. 15, 91-97 (2005).
[CrossRef]

Kumar, A. S.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk'yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125 (2006).
[CrossRef]

Lai, N. D.

Lamprecht, J.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Vertennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A Pure Appl. Opt. 4, S22-S28 (2002).
[CrossRef]

Lee, K.-C.

S.-K. Lee, K.-C. Lee, and S. S. Lee, “A simple method for microlens fabrication by the modified LIGA process,” J. Micromech. Microeng. 12, 334-340 (2002).
[CrossRef]

Lee, S.

Lee, S. S.

S.-K. Lee, K.-C. Lee, and S. S. Lee, “A simple method for microlens fabrication by the modified LIGA process,” J. Micromech. Microeng. 12, 334-340 (2002).
[CrossRef]

Lee, S.-K.

S.-K. Lee, K.-C. Lee, and S. S. Lee, “A simple method for microlens fabrication by the modified LIGA process,” J. Micromech. Microeng. 12, 334-340 (2002).
[CrossRef]

Liang, W. P.

Liao, Y.-S.

J.-J. Yang, Y.-S. Liao, and C.-F. Chen, “Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in microreplication process,” Opt. Commun. 270, 433-440(2007).
[CrossRef]

Lim, C. S.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk'yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125 (2006).
[CrossRef]

Lin, C. H.

Lin, C.-P.

H. Yang, C.-K. Chao, M.-K. Wei, and C.-P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14, 1197-1204 (2004).
[CrossRef]

Lin, J. H.

Lin, Y.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk'yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125 (2006).
[CrossRef]

Linden, S.

D. C. Meisel, M. Diem, M. Deubel, F.-P. Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18, 2964-2968 (2006).
[CrossRef]

Lougnot, D. J.

C. Croutxé-Barghorn, O. Soppera, and D. J. Lougnot, “Fabrication of refractive microlens arrays by visible irradiation of acrylic monomers: influence of photonic parameters,” Eur. Phys. J.: Appl. Phys. 13, 31-37 (2001).
[CrossRef]

Lu, Y.-S.

Luk'yanchuk, B. S.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk'yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125 (2006).
[CrossRef]

MacFarlane, D. L.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112-1114 (1994).
[CrossRef]

Meisel, D. C.

D. C. Meisel, M. Diem, M. Deubel, F.-P. Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18, 2964-2968 (2006).
[CrossRef]

Narayan, V.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112-1114 (1994).
[CrossRef]

Ngo, N. Q.

Ong, N. S.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60, 365-379 (2002).
[CrossRef]

Ottevaere, H.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Vertennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A Pure Appl. Opt. 4, S22-S28 (2002).
[CrossRef]

Park, J.-K.

Rahman, M.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk'yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125 (2006).
[CrossRef]

Rodrigo, P. J.

Schwider, J.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Vertennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A Pure Appl. Opt. 4, S22-S28 (2002).
[CrossRef]

Soppera, O.

C. Croutxé-Barghorn, O. Soppera, and D. J. Lougnot, “Fabrication of refractive microlens arrays by visible irradiation of acrylic monomers: influence of photonic parameters,” Eur. Phys. J.: Appl. Phys. 13, 31-37 (2001).
[CrossRef]

Su, I.-L.

Tao, S. H.

Tatum, J. A.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112-1114 (1994).
[CrossRef]

Thienpont, H.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Vertennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A Pure Appl. Opt. 4, S22-S28 (2002).
[CrossRef]

Vertennicoff, I.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Vertennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A Pure Appl. Opt. 4, S22-S28 (2002).
[CrossRef]

Volckaerts, B.

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Vertennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A Pure Appl. Opt. 4, S22-S28 (2002).
[CrossRef]

Wegener, M.

D. C. Meisel, M. Diem, M. Deubel, F.-P. Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18, 2964-2968 (2006).
[CrossRef]

Wei, M.-K.

M.-K. Wei and I.-L. Su, “Method to evaluate the enhancement of luminance efficiency in planar OLED light emitting devices for microlens array,” Opt. Express 12, 5777-5782(2004).
[CrossRef] [PubMed]

H. Yang, C.-K. Chao, M.-K. Wei, and C.-P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14, 1197-1204 (2004).
[CrossRef]

Willard, F.-P.

D. C. Meisel, M. Diem, M. Deubel, F.-P. Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18, 2964-2968 (2006).
[CrossRef]

Wu, C. Y.

Xie, Q.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk'yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125 (2006).
[CrossRef]

Yang, H.

H. Yang, C.-K. Chao, M.-K. Wei, and C.-P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14, 1197-1204 (2004).
[CrossRef]

Yang, J.-J.

J.-J. Yang, Y.-S. Liao, and C.-F. Chen, “Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in microreplication process,” Opt. Commun. 270, 433-440(2007).
[CrossRef]

Yeh, J. A.

Yoon, J. -B.

Yu, W.

W. Yu and X. -C. Yuan, “A simple method for fabrication of thick solgel microlens as a single-mode fiber coupler,” IEEE Photon. Technol. Lett. 15, 1410-1412 (2003).
[CrossRef]

Yuan, X.

Yuan, X. -C.

W. Yu and X. -C. Yuan, “A simple method for fabrication of thick solgel microlens as a single-mode fiber coupler,” IEEE Photon. Technol. Lett. 15, 1410-1412 (2003).
[CrossRef]

M. He, X. -C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Low-cost and efficient coupling technique using reflowed solgel microlens,” Opt. Express 11, 1621-1627 (2003).
[CrossRef] [PubMed]

Adv. Mater. (1)

D. C. Meisel, M. Diem, M. Deubel, F.-P. Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18, 2964-2968 (2006).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk'yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 191125 (2006).
[CrossRef]

Eur. Phys. J.: Appl. Phys. (1)

C. Croutxé-Barghorn, O. Soppera, and D. J. Lougnot, “Fabrication of refractive microlens arrays by visible irradiation of acrylic monomers: influence of photonic parameters,” Eur. Phys. J.: Appl. Phys. 13, 31-37 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112-1114 (1994).
[CrossRef]

W. Yu and X. -C. Yuan, “A simple method for fabrication of thick solgel microlens as a single-mode fiber coupler,” IEEE Photon. Technol. Lett. 15, 1410-1412 (2003).
[CrossRef]

J. Micromech. Microeng. (3)

M. F. Jensen, U. Krühne, L. H. Christensen, and O. Geschke, “Refractive microlenses produced by excimer laser irradiation of poly (methyl methacrylate),” J. Micromech. Microeng. 15, 91-97 (2005).
[CrossRef]

H. Yang, C.-K. Chao, M.-K. Wei, and C.-P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14, 1197-1204 (2004).
[CrossRef]

S.-K. Lee, K.-C. Lee, and S. S. Lee, “A simple method for microlens fabrication by the modified LIGA process,” J. Micromech. Microeng. 12, 334-340 (2002).
[CrossRef]

J. Mod. Opt. (1)

M. C. Hutley, “Optical techniques for the generation of microlens arrays,” J. Mod. Opt. 37, 253-265 (1990).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Vertennicoff, and H. Thienpont, “Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization,” J. Opt. A Pure Appl. Opt. 4, S22-S28 (2002).
[CrossRef]

Microelectron. Eng. (1)

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60, 365-379 (2002).
[CrossRef]

Opt. Commun. (1)

J.-J. Yang, Y.-S. Liao, and C.-F. Chen, “Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in microreplication process,” Opt. Commun. 270, 433-440(2007).
[CrossRef]

Opt. Express (9)

P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Glückstad, “Shack-Hartmann multiple-beam optical tweezers,” Opt. Express 11, 208-214 (2003).
[CrossRef] [PubMed]

M. He, X. -C. Yuan, N. Q. Ngo, J. Bu, and S. H. Tao, “Low-cost and efficient coupling technique using reflowed solgel microlens,” Opt. Express 11, 1621-1627 (2003).
[CrossRef] [PubMed]

M.-K. Wei and I.-L. Su, “Method to evaluate the enhancement of luminance efficiency in planar OLED light emitting devices for microlens array,” Opt. Express 12, 5777-5782(2004).
[CrossRef] [PubMed]

S. -I. Chang and J. -B. Yoon, “Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method,” Opt. Express 12, 6366-6371 (2004).
[CrossRef] [PubMed]

N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multiexposure of two-beam interference technique,” Opt. Express 13, 9605-9611 (2005).
[CrossRef] [PubMed]

D. J. Kang, J.-P. Jeong, and B.-S. Bae, “Direct photofabrication of focal-length-controlled microlens array using photoinduced migration mechanisms of photosensitive solgel hybrid materials,” Opt. Express 14, 8347-8353 (2006).
[CrossRef] [PubMed]

J.-Y. Huang, Y.-S. Lu, and J. A. Yeh, “Self-assembled high NA microlens arrays using global dielectricphoretic energy wells,” Opt. Express 14, 10779-10784 (2006).
[CrossRef] [PubMed]

S. Lee, Y.-C. Jeong, and J.-K. Park, “Facile fabrication of close-packed microlens arrays using photoinduced surface relief structures as templates,” Opt. Express 15, 14550-14559 (2007).
[CrossRef] [PubMed]

C. Y. Wu, T. H. Chiang, and C. C. Hsu, “Fabrication of microlens array diffuser films with controllable haze distribution by combination of breath figures and replica molding methods,” Opt. Express 16, 19978-19986 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Illustration of the experimental process.

Fig. 2
Fig. 2

Optical microscopy images of (a) square-type and (b) hexagonal-type SU-8 MLAs.

Fig. 3
Fig. 3

AFM images of a square lattice MLA: (a) top view, (b) surface profiles of microlenses in the MLA. (c) and (d) Spherical profiles (black square points) of a single microlens in the X and Y direction marked in (a).

Fig. 4
Fig. 4

AFM images of a hexagonal lattice MLA: (a) top view, (b) surface profiles of microlenses in the MLA. (c) and (d) Spherical profiles (black square points) of a microlens in the X and Y direction marked in (a).

Fig. 5
Fig. 5

(a) Height and (b) radius of curvature of microlenses in MLAs versus exposure dosage.

Fig. 6
Fig. 6

Height and radius of curvature of microlenses in MLAs versus photoresist thickness.

Fig. 7
Fig. 7

AFM images of elliptical-shaped microlenses in MLAs: (a) top view, (b) and (c)  spherical profiles (black square points) of a single microlens along the long- and short-axes, respectively.

Fig. 8
Fig. 8

(a) Height and (b) radius of curvature of elliptical microlenses in MLAs versus exposure dosage.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I interference = | E 1 + E 2 | 2 t ,
Λ = λ 2 sin θ ,
I multiple = i I α i .
R C = H 2 + ( D 2 ) 2 2 H ,
f = R C n 1 ,

Metrics