Abstract

A temporal filtering technique, complementary to spectral filtering, has been developed for laser-induced fluorescence measurements. The filter is applicable in cases where the laser-induced interfering signals and the signal of interest have different temporal characteristics. For the interfering-signal discrimination a picosecond laser system along with a fast time-gated intensified CCD camera were used. In order to demonstrate and evaluate the temporal filtering concept two measurement situations were investigated; one where toluene fluorescence was discriminated from interfering luminescence of an aluminum surface, and in the other one Mie scattering signals from a water aerosol were filtered out from acetone fluorescence images. A mathematical model was developed to simulate and evaluate the temporal filter for a general measurement situation based on pulsed-laser excitation together with time-gated detection. Using system parameters measured with a streak camera, the model was validated for LIF imaging of acetone vapor inside a water aerosol. The results show that the temporal filter is capable of efficient suppression of interfering signal contributions. The photophysical properties of several species commonly studied by LIF in combustion research have been listed and discussed to provide guidelines for optimum use of the technique.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, 1996).
  2. K.Kohse-Höinghaus and J.B.Jeffries eds., Applied Combustion Diagnostics (Taylor & Francis, 2002).
  3. T. Fuyuto, H. Kronemayer, B. Lewerich, W. Koban, K. Akihama, and C. Schulz, “Laser-based temperature imaging close to surfaces with toluene and NO-LIF,” J. Phys. Conf. Ser. 45, 69-76 (2006).
    [CrossRef]
  4. W. G. Bessler and C. Schulz, “Quantitative multi-line NO-LIF temperature imaging,” Appl. Phys. B 78, 519-533 (2004).
    [CrossRef]
  5. M. R. Schrewe and J. B. Ghandhi, “Near-wall formaldehyde planar laser-induced fluorescence measurements during HCCI combustion,” Proc. Combust. Inst. 31, 2871-2878(2007).
    [CrossRef]
  6. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley--Interscience, 1983).
  7. T. Edwards, D. P. Weaver, and D. H. Campbell, “Laser-induced fluorescence in high pressure solid propellant flames,” Appl. Opt. 26, 3496-3509 (1987).
    [CrossRef] [PubMed]
  8. C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature, and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
    [CrossRef]
  9. R. E. Stevens, H. Ma, C. R. Stone, H. L. Walmsley, and R. Cracknell, “On planar laser-induced fluorescence with multi-component fuel and tracer design for quantitative determination of fuel concentration in internal combustion engines,” Proc. IMechE Part D: J. Automobile Engineering Vol. 221 (Professional Engineering Publishing, 2007), pp 713-724.
    [CrossRef]
  10. F. Ossler and M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone and acetone: Implications to combustion diagnostics,” Appl. Phys. B 64, 493-502 (1997).
    [CrossRef]
  11. F. P. Zimmermann, W. Koban, C. M. Roth, D.-P. Herten, and C. Schulz, “Fluorescence lifetime of gas-phase toluene at elevated temperatures,” Chem. Phys. Lett. 426, 248-251 (2006).
    [CrossRef]
  12. Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151-162 (2004).
    [CrossRef]
  13. W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940-2945 (2004).
    [CrossRef]
  14. A. V. Lugovskoy, T. Usmanov, and A. V. Zinoviev, “Laser-induced non-equilibrium phenomena on a metal surface,” J. Phys. D 27, 628-633 (1994).
    [CrossRef]
  15. R. Gonzalez, R. Woods, and S. Eddins, Digital Image Processing Using MATLAB (Prentice Hall, 2003).
  16. S. Hamilton and A. Mottola, “Investigation of the on/off ratio of a gated intensifier,” Proc. SPIE 4796, 83-89 (2003).
    [CrossRef]
  17. A. P. Yalin and R. B. Miles, “Ultraviolet filtered Rayleigh scattering temperature measurements with a mercury filter,” Opt. Lett. 24, 590-592 (1999).
    [CrossRef]
  18. P. H. Kaye, W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, and S. J. Barrington, “Single particle multichannel bio-aerosol fluorescence sensor,” Opt. Express 13, 3583-3593 (2005).
    [CrossRef] [PubMed]
  19. M. Köllner and P. Monkhouse, “Time-resolved LIF of OH in the flame front of premixed and diffusion flames at atmospheric pressure,” Appl. Phys. B 61, 499-503 (1995).
    [CrossRef]
  20. J. B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, 1988).
  21. M. C. Thurber, F. Grisch, B. J. Kirby, M. Votsmeier, and R. K. Hanson, “Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics,” Appl. Opt. 37, 4963-4978 (1998).
    [CrossRef]
  22. M. C. Thurber and R. K. Hanson, “Pressure and composition dependences of acetone laser-induced fluorescence with excitation at 248, 266, and 308 nm,” Appl. Phys. B 69, 229-240(1999).
    [CrossRef]
  23. W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545-1553 (2005).
    [CrossRef]
  24. I. Glassman, Combustion, 3rd ed. (Academic, 1996).
  25. J. Tobai and T. Dreier, “Effective A-state fluorescence lifetime of formaldehyde in atmospheric pressure CH4/air flames,” Appl. Phys. B 74, 101-104 (2002).
    [CrossRef]
  26. C. Brackmann, J. Bood, M. Aldén, G. Pengloan, and Ö. Andersson, “Quantitative measurements of species and temperature in a DME-air counterflow diffusion flame using laser diagnostic methods,” Combust. Sci. Technol. 178, 1165-1184 (2006).
    [CrossRef]
  27. T. Metz, X. Bai, F. Ossler, and M. Aldén, “Absorption of formaldehyde (H2CO) in the A˜1A2←X˜1A1 band system at elevated temperatures and pressures,” Spectrochim. Acta Part A 60, 1043-1053 (2004).
    [CrossRef]
  28. J. D. Koch, R. K. Hanson, W. Koban, and C. Schulz, “Rayleigh-calibrated fluorescence quantum yield measurements of acetone and 3-pentanone,” Appl. Opt. 43, 5901-5910(2004).
    [CrossRef] [PubMed]
  29. C. S. Burton and W. A. Noyes, “Electronic energy relaxation in toluene vapor,” J. Chem. Phys. 49, 1705-1714 (1968).
    [CrossRef]
  30. C. G. Hickman, J. R. Gascooke, and W. D. Lawrance, “The S1−S0(1B21A1) transition of jetcooled toluene: excitation and dispersed fluorescence spectra, fluorescence lifetimes, and intramolecular vibrational energy redistribution,” J. Chem. Phys. 104, 4887-4901 (1996).
    [CrossRef]
  31. W. Koban, J. B. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperature,” Appl. Phys. B 80, 777-784 (2005).
    [CrossRef]
  32. K. Shibuya, P. W. Fairchild, and E. K. C. Lee, “Single rotational level fluorescence quantum yields, radiative lifetimes, and nonradiative decay rates of S1D2CO and H2CO(A˜1A2,41): Rotational dependence,” J. Chem. Phys. 75, 3397-3406 (1981).
    [CrossRef]

2007

M. R. Schrewe and J. B. Ghandhi, “Near-wall formaldehyde planar laser-induced fluorescence measurements during HCCI combustion,” Proc. Combust. Inst. 31, 2871-2878(2007).
[CrossRef]

2006

C. Brackmann, J. Bood, M. Aldén, G. Pengloan, and Ö. Andersson, “Quantitative measurements of species and temperature in a DME-air counterflow diffusion flame using laser diagnostic methods,” Combust. Sci. Technol. 178, 1165-1184 (2006).
[CrossRef]

F. P. Zimmermann, W. Koban, C. M. Roth, D.-P. Herten, and C. Schulz, “Fluorescence lifetime of gas-phase toluene at elevated temperatures,” Chem. Phys. Lett. 426, 248-251 (2006).
[CrossRef]

T. Fuyuto, H. Kronemayer, B. Lewerich, W. Koban, K. Akihama, and C. Schulz, “Laser-based temperature imaging close to surfaces with toluene and NO-LIF,” J. Phys. Conf. Ser. 45, 69-76 (2006).
[CrossRef]

2005

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature, and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545-1553 (2005).
[CrossRef]

W. Koban, J. B. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperature,” Appl. Phys. B 80, 777-784 (2005).
[CrossRef]

P. H. Kaye, W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, and S. J. Barrington, “Single particle multichannel bio-aerosol fluorescence sensor,” Opt. Express 13, 3583-3593 (2005).
[CrossRef] [PubMed]

2004

J. D. Koch, R. K. Hanson, W. Koban, and C. Schulz, “Rayleigh-calibrated fluorescence quantum yield measurements of acetone and 3-pentanone,” Appl. Opt. 43, 5901-5910(2004).
[CrossRef] [PubMed]

T. Metz, X. Bai, F. Ossler, and M. Aldén, “Absorption of formaldehyde (H2CO) in the A˜1A2←X˜1A1 band system at elevated temperatures and pressures,” Spectrochim. Acta Part A 60, 1043-1053 (2004).
[CrossRef]

W. G. Bessler and C. Schulz, “Quantitative multi-line NO-LIF temperature imaging,” Appl. Phys. B 78, 519-533 (2004).
[CrossRef]

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151-162 (2004).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940-2945 (2004).
[CrossRef]

2003

S. Hamilton and A. Mottola, “Investigation of the on/off ratio of a gated intensifier,” Proc. SPIE 4796, 83-89 (2003).
[CrossRef]

2002

J. Tobai and T. Dreier, “Effective A-state fluorescence lifetime of formaldehyde in atmospheric pressure CH4/air flames,” Appl. Phys. B 74, 101-104 (2002).
[CrossRef]

1999

M. C. Thurber and R. K. Hanson, “Pressure and composition dependences of acetone laser-induced fluorescence with excitation at 248, 266, and 308 nm,” Appl. Phys. B 69, 229-240(1999).
[CrossRef]

A. P. Yalin and R. B. Miles, “Ultraviolet filtered Rayleigh scattering temperature measurements with a mercury filter,” Opt. Lett. 24, 590-592 (1999).
[CrossRef]

1998

1997

F. Ossler and M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone and acetone: Implications to combustion diagnostics,” Appl. Phys. B 64, 493-502 (1997).
[CrossRef]

1996

C. G. Hickman, J. R. Gascooke, and W. D. Lawrance, “The S1−S0(1B21A1) transition of jetcooled toluene: excitation and dispersed fluorescence spectra, fluorescence lifetimes, and intramolecular vibrational energy redistribution,” J. Chem. Phys. 104, 4887-4901 (1996).
[CrossRef]

1995

M. Köllner and P. Monkhouse, “Time-resolved LIF of OH in the flame front of premixed and diffusion flames at atmospheric pressure,” Appl. Phys. B 61, 499-503 (1995).
[CrossRef]

1994

A. V. Lugovskoy, T. Usmanov, and A. V. Zinoviev, “Laser-induced non-equilibrium phenomena on a metal surface,” J. Phys. D 27, 628-633 (1994).
[CrossRef]

1987

1981

K. Shibuya, P. W. Fairchild, and E. K. C. Lee, “Single rotational level fluorescence quantum yields, radiative lifetimes, and nonradiative decay rates of S1D2CO and H2CO(A˜1A2,41): Rotational dependence,” J. Chem. Phys. 75, 3397-3406 (1981).
[CrossRef]

1968

C. S. Burton and W. A. Noyes, “Electronic energy relaxation in toluene vapor,” J. Chem. Phys. 49, 1705-1714 (1968).
[CrossRef]

Akihama, K.

T. Fuyuto, H. Kronemayer, B. Lewerich, W. Koban, K. Akihama, and C. Schulz, “Laser-based temperature imaging close to surfaces with toluene and NO-LIF,” J. Phys. Conf. Ser. 45, 69-76 (2006).
[CrossRef]

Aldén, M.

C. Brackmann, J. Bood, M. Aldén, G. Pengloan, and Ö. Andersson, “Quantitative measurements of species and temperature in a DME-air counterflow diffusion flame using laser diagnostic methods,” Combust. Sci. Technol. 178, 1165-1184 (2006).
[CrossRef]

T. Metz, X. Bai, F. Ossler, and M. Aldén, “Absorption of formaldehyde (H2CO) in the A˜1A2←X˜1A1 band system at elevated temperatures and pressures,” Spectrochim. Acta Part A 60, 1043-1053 (2004).
[CrossRef]

F. Ossler and M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone and acetone: Implications to combustion diagnostics,” Appl. Phys. B 64, 493-502 (1997).
[CrossRef]

Andersson, Ö.

C. Brackmann, J. Bood, M. Aldén, G. Pengloan, and Ö. Andersson, “Quantitative measurements of species and temperature in a DME-air counterflow diffusion flame using laser diagnostic methods,” Combust. Sci. Technol. 178, 1165-1184 (2006).
[CrossRef]

Bai, X.

T. Metz, X. Bai, F. Ossler, and M. Aldén, “Absorption of formaldehyde (H2CO) in the A˜1A2←X˜1A1 band system at elevated temperatures and pressures,” Spectrochim. Acta Part A 60, 1043-1053 (2004).
[CrossRef]

Barrington, S. J.

Baxter, K. L.

Bessler, W. G.

W. G. Bessler and C. Schulz, “Quantitative multi-line NO-LIF temperature imaging,” Appl. Phys. B 78, 519-533 (2004).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley--Interscience, 1983).

Bood, J.

C. Brackmann, J. Bood, M. Aldén, G. Pengloan, and Ö. Andersson, “Quantitative measurements of species and temperature in a DME-air counterflow diffusion flame using laser diagnostic methods,” Combust. Sci. Technol. 178, 1165-1184 (2006).
[CrossRef]

Brackmann, C.

C. Brackmann, J. Bood, M. Aldén, G. Pengloan, and Ö. Andersson, “Quantitative measurements of species and temperature in a DME-air counterflow diffusion flame using laser diagnostic methods,” Combust. Sci. Technol. 178, 1165-1184 (2006).
[CrossRef]

Burton, C. S.

C. S. Burton and W. A. Noyes, “Electronic energy relaxation in toluene vapor,” J. Chem. Phys. 49, 1705-1714 (1968).
[CrossRef]

Campbell, D. H.

Cracknell, R.

R. E. Stevens, H. Ma, C. R. Stone, H. L. Walmsley, and R. Cracknell, “On planar laser-induced fluorescence with multi-component fuel and tracer design for quantitative determination of fuel concentration in internal combustion engines,” Proc. IMechE Part D: J. Automobile Engineering Vol. 221 (Professional Engineering Publishing, 2007), pp 713-724.
[CrossRef]

Dreier, T.

J. Tobai and T. Dreier, “Effective A-state fluorescence lifetime of formaldehyde in atmospheric pressure CH4/air flames,” Appl. Phys. B 74, 101-104 (2002).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, 1996).

Eddins, S.

R. Gonzalez, R. Woods, and S. Eddins, Digital Image Processing Using MATLAB (Prentice Hall, 2003).

Edwards, T.

Fairchild, P. W.

K. Shibuya, P. W. Fairchild, and E. K. C. Lee, “Single rotational level fluorescence quantum yields, radiative lifetimes, and nonradiative decay rates of S1D2CO and H2CO(A˜1A2,41): Rotational dependence,” J. Chem. Phys. 75, 3397-3406 (1981).
[CrossRef]

Fang, Q.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151-162 (2004).
[CrossRef]

Foot, E. V.

Fuyuto, T.

T. Fuyuto, H. Kronemayer, B. Lewerich, W. Koban, K. Akihama, and C. Schulz, “Laser-based temperature imaging close to surfaces with toluene and NO-LIF,” J. Phys. Conf. Ser. 45, 69-76 (2006).
[CrossRef]

Gascooke, J. R.

C. G. Hickman, J. R. Gascooke, and W. D. Lawrance, “The S1−S0(1B21A1) transition of jetcooled toluene: excitation and dispersed fluorescence spectra, fluorescence lifetimes, and intramolecular vibrational energy redistribution,” J. Chem. Phys. 104, 4887-4901 (1996).
[CrossRef]

Ghandhi, J. B.

M. R. Schrewe and J. B. Ghandhi, “Near-wall formaldehyde planar laser-induced fluorescence measurements during HCCI combustion,” Proc. Combust. Inst. 31, 2871-2878(2007).
[CrossRef]

Glassman, I.

I. Glassman, Combustion, 3rd ed. (Academic, 1996).

Gonzalez, R.

R. Gonzalez, R. Woods, and S. Eddins, Digital Image Processing Using MATLAB (Prentice Hall, 2003).

Grisch, F.

Hamilton, S.

S. Hamilton and A. Mottola, “Investigation of the on/off ratio of a gated intensifier,” Proc. SPIE 4796, 83-89 (2003).
[CrossRef]

Hanson, R. K.

W. Koban, J. B. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperature,” Appl. Phys. B 80, 777-784 (2005).
[CrossRef]

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545-1553 (2005).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940-2945 (2004).
[CrossRef]

J. D. Koch, R. K. Hanson, W. Koban, and C. Schulz, “Rayleigh-calibrated fluorescence quantum yield measurements of acetone and 3-pentanone,” Appl. Opt. 43, 5901-5910(2004).
[CrossRef] [PubMed]

M. C. Thurber and R. K. Hanson, “Pressure and composition dependences of acetone laser-induced fluorescence with excitation at 248, 266, and 308 nm,” Appl. Phys. B 69, 229-240(1999).
[CrossRef]

M. C. Thurber, F. Grisch, B. J. Kirby, M. Votsmeier, and R. K. Hanson, “Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics,” Appl. Opt. 37, 4963-4978 (1998).
[CrossRef]

Herten, D.-P.

F. P. Zimmermann, W. Koban, C. M. Roth, D.-P. Herten, and C. Schulz, “Fluorescence lifetime of gas-phase toluene at elevated temperatures,” Chem. Phys. Lett. 426, 248-251 (2006).
[CrossRef]

Heywood, J. B.

J. B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, 1988).

Hickman, C. G.

C. G. Hickman, J. R. Gascooke, and W. D. Lawrance, “The S1−S0(1B21A1) transition of jetcooled toluene: excitation and dispersed fluorescence spectra, fluorescence lifetimes, and intramolecular vibrational energy redistribution,” J. Chem. Phys. 104, 4887-4901 (1996).
[CrossRef]

Hirst, E.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley--Interscience, 1983).

Jo, J. A.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151-162 (2004).
[CrossRef]

Kaye, P. H.

Kirby, B. J.

Koban, W.

F. P. Zimmermann, W. Koban, C. M. Roth, D.-P. Herten, and C. Schulz, “Fluorescence lifetime of gas-phase toluene at elevated temperatures,” Chem. Phys. Lett. 426, 248-251 (2006).
[CrossRef]

T. Fuyuto, H. Kronemayer, B. Lewerich, W. Koban, K. Akihama, and C. Schulz, “Laser-based temperature imaging close to surfaces with toluene and NO-LIF,” J. Phys. Conf. Ser. 45, 69-76 (2006).
[CrossRef]

W. Koban, J. B. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperature,” Appl. Phys. B 80, 777-784 (2005).
[CrossRef]

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545-1553 (2005).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940-2945 (2004).
[CrossRef]

J. D. Koch, R. K. Hanson, W. Koban, and C. Schulz, “Rayleigh-calibrated fluorescence quantum yield measurements of acetone and 3-pentanone,” Appl. Opt. 43, 5901-5910(2004).
[CrossRef] [PubMed]

Koch, J. B.

W. Koban, J. B. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperature,” Appl. Phys. B 80, 777-784 (2005).
[CrossRef]

Koch, J. D.

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545-1553 (2005).
[CrossRef]

J. D. Koch, R. K. Hanson, W. Koban, and C. Schulz, “Rayleigh-calibrated fluorescence quantum yield measurements of acetone and 3-pentanone,” Appl. Opt. 43, 5901-5910(2004).
[CrossRef] [PubMed]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940-2945 (2004).
[CrossRef]

Köllner, M.

M. Köllner and P. Monkhouse, “Time-resolved LIF of OH in the flame front of premixed and diffusion flames at atmospheric pressure,” Appl. Phys. B 61, 499-503 (1995).
[CrossRef]

Kronemayer, H.

T. Fuyuto, H. Kronemayer, B. Lewerich, W. Koban, K. Akihama, and C. Schulz, “Laser-based temperature imaging close to surfaces with toluene and NO-LIF,” J. Phys. Conf. Ser. 45, 69-76 (2006).
[CrossRef]

Lawrance, W. D.

C. G. Hickman, J. R. Gascooke, and W. D. Lawrance, “The S1−S0(1B21A1) transition of jetcooled toluene: excitation and dispersed fluorescence spectra, fluorescence lifetimes, and intramolecular vibrational energy redistribution,” J. Chem. Phys. 104, 4887-4901 (1996).
[CrossRef]

Lee, E. K. C.

K. Shibuya, P. W. Fairchild, and E. K. C. Lee, “Single rotational level fluorescence quantum yields, radiative lifetimes, and nonradiative decay rates of S1D2CO and H2CO(A˜1A2,41): Rotational dependence,” J. Chem. Phys. 75, 3397-3406 (1981).
[CrossRef]

Lewerich, B.

T. Fuyuto, H. Kronemayer, B. Lewerich, W. Koban, K. Akihama, and C. Schulz, “Laser-based temperature imaging close to surfaces with toluene and NO-LIF,” J. Phys. Conf. Ser. 45, 69-76 (2006).
[CrossRef]

Lugovskoy, A. V.

A. V. Lugovskoy, T. Usmanov, and A. V. Zinoviev, “Laser-induced non-equilibrium phenomena on a metal surface,” J. Phys. D 27, 628-633 (1994).
[CrossRef]

Ma, H.

R. E. Stevens, H. Ma, C. R. Stone, H. L. Walmsley, and R. Cracknell, “On planar laser-induced fluorescence with multi-component fuel and tracer design for quantitative determination of fuel concentration in internal combustion engines,” Proc. IMechE Part D: J. Automobile Engineering Vol. 221 (Professional Engineering Publishing, 2007), pp 713-724.
[CrossRef]

Marcu, L.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151-162 (2004).
[CrossRef]

Metz, T.

T. Metz, X. Bai, F. Ossler, and M. Aldén, “Absorption of formaldehyde (H2CO) in the A˜1A2←X˜1A1 band system at elevated temperatures and pressures,” Spectrochim. Acta Part A 60, 1043-1053 (2004).
[CrossRef]

Miles, R. B.

Monkhouse, P.

M. Köllner and P. Monkhouse, “Time-resolved LIF of OH in the flame front of premixed and diffusion flames at atmospheric pressure,” Appl. Phys. B 61, 499-503 (1995).
[CrossRef]

Mottola, A.

S. Hamilton and A. Mottola, “Investigation of the on/off ratio of a gated intensifier,” Proc. SPIE 4796, 83-89 (2003).
[CrossRef]

Noyes, W. A.

C. S. Burton and W. A. Noyes, “Electronic energy relaxation in toluene vapor,” J. Chem. Phys. 49, 1705-1714 (1968).
[CrossRef]

Ossler, F.

T. Metz, X. Bai, F. Ossler, and M. Aldén, “Absorption of formaldehyde (H2CO) in the A˜1A2←X˜1A1 band system at elevated temperatures and pressures,” Spectrochim. Acta Part A 60, 1043-1053 (2004).
[CrossRef]

F. Ossler and M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone and acetone: Implications to combustion diagnostics,” Appl. Phys. B 64, 493-502 (1997).
[CrossRef]

Papaioannou, T.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151-162 (2004).
[CrossRef]

Pengloan, G.

C. Brackmann, J. Bood, M. Aldén, G. Pengloan, and Ö. Andersson, “Quantitative measurements of species and temperature in a DME-air counterflow diffusion flame using laser diagnostic methods,” Combust. Sci. Technol. 178, 1165-1184 (2006).
[CrossRef]

Roth, C. M.

F. P. Zimmermann, W. Koban, C. M. Roth, D.-P. Herten, and C. Schulz, “Fluorescence lifetime of gas-phase toluene at elevated temperatures,” Chem. Phys. Lett. 426, 248-251 (2006).
[CrossRef]

Schrewe, M. R.

M. R. Schrewe and J. B. Ghandhi, “Near-wall formaldehyde planar laser-induced fluorescence measurements during HCCI combustion,” Proc. Combust. Inst. 31, 2871-2878(2007).
[CrossRef]

Schulz, C.

T. Fuyuto, H. Kronemayer, B. Lewerich, W. Koban, K. Akihama, and C. Schulz, “Laser-based temperature imaging close to surfaces with toluene and NO-LIF,” J. Phys. Conf. Ser. 45, 69-76 (2006).
[CrossRef]

F. P. Zimmermann, W. Koban, C. M. Roth, D.-P. Herten, and C. Schulz, “Fluorescence lifetime of gas-phase toluene at elevated temperatures,” Chem. Phys. Lett. 426, 248-251 (2006).
[CrossRef]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature, and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

W. Koban, J. B. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperature,” Appl. Phys. B 80, 777-784 (2005).
[CrossRef]

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545-1553 (2005).
[CrossRef]

W. G. Bessler and C. Schulz, “Quantitative multi-line NO-LIF temperature imaging,” Appl. Phys. B 78, 519-533 (2004).
[CrossRef]

J. D. Koch, R. K. Hanson, W. Koban, and C. Schulz, “Rayleigh-calibrated fluorescence quantum yield measurements of acetone and 3-pentanone,” Appl. Opt. 43, 5901-5910(2004).
[CrossRef] [PubMed]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940-2945 (2004).
[CrossRef]

Shastry, K.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151-162 (2004).
[CrossRef]

Shibuya, K.

K. Shibuya, P. W. Fairchild, and E. K. C. Lee, “Single rotational level fluorescence quantum yields, radiative lifetimes, and nonradiative decay rates of S1D2CO and H2CO(A˜1A2,41): Rotational dependence,” J. Chem. Phys. 75, 3397-3406 (1981).
[CrossRef]

Sick, V.

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature, and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545-1553 (2005).
[CrossRef]

Stanley, W. R.

Stevens, R. E.

R. E. Stevens, H. Ma, C. R. Stone, H. L. Walmsley, and R. Cracknell, “On planar laser-induced fluorescence with multi-component fuel and tracer design for quantitative determination of fuel concentration in internal combustion engines,” Proc. IMechE Part D: J. Automobile Engineering Vol. 221 (Professional Engineering Publishing, 2007), pp 713-724.
[CrossRef]

Stone, C. R.

R. E. Stevens, H. Ma, C. R. Stone, H. L. Walmsley, and R. Cracknell, “On planar laser-induced fluorescence with multi-component fuel and tracer design for quantitative determination of fuel concentration in internal combustion engines,” Proc. IMechE Part D: J. Automobile Engineering Vol. 221 (Professional Engineering Publishing, 2007), pp 713-724.
[CrossRef]

Thurber, M. C.

M. C. Thurber and R. K. Hanson, “Pressure and composition dependences of acetone laser-induced fluorescence with excitation at 248, 266, and 308 nm,” Appl. Phys. B 69, 229-240(1999).
[CrossRef]

M. C. Thurber, F. Grisch, B. J. Kirby, M. Votsmeier, and R. K. Hanson, “Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics,” Appl. Opt. 37, 4963-4978 (1998).
[CrossRef]

Tobai, J.

J. Tobai and T. Dreier, “Effective A-state fluorescence lifetime of formaldehyde in atmospheric pressure CH4/air flames,” Appl. Phys. B 74, 101-104 (2002).
[CrossRef]

Usmanov, T.

A. V. Lugovskoy, T. Usmanov, and A. V. Zinoviev, “Laser-induced non-equilibrium phenomena on a metal surface,” J. Phys. D 27, 628-633 (1994).
[CrossRef]

Vaitha, R.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151-162 (2004).
[CrossRef]

Votsmeier, M.

Walmsley, H. L.

R. E. Stevens, H. Ma, C. R. Stone, H. L. Walmsley, and R. Cracknell, “On planar laser-induced fluorescence with multi-component fuel and tracer design for quantitative determination of fuel concentration in internal combustion engines,” Proc. IMechE Part D: J. Automobile Engineering Vol. 221 (Professional Engineering Publishing, 2007), pp 713-724.
[CrossRef]

Weaver, D. P.

Wermuth, N.

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545-1553 (2005).
[CrossRef]

Woods, R.

R. Gonzalez, R. Woods, and S. Eddins, Digital Image Processing Using MATLAB (Prentice Hall, 2003).

Yalin, A. P.

Zimmermann, F. P.

F. P. Zimmermann, W. Koban, C. M. Roth, D.-P. Herten, and C. Schulz, “Fluorescence lifetime of gas-phase toluene at elevated temperatures,” Chem. Phys. Lett. 426, 248-251 (2006).
[CrossRef]

Zinoviev, A. V.

A. V. Lugovskoy, T. Usmanov, and A. V. Zinoviev, “Laser-induced non-equilibrium phenomena on a metal surface,” J. Phys. D 27, 628-633 (1994).
[CrossRef]

Appl. Opt.

Appl. Phys. B

M. Köllner and P. Monkhouse, “Time-resolved LIF of OH in the flame front of premixed and diffusion flames at atmospheric pressure,” Appl. Phys. B 61, 499-503 (1995).
[CrossRef]

W. Koban, J. B. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperature,” Appl. Phys. B 80, 777-784 (2005).
[CrossRef]

F. Ossler and M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone and acetone: Implications to combustion diagnostics,” Appl. Phys. B 64, 493-502 (1997).
[CrossRef]

W. G. Bessler and C. Schulz, “Quantitative multi-line NO-LIF temperature imaging,” Appl. Phys. B 78, 519-533 (2004).
[CrossRef]

M. C. Thurber and R. K. Hanson, “Pressure and composition dependences of acetone laser-induced fluorescence with excitation at 248, 266, and 308 nm,” Appl. Phys. B 69, 229-240(1999).
[CrossRef]

J. Tobai and T. Dreier, “Effective A-state fluorescence lifetime of formaldehyde in atmospheric pressure CH4/air flames,” Appl. Phys. B 74, 101-104 (2002).
[CrossRef]

Chem. Phys. Lett.

F. P. Zimmermann, W. Koban, C. M. Roth, D.-P. Herten, and C. Schulz, “Fluorescence lifetime of gas-phase toluene at elevated temperatures,” Chem. Phys. Lett. 426, 248-251 (2006).
[CrossRef]

Combust. Sci. Technol.

C. Brackmann, J. Bood, M. Aldén, G. Pengloan, and Ö. Andersson, “Quantitative measurements of species and temperature in a DME-air counterflow diffusion flame using laser diagnostic methods,” Combust. Sci. Technol. 178, 1165-1184 (2006).
[CrossRef]

J. Chem. Phys.

K. Shibuya, P. W. Fairchild, and E. K. C. Lee, “Single rotational level fluorescence quantum yields, radiative lifetimes, and nonradiative decay rates of S1D2CO and H2CO(A˜1A2,41): Rotational dependence,” J. Chem. Phys. 75, 3397-3406 (1981).
[CrossRef]

C. S. Burton and W. A. Noyes, “Electronic energy relaxation in toluene vapor,” J. Chem. Phys. 49, 1705-1714 (1968).
[CrossRef]

C. G. Hickman, J. R. Gascooke, and W. D. Lawrance, “The S1−S0(1B21A1) transition of jetcooled toluene: excitation and dispersed fluorescence spectra, fluorescence lifetimes, and intramolecular vibrational energy redistribution,” J. Chem. Phys. 104, 4887-4901 (1996).
[CrossRef]

J. Phys. Conf. Ser.

T. Fuyuto, H. Kronemayer, B. Lewerich, W. Koban, K. Akihama, and C. Schulz, “Laser-based temperature imaging close to surfaces with toluene and NO-LIF,” J. Phys. Conf. Ser. 45, 69-76 (2006).
[CrossRef]

J. Phys. D

A. V. Lugovskoy, T. Usmanov, and A. V. Zinoviev, “Laser-induced non-equilibrium phenomena on a metal surface,” J. Phys. D 27, 628-633 (1994).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Chem. Chem. Phys.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Absorption and fluorescence of toluene vapor at elevated temperatures,” Phys. Chem. Chem. Phys. 6, 2940-2945 (2004).
[CrossRef]

Proc. Combust. Inst.

M. R. Schrewe and J. B. Ghandhi, “Near-wall formaldehyde planar laser-induced fluorescence measurements during HCCI combustion,” Proc. Combust. Inst. 31, 2871-2878(2007).
[CrossRef]

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545-1553 (2005).
[CrossRef]

Proc. SPIE

S. Hamilton and A. Mottola, “Investigation of the on/off ratio of a gated intensifier,” Proc. SPIE 4796, 83-89 (2003).
[CrossRef]

Prog. Energy Combust. Sci.

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature, and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

Rev. Sci. Instrum.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151-162 (2004).
[CrossRef]

Spectrochim. Acta Part A

T. Metz, X. Bai, F. Ossler, and M. Aldén, “Absorption of formaldehyde (H2CO) in the A˜1A2←X˜1A1 band system at elevated temperatures and pressures,” Spectrochim. Acta Part A 60, 1043-1053 (2004).
[CrossRef]

Other

I. Glassman, Combustion, 3rd ed. (Academic, 1996).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley--Interscience, 1983).

R. E. Stevens, H. Ma, C. R. Stone, H. L. Walmsley, and R. Cracknell, “On planar laser-induced fluorescence with multi-component fuel and tracer design for quantitative determination of fuel concentration in internal combustion engines,” Proc. IMechE Part D: J. Automobile Engineering Vol. 221 (Professional Engineering Publishing, 2007), pp 713-724.
[CrossRef]

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, 1996).

K.Kohse-Höinghaus and J.B.Jeffries eds., Applied Combustion Diagnostics (Taylor & Francis, 2002).

R. Gonzalez, R. Woods, and S. Eddins, Digital Image Processing Using MATLAB (Prentice Hall, 2003).

J. B. Heywood, Internal Combustion Engine Fundamentals (McGraw-Hill, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic illustration of the temporal filtering concept. The total signal is the sum of the signal of interest, e.g., a LIF-signal, and an interfering signal, e.g., elastic scattering, of shorter duration. Using a detector that can be gated, such as an ICCD-camera, the interference may be suppressed by choosing an appropriate time delay (τ) for the gate opening. The letter x is a stochastic variable corresponding to the temporal jitter between the laser firing and the gate opening.

Fig. 2
Fig. 2

Schematic picture of an ICCD-camera. The light entering the photo cathode (PC) is denoted S ( t ) . The photocathode is gated, i.e., the signal is multiplied by the gate function, G ( t τ x ) . Finally, this product is integrated over time, resulting in a detected signal intensity I s s ( τ ) , which is dependent on the delay time, τ.

Fig. 3
Fig. 3

Schematic illustration of the experimental setup. The designations are L1: spherical lens with focal length f = 50 mm and diameter D = 50 mm , L2: UV achromatic spherical lens (B. Halle) with f = 250 mm and D = 50 mm , L3: spherical lens (B. Halle) with f = 100 mm and D = 50 mm mounted on the ICCD-camera using a 31 mm extension ring. Two different setups were used in the measurement volume (see Fig. 4).

Fig. 4
Fig. 4

Two different setups used in the measurement volume indicated in the overall experimental setup shown in Fig. 3. (a) A toluene-seeded nitrogen gas jet impinging on an aluminum surface with a coflow of nitrogen gas. (b) An acetone-seeded air jet surrounded by a water aerosol generated by a nebulizer.

Fig. 5
Fig. 5

Spectrally and temporally resolved images of the aluminum surface luminescence (left) and the toluene-LIF signal (right). Spectrally the signals initially overlap. Hence the significant difference in duration of the two signals indicates that temporal filtering is applicable.

Fig. 6
Fig. 6

Single-shot images of measurement volume A for three different gate delays. The upper row images were acquired with the toluene-seeded gas jet impinging on the aluminum surface. Bottom row: images acquired with the gas jet switched off. The signal visible in the images in the bottom row is thus due to laser-induced luminescence from the aluminum surface.

Fig. 7
Fig. 7

Single-shot images of measurement volume B for three different gate delays. The upper row images were acquired with a gate width of 10 ns ; the images in the lower row were recorded with a gate width of 20 ns .

Fig. 8
Fig. 8

Simulated (solid and dashed curves) and experimental (× and ∘) results showing the efficiency of the temporal filter, when applied in measurement volume B [shown in Fig. 4b]. SSIR ( τ ) is indicated by (∘) and solid curves, whereas T ( τ ) is indicated by (×) and dashed curves. (a) Result using a 10 ns gate. (b) Result using a 20 ns gate.

Fig. 9
Fig. 9

Temporally resolved acetone-LIF signal. The solid curve designates the measured data, while the dashed curve is S LIF ( t ) . S LIF ( t ) was determined by fitting a single-exponential function to the decaying part of the measured curve, extrapolating the fit to t = 0 , and then convolving the fit with the temporal shape of the laser pulse.

Fig. 10
Fig. 10

Temporally resolved Mie scattering signal, S Mie ( t ) , recorded in the water aerosol.

Fig. 11
Fig. 11

Investigation of the jitter function using the Rayleigh-scattering signal of ambient air. The detected signal corresponds to the jitter function convolved with the laser pulse, i.e., [ J L ] ( t ) .

Fig. 12
Fig. 12

Characterization of the detector gate function by Rayleigh scattering measurements in ambient air. (a) Results of convolutions between the gate and the jitter functions, i.e., H ( τ ) = [ G J ] ( τ ) , for the 10 ns (solid curve) and 20 ns gates (dotted curve), respectively, are shown in (a); the corresponding result for the 100 ns gate is shown as the solid curve in (b). The dashed curve in (b) is the top-hat function fit to the data. The top-hat function was used to simulate the reference signal.

Tables (1)

Tables Icon

Table 1 Photophysical Properties of Species of Interest in Combustion Research

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

I s s n ( τ ) = t i t f [ S ( t ) G ( t τ x ) + n ( t ) ] d t + n r .
I s s n ( τ ) = [ S ( t ) G ( t τ x ) ] d t + t i t f n ( t ) d t + n r = I s s ( τ ) + n tot ( t ) ,
I s s ( τ ) = [ S ( t ) G ( t τ x ) ] d t .
S ( t ) = L ( t ) R ( t ) ,
I acc ( τ ) = n = 1 N tot I s s ( τ ) = { [ L ( t ) R ( t ) ] n = 1 N tot [ G ( t τ x ) ] } d t .
P [ x 0 < x ( x 0 + d x ) ] = x 0 x 0 + d x J x ( t ) d t J x ( x 0 ) d x N [ x 0 < x ( x 0 + d x ) ] N tot .
I acc ( τ ) = { [ L ( t ) R ( t ) ] i = N ( i d x < x ( i + 1 ) d x ) G ( t τ i d x ) } d t { [ L ( t ) R ( t ) ] N tot i = J x ( i d x ) G ( t τ i d x ) d x } d t .
I acc ( τ ) N tot { [ L ( t ) R ( t ) ] G ( t τ x ) J x ( x ) d x } d t .
H ( t τ ) = [ G J x ] ( t τ )
I acc ( τ ) N tot S ( t ) H ( t τ ) d t .
T ( τ ) = I acc signal ( τ ) I accref signal ,
SSIR ( τ ) = I acc signal ( τ ) I acc signal ( τ ) + I acc interference ( τ ) ,
I LIF ( t ) = n = 1 N tot S ( t x ) = j = N ( j d x < x ( j + 1 ) d x ) S ( t x ) N tot j = S ( t j d x ) J x ( j d x ) = N tot [ S J ] ( t ) = N tot [ R LIF L J ] ( t ) .
I Mie ( t ) = n = 1 N tot S ( t ) = N tot [ R Mie L ] ( t ) .
K ( t ) = n = 1 N L ( t x n ) = i = 1 L ( t i d x ) N ( x 0 < x < x 0 + d x ) N tot i = 1 L ( t i d x ) J x ( i d x ) d x = N tot 0 L ( t x ) J x ( x ) d x = N tot [ L J x ] ( t ) ,
B ( t , τ ) = n = 1 N acc . L ( t x n ) G ( t τ ) .
I B ( τ ) = 0 B ( t , τ ) d t = 0 [ G ( t + τ ) n = 1 N acc . L ( t x n ) K ( t ) ] d t .
I B ( τ ) 0 G ( t + τ ) K ( t ) d t = [ G ( τ ) K ( t ) ] = [ G J = H ( τ ) L ] ( τ ) .
I acc ( τ ) N tot S ( t ) H ( t τ ) d t .
SSIR ( τ ) = I acc signal ( τ ) I acc signal ( τ ) + I acc interference ( τ ) + I accref interference I acc interference ( τ ) r on / off .
C q = 1 Φ = A 21 + Q A 21 ,
C TF = 1 T ( τ ) e ( A 21 C q τ ) .

Metrics