Abstract

A polarization imaging spectrometer based on a modified Savart polariscope with a moving wedge prism is presented. The principle of the instrument is described, and the optical path difference as a function of the moving wedge prism’s moving displacement is calculated and analyzed. It employs a common-path configuration and is not sensitive to the nonuniform variation of moving speed and environmental vibrations. In comparison with the polarization imaging spectrometer based on the Savart polariscope, this spectrometer is a framing instrument rather than a pushbrooming device. Only the transmission of birefringent materials and detector sensitivity limit the available spectral range of such an instrument.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, 1972), pp. 19-45.
  2. R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44, 013602-013603 (2005).
    [CrossRef]
  3. T. Mu, C. Zhang, and B. Zhao, “Analysis of a moderate resolution Fourier transform imaging spectrometer,” Opt. Commun. 282, 1699-1705 (2009).
    [CrossRef]
  4. M. J. Persky, “A review of space infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66, 4763-4797 (1995).
    [CrossRef]
  5. T. Okamoto, S. Kawata, and S. Minami, “Fourier transform spectrometer with a self-scanning photodiode array,” Appl. Opt. 23, 269-273 (1984).
    [CrossRef] [PubMed]
  6. M. L. Junttila, J. Kauppinen, and E. Ikonen, “Performance limits of stationary Fourier spectrometers,” J. Opt. Soc. Am. A 8, 1457-1462 (1991).
    [CrossRef]
  7. J. B. Rafert, R. G. Sellar, and J. H. Blatt, “Monolithic Fourier-transform imaging spectrometer,” Appl. Opt. 34, 7228-7230(1995).
    [CrossRef] [PubMed]
  8. W. H. Smith and P. D. Hammer, “Digital array scanned interferometer: sensors and results,” Appl. Opt. 35, 2902-2909(1996).
    [CrossRef] [PubMed]
  9. C. Zhang, B. Xiangli, and B. Zhao, “Static Polarization Interference Imaging Spectrometer (SPIIS),” Proc. SPIE 4087, 957-961 (2000).
    [CrossRef]
  10. C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203, 21-26 (2002).
    [CrossRef]
  11. C. Zhang, B. Zhao, B. Xiangli, and X. Zha, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometers,” Opt. Commun. 227, 221-225 (2003).
    [CrossRef]
  12. C. Zhang, B. Xiangli, and B. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 6, 815-817 (2004).
    [CrossRef]
  13. X. Jian, C. Zhang, B. Zhao, and B. Zhu, “The application of MUSIC algorithm in spectrum reconstruction and interferogram processing,” Opt. Commun. 281, 2424-2428 (2008).
  14. C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281, 2050-2056 (2008).
  15. T. Mu, C. Zhang, and B. Zhao, “Optical path difference evaluation of the polarization interference imaging spectrometer,” Opt. Commun. 282, 1984-1992 (2009).
    [CrossRef]
  16. M. Françon and S. Mallick, Polarization Interferometers: Applications in Microscopy and Macroscopy (Wiley-Interscience, 1971), pp. 15-29.
  17. M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge University, 1980), p. 694.
  18. M. Hashimoto and S. Kawata, “Multichannel Fourier transform infrared spectrometer,” Appl. Opt. 31, 6096-6101 (1992).
    [CrossRef] [PubMed]
  19. G. Zhan, K. Oka, T. Ishigaki, and N. Baba, “Birefringent imaging spectrometer,” Appl. Opt. 41, 734-738 (2002).
    [CrossRef] [PubMed]

2009

T. Mu, C. Zhang, and B. Zhao, “Analysis of a moderate resolution Fourier transform imaging spectrometer,” Opt. Commun. 282, 1699-1705 (2009).
[CrossRef]

T. Mu, C. Zhang, and B. Zhao, “Optical path difference evaluation of the polarization interference imaging spectrometer,” Opt. Commun. 282, 1984-1992 (2009).
[CrossRef]

2008

X. Jian, C. Zhang, B. Zhao, and B. Zhu, “The application of MUSIC algorithm in spectrum reconstruction and interferogram processing,” Opt. Commun. 281, 2424-2428 (2008).

C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281, 2050-2056 (2008).

2005

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44, 013602-013603 (2005).
[CrossRef]

2004

C. Zhang, B. Xiangli, and B. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 6, 815-817 (2004).
[CrossRef]

2003

C. Zhang, B. Zhao, B. Xiangli, and X. Zha, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometers,” Opt. Commun. 227, 221-225 (2003).
[CrossRef]

2002

G. Zhan, K. Oka, T. Ishigaki, and N. Baba, “Birefringent imaging spectrometer,” Appl. Opt. 41, 734-738 (2002).
[CrossRef] [PubMed]

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203, 21-26 (2002).
[CrossRef]

2000

C. Zhang, B. Xiangli, and B. Zhao, “Static Polarization Interference Imaging Spectrometer (SPIIS),” Proc. SPIE 4087, 957-961 (2000).
[CrossRef]

1996

1995

J. B. Rafert, R. G. Sellar, and J. H. Blatt, “Monolithic Fourier-transform imaging spectrometer,” Appl. Opt. 34, 7228-7230(1995).
[CrossRef] [PubMed]

M. J. Persky, “A review of space infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66, 4763-4797 (1995).
[CrossRef]

1992

1991

1984

Baba, N.

Bell, R. J.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, 1972), pp. 19-45.

Blatt, J. H.

Boreman, G. D.

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44, 013602-013603 (2005).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge University, 1980), p. 694.

Françon, M.

M. Françon and S. Mallick, Polarization Interferometers: Applications in Microscopy and Macroscopy (Wiley-Interscience, 1971), pp. 15-29.

Hammer, P. D.

Hashimoto, M.

Ikonen, E.

Ishigaki, T.

Jian, X.

X. Jian, C. Zhang, B. Zhao, and B. Zhu, “The application of MUSIC algorithm in spectrum reconstruction and interferogram processing,” Opt. Commun. 281, 2424-2428 (2008).

Junttila, M. L.

Kauppinen, J.

Kawata, S.

Mallick, S.

M. Françon and S. Mallick, Polarization Interferometers: Applications in Microscopy and Macroscopy (Wiley-Interscience, 1971), pp. 15-29.

Minami, S.

Mu, T.

T. Mu, C. Zhang, and B. Zhao, “Analysis of a moderate resolution Fourier transform imaging spectrometer,” Opt. Commun. 282, 1699-1705 (2009).
[CrossRef]

T. Mu, C. Zhang, and B. Zhao, “Optical path difference evaluation of the polarization interference imaging spectrometer,” Opt. Commun. 282, 1984-1992 (2009).
[CrossRef]

Oka, K.

Okamoto, T.

Persky, M. J.

M. J. Persky, “A review of space infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66, 4763-4797 (1995).
[CrossRef]

Rafert, J. B.

Sellar, R. G.

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44, 013602-013603 (2005).
[CrossRef]

J. B. Rafert, R. G. Sellar, and J. H. Blatt, “Monolithic Fourier-transform imaging spectrometer,” Appl. Opt. 34, 7228-7230(1995).
[CrossRef] [PubMed]

Smith, W. H.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge University, 1980), p. 694.

Xiangli, B.

C. Zhang, B. Xiangli, and B. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 6, 815-817 (2004).
[CrossRef]

C. Zhang, B. Zhao, B. Xiangli, and X. Zha, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometers,” Opt. Commun. 227, 221-225 (2003).
[CrossRef]

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203, 21-26 (2002).
[CrossRef]

C. Zhang, B. Xiangli, and B. Zhao, “Static Polarization Interference Imaging Spectrometer (SPIIS),” Proc. SPIE 4087, 957-961 (2000).
[CrossRef]

Yan, X.

C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281, 2050-2056 (2008).

Yuan, X.

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203, 21-26 (2002).
[CrossRef]

Zha, X.

C. Zhang, B. Zhao, B. Xiangli, and X. Zha, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometers,” Opt. Commun. 227, 221-225 (2003).
[CrossRef]

Zhan, G.

Zhang, C.

T. Mu, C. Zhang, and B. Zhao, “Optical path difference evaluation of the polarization interference imaging spectrometer,” Opt. Commun. 282, 1984-1992 (2009).
[CrossRef]

T. Mu, C. Zhang, and B. Zhao, “Analysis of a moderate resolution Fourier transform imaging spectrometer,” Opt. Commun. 282, 1699-1705 (2009).
[CrossRef]

X. Jian, C. Zhang, B. Zhao, and B. Zhu, “The application of MUSIC algorithm in spectrum reconstruction and interferogram processing,” Opt. Commun. 281, 2424-2428 (2008).

C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281, 2050-2056 (2008).

C. Zhang, B. Xiangli, and B. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 6, 815-817 (2004).
[CrossRef]

C. Zhang, B. Zhao, B. Xiangli, and X. Zha, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometers,” Opt. Commun. 227, 221-225 (2003).
[CrossRef]

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203, 21-26 (2002).
[CrossRef]

C. Zhang, B. Xiangli, and B. Zhao, “Static Polarization Interference Imaging Spectrometer (SPIIS),” Proc. SPIE 4087, 957-961 (2000).
[CrossRef]

Zhao, B.

T. Mu, C. Zhang, and B. Zhao, “Analysis of a moderate resolution Fourier transform imaging spectrometer,” Opt. Commun. 282, 1699-1705 (2009).
[CrossRef]

T. Mu, C. Zhang, and B. Zhao, “Optical path difference evaluation of the polarization interference imaging spectrometer,” Opt. Commun. 282, 1984-1992 (2009).
[CrossRef]

C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281, 2050-2056 (2008).

X. Jian, C. Zhang, B. Zhao, and B. Zhu, “The application of MUSIC algorithm in spectrum reconstruction and interferogram processing,” Opt. Commun. 281, 2424-2428 (2008).

C. Zhang, B. Xiangli, and B. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 6, 815-817 (2004).
[CrossRef]

C. Zhang, B. Zhao, B. Xiangli, and X. Zha, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometers,” Opt. Commun. 227, 221-225 (2003).
[CrossRef]

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203, 21-26 (2002).
[CrossRef]

C. Zhang, B. Xiangli, and B. Zhao, “Static Polarization Interference Imaging Spectrometer (SPIIS),” Proc. SPIE 4087, 957-961 (2000).
[CrossRef]

Zhu, B.

X. Jian, C. Zhang, B. Zhao, and B. Zhu, “The application of MUSIC algorithm in spectrum reconstruction and interferogram processing,” Opt. Commun. 281, 2424-2428 (2008).

Appl. Opt.

J. Opt. A: Pure Appl. Opt.

C. Zhang, B. Xiangli, and B. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 6, 815-817 (2004).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Commun.

T. Mu, C. Zhang, and B. Zhao, “Analysis of a moderate resolution Fourier transform imaging spectrometer,” Opt. Commun. 282, 1699-1705 (2009).
[CrossRef]

X. Jian, C. Zhang, B. Zhao, and B. Zhu, “The application of MUSIC algorithm in spectrum reconstruction and interferogram processing,” Opt. Commun. 281, 2424-2428 (2008).

C. Zhang, X. Yan, and B. Zhao, “A novel model for obtaining interferogram and spectrum based on the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Commun. 281, 2050-2056 (2008).

T. Mu, C. Zhang, and B. Zhao, “Optical path difference evaluation of the polarization interference imaging spectrometer,” Opt. Commun. 282, 1984-1992 (2009).
[CrossRef]

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203, 21-26 (2002).
[CrossRef]

C. Zhang, B. Zhao, B. Xiangli, and X. Zha, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometers,” Opt. Commun. 227, 221-225 (2003).
[CrossRef]

Opt. Eng.

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44, 013602-013603 (2005).
[CrossRef]

Proc. SPIE

C. Zhang, B. Xiangli, and B. Zhao, “Static Polarization Interference Imaging Spectrometer (SPIIS),” Proc. SPIE 4087, 957-961 (2000).
[CrossRef]

Rev. Sci. Instrum.

M. J. Persky, “A review of space infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66, 4763-4797 (1995).
[CrossRef]

Other

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, 1972), pp. 19-45.

M. Françon and S. Mallick, Polarization Interferometers: Applications in Microscopy and Macroscopy (Wiley-Interscience, 1971), pp. 15-29.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge University, 1980), p. 694.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Coordinate system of the Savart polariscope (uniaxial crystal).

Fig. 2
Fig. 2

(a) Modified Savart plariscope with a moving wedge prism and (b) a view in perspective.

Fig. 3
Fig. 3

Optical layout of the PIS based on the modified Savart polariscope.

Fig. 4
Fig. 4

OPD Δ of the PIS as a function of the wedge angle α and the moving displacement L.

Fig. 5
Fig. 5

OPD Δ of the PIS as a function of the moving displacement L (where α = 45 ° ).

Fig. 6
Fig. 6

OPD Δ SPIIS of the SPIIS as a function of spatial coordinate x.

Fig. 7
Fig. 7

Data acquisition mode of the 2D CCD in the SPIIS.

Fig. 8
Fig. 8

Data acquisition mode of the 2D CCD in the PIS.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I ( Δ ) = σ 1 σ 2 B ( σ ) exp ( i 2 π σ Δ ) d σ ,
B ( σ ) = Δ max Δ max I ( Δ ) exp ( i 2 π σ Δ ) d Δ ,
L = u T ,
s = L sin α .
Δ f = t 0 { 1 ε 1 b + ( a 2 b 2 ) cos ω · sin i 2 ε 2 + sin 2 i 2 [ ( b a 2 ε ) sin 2 ω + ( b a 2 b 2 ε 3 ) cos 2 ω ] } ,
Δ s = ( t 0 + s ) { 1 ε 1 b ( a 2 b 2 ) sin ω · sin i 2 ε 2 + sin 2 i 2 [ ( b a 2 ε ) cos 2 ω + ( b a 2 b 2 ε 3 ) sin 2 ω ] } ,
Δ = Δ f Δ s = L sin α ( 1 b 1 ε ) + sin i { t 0 a 2 b 2 a 2 + b 2 ( cos ω + sin ω ) + L sin α ( ( a 2 b 2 ) sin ω 2 ε 2 ) } + sin 2 i { t 0 ( a 2 b 2 ) a 2 2 ( a 2 + b 2 ) 3 / 2 ( cos 2 ω sin 2 ω ) L sin α 2 [ b + a 2 ε ( cos 2 ω + b 2 sin 2 ω ε 2 ) ] } .
i max = arctan ( 2.56 / 70 ) × 180 / π 2 ° .
Δ = L sin α ( 1 b 2 ( a 2 + b 2 ) 1 / 2 ) .
d = 2 t 0 n o 2 n e 2 n o 2 + n e 2 .
Δ SPIIS = d · x / f 2 = 2 t 0 n o 2 n e 2 n o 2 + n e 2 x f 2 ,

Metrics